Nonlinear boundary value problems relative to one dimensional heat equation - Archive ouverte HAL Access content directly
Journal Articles Rendiconti dell'Istituto di Matematica dell'Universita di Trieste: an International Journal of Mathematics Year : 2020

Nonlinear boundary value problems relative to one dimensional heat equation

Laurent Veron

Abstract

We consider the problem of existence of a solution u to ∂ t u − ∂ xx u = 0 in (0, T) × R + subject to the boundary condition −u x (t, 0) + g(u(t, 0)) = µ on (0, T) where µ is a measure on (0, T) and g a continuous nondecreasing function. When p > 1 we study the set of self-similar solutions of ∂ t u − ∂ xx u = 0 in R + × R + such that −u x (t, 0) + u p = 0 on (0, ∞).
Fichier principal
Vignette du fichier
Art-LV.pdf (223.98 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-02771254 , version 1 (04-06-2020)
hal-02771254 , version 2 (16-06-2020)
hal-02771254 , version 3 (20-08-2020)

Identifiers

Cite

Laurent Veron. Nonlinear boundary value problems relative to one dimensional heat equation. Rendiconti dell'Istituto di Matematica dell'Universita di Trieste: an International Journal of Mathematics, 2020, 52, pp.1-23. ⟨10.13137/0049-4704/xxxxx⟩. ⟨hal-02771254v3⟩
78 View
56 Download

Altmetric

Share

Gmail Facebook X LinkedIn More