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Abstract
We consider the problem of existence of a solution u to 9t — Ogau = 0
in (0,T) xR subject to the boundary condition —u (¢, 0)+g(u(¢,0)) = p
on (0,T) where 1 is a measure on (0, T") and g a continuous nondecreasing
function. When p > 1 we study the set of self-similar solutions of Jiu —
Ozzu = 0 in R4 X R4 such that —ug(¢,0) + u? = 0 on (0,00). At end,
we present various extensions to a higher dimensional framework.

1. Introduction

Let g : R — R be a continuous nondecreasing function. Set QD€+ =
(0, T) xRy for 0 < T < oo and 8¢ Q, = Ry x{0}. The aim of this article
is to study the following 1-dimensional heat equation with a nonlinear
flux on the parabolic boundary

Ut — Uggy = 0 in QD€+
— (., 0) + g(u(.,0)) = p in [0,7) 1)
u(0,.) =v in Ry,

where v, u are Radon measures in R4 and [0,7") respectively. A related
problem in Qﬁ{l for which there exist explicit solutions is the following,

Ut — Ugz =0 in Qg

—uy(t,0) + [ulP7 u(t,0) =0 forall t>0 (2)
limu(t,z) =0 for all z >0,
t—0

where p > 1. Problem (2) is invariant under the transformation Tj
defined for all k£ > 0 by

T lu](t,z) = kﬁu(thJm). 3)
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This leads naturaly to look for existence of self-similar solutions under
the form

us(t,x)ztfﬁw (%) . 4)

Putting n = =, w satisfies

R R S in R
2™ T YT +
—w'(0) + [w[P"'w(0) =0 (5)

lim nﬁw(n) =0.

7]*)00
Self-similar solutions of non-linear diffusion equations such as porous-
media or fast-diffusion equation were discovered long time ago by Kom-
paneets and Zeldovich and a thourougful study was made by Barenblatt,
reducing the study to the one of integrable ordinary differential equations
with explicit solutions. Concerning semilinear heat equation Brezis, Ter-
man and Peletier opened the study of self-similar solutions of semilinear
heat equations in proving in [5] the existence of a positive strongly sin-
gular function satisfying

ur — Au+ [ulP"lu =0 in Ry xR", (6)

and vanishing at ¢ = 0 on R™ \ {0}. They called it the very singular
solution. Their method of construction is based upon the study of an
ordinary differential equation with a phase space analysis. A new and
more flexible method based upon variational analysis has been provided
by [7]. Other singular solutions of (6) in different configurations such as
boundary singularities have been studied in [13]. We set K(n) = en’ /A
and

Lk (Ry) = {<Z5 € Li,(Ry) : / ¢*Kdz := ||¢H2L§( < 00} ;o (7)
Ry

and, for kK > 1,

k
HE(R+) = {qse L) S [0, = ol < oo}A (8)
a=0 K

Let us denote by £ the subset of Hj (R;) of weak solutions of (5) that
is the set of functions satisfying

e > 1 p—1 _
/0 <W ¢ - mwg> K(n)dn + (lw|" w¢) (0) =0, (9)

and by £ the subset of nonnegative solutions. The next result gives the
structure of £.
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THEOREM 1.1. I- If p > 2, then €& = {0}.
2-If1<p<3, then & = {0}

8-1If 2 <p <2 then & = {ws, —ws,0} where ws is the unique positive
solution of (5). Furthermore there exists ¢ > 1 such that

,q2

c_lnﬁ_l <eTws(n) < cnﬁ_l for all n > 0. (10)

Whenever it exists the function us defined in (4) is the limit, when
£ — oo of the positive solutions ues, of

Ut — Ugy = 0 in Qﬂ‘ﬁ
—ug(t,.) + [ulP u(t,.) = £50 in [0,7) (11)
lim u(¢,z) =0 for all = € Ry.
t—0

When such a function us does not exits the sequence {ugs,} tends to
infinity. This is a charateristic phenomenon of an underlying fractional
diffusion associated to the linear equation

Ut — Ugy = 0 in Qﬁﬁ
—uz(,0)=p in [0,00) (12)
u(0,.) =0 in Ry.

More generaly we consider problem (1). We define the set X(Q]@) of
test functions by

X(Qk,) = {¢ € C2*([0,T) x [0,00)) : Cx(t,0) =0 for t € [O,T]}k |
13

DEFINITION 1.2. Let v, u be Radon measures in Ry and [0, T) respectively.
A function u defined in QH€+ and belonging to L}OC(QH€+) OL1(8¢Q£+; dt)
such that g(u) € Ll(agQD€+;dt) is a weak solution of (1) if for every
Ce X(QD€+) there holds

_/T/Oo(gt + Con)udzdt + /T (g(u)C) (t,0)dt
o Jo 0 (14)

oo T
= [cavt@r+ [ ¢ 0duto).
0 0
We denote by E(¢,z) the Gaussian kernel in R4 x R. The solution of

V¢ — Vge = 0 in Qﬁﬁ
— vz = do in Ry (15)
v(0,.) =0 in Ry,
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has explicit expression

o(t,z) = 2E(t,2) = \/%e*%. (16)

Ifz,y >0and s < t weset E(t—s,x,y) = E(t—s,z—y)+ E(t—s,x+7y).

When v € M°(Ry) and p € M (Ry) the solution of

V¢ — Vgg =0 in Qﬂ‘ﬁ
— (., 0)=p in Ry (17)
u(0,.) =v in Ry,

is given by

Vyu(t,x) = /OOOE(t,x,y)dV(y) + 2/0 E(t —s,z)du(s)

= 5R+ [V](t7 m) + <c/']R+><{0} [N](tv x) = gQﬁ [(V7 M)](t7 m)

(18)

We prove the following existence and uniqueness result.

THEOREM 1.3. Let g : R — R be a continuous mondecreasing function
such that g(0) = 0. If g satisfies

/1 " (g(s) — g(—s))s~%ds < oo, (19)

then for any bounded Borel measures v in Ry and p in [0,T), there
exists a unique weak solution u = u,, € L' (Q£+) of (1). Furthermore
the mapping (v, p) — uy,, is nondecreasing.

When g(s) = |s|P~*s, condition (19) is satisfied if
0<p<2 (20)

The above result is still valid under minor modifications if Ry is
replaced by a bounded interval I := (a,b), and problem (1) by

Ut — Uggy = 0 in QF
uz (., b) + g(u(., b)) = m ?n [0,T) (21)
) + glu(s @) = i in [0,7)
u(0,.)=v in (a,b),

where v, u; (j =1,2) are Radon measures in I and (0,7") respectively.
In the last section we present the scheme of the natural extensions of
this problem to a multidimensional framework
ur —Au =0 in Q%{i
— Uy, +g(u) =p in 3{Q]§1 (22)
u(0,.)=v in R%,
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The construction of solutions with measure data can be generalized but
there are some difficulties in the obtention of self-similar solutions. The
equation with a source flux

ur — Au =0 in Qi{i
Uz, +g(u) =0 in 8¢QD€1 (23)
u(0,.) =v in RY,

has been studied by several authors, in particular Fila, Ishige, Kawakami
and Sato [8], [10], [11]. Their main concern deals with global existence
of solutions.

Aknowledgements. The author is grateful to the reviewer for mentioning
reference [9] which pointed out the role of Whittaker’s equation which
was used for analyzing the blow-up of positive solutions of (23) when
g(u) = u? whenn = 1.

2. Self-similar solutions

2.1. The symmetrization
We define the operator Lx in C3(R) by

Li(¢)=—K '(K¢').

The operator Lk has been thouroughly studied in [7]. In particular
. < < 2 1
mf{/ ¢ K (m)n : / ¢"K(n)dn = 1} =3 (24)

The above infimum is achieved by ¢1 = (471')7%K71 and Lk is an iso-
morphism from Hj (R) onto its dual (Hx (R)) ~ Hgl (R). Finally [,;(1 is
compact from L% (R) into H (R), which implies that Lx is a Fredholm
self-adjoint operator with

(T(,CK):{)\J':%;1 lj:1727-~-}7

and .
ker (Lx — A\jlq) = span {¢§”} .

If ¢ is defined in Ry, qz(x) = ¢(—x) is the symmetric with respect to
0 while ¢*(z) = —¢(—) is the antisymmetric with respect to 0. The
operator Ly restricted to Ry is denoted by [,;r(. The operator [,}E’N with
Neumann condition at z = 0 is again a Fredholm operator. This is also
valid for the operator [,;r(’D with Dirichlet condition at © = 0. Hence, if ¢
is an eigenfunction of [,;r(’N7 then <;~5 is an eigenfunction of Lx in L% (R).
Similarly, if ¢ is an eigenfunction of E}’D, then ¢* is an eigenfunction of
Lk in L% (R). Conversely, any even (resp. odd) eigenfunction of Lx in
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L% (R) satisfies Neumann (resp. Dirichlet) boundary condition at = = 0.
Hence its restiction to L% (R4 ) is an eigenfunction of £} (resp. £17).
Since ¢5J) is even (resp. odd) if and only if j is even (resp. odd), we
derive

H}(Ry) @ span {(;5(%“)} (25)

and

Hi(Ry) = @ span {qbg%)} (26)

Note that ¢ € H(R4) such that ¢,(0) = 0 (resp. ¢(0) = 0) implies
¢ € Hk(R) (resp. ¢* € Hk(R)). Furthermore, ¢ is an eigenfunction of
L} in Hi (RT) with Neumann boundary condition on OR" while 0, ¢1
is an eigenfunction of £}; in Hx (R"}) with Dirichlet boundary condition
on OR%. We list below two important properties of Hy (R4) valid for
any 3 > 0. Actually they are proved in [7, Prop. 1.12] with H 4 (R) but
the proof is valid with H 5 (R4).

(i) ¢ € Hky(Ry) = K3 € C¥F(Ry)

27
(#) Hs(Ry) < L2 5(Ry) is compact for all n > 1. @)

2.2. Proof of Theorem 1.1-(i)-(ii)

Assume p > 2, then 2(p—1_1) < % If w is a weak solution, then

o 12 1 2) —+1
W= ——w? ) Kdn+ |w/PT(0) = 0.
/0 ( T 0+ P 0)

If% > = — we deduce that w = 0. Furthermore, when % =

5D then

2(19 1)
[P (0) = 0.

If w is nonzero, it is an eigenfunction of E;’D. Since the first eigenvalue

is 1 it would imply 1 = 2(p—171) < %7 contradiction.

Assume 1 < p < % and w is a nonnegative weak solution. We take

¢(n) =ne~"F = 24, (1), then

/O‘X’ (‘CN - ﬁf) wK (n)dn + ¢’ (0)w?(0) = 0.

Since —C = ([r.> 0 and ¢'(0) = ¢:1(0) = 1, we derive w¢ = 0 if
1> 2(p 7y and w(0)=0if 1= 2(p—1_1). Hence w’(0) = 0 by the equation
and w = 0 by the Cauchy-Lipschitz theorem. d
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2.3. Proof of Theorem 1.1-(iii)
We define the following functional on H (R7)

g0 =3 [ (67 - i) Kant P (29)

LEMMA 2.1. The functional J is lower semicontinuous in Hy (Ry). It
tends to infinity at infinity and achieves negative values.

Proof. We write

J(W) = N(¥) = @) = Ji(¥) — llZs -

2(p—1)
Clearly J; is convex and Js is continuous in the weak topology of Hj (Ry)
since the imbedding of Hj (R;) into L% (R4) is compact. Hence J is
weakly semicontinuous in H (R4).

Let € > 0, then

1 1 eym et
Jeon = (1 R 4(p—1)) 2 oAl

Since 1 < p < 2, i - < 0. Hence J(eg1) < 0 for e small enough,

4(1) 1)
thus J achieves negative values on H (R4).

If ¢y € Hi(Ry) it can be written in a unique way under the form ¢ =
a1 + 1 where a = 2¢/m(0) and o1 € HL°(Ry). Hence, for any e > 0,

1>/, 1 a? > [, 1
J(w):§/0 (12*m¢%>1(d77+7/0 (12*m¢%>KdTI
1
+a/ (w161 - gy ) K+ =

2p 3 ae , 1
), R (08 )

+ a (pf 2)ﬁ _ apﬁ + 1 |a|p+14
4(p—1) 4p—1e  p+1

Note that me{%{ <4 (HQ/)’lHi%( +a2). Since 2p — 3 > 0, we can take

€ > 0 small enough in order that

(¢) = oo (29)

im
1l g1 —o0
HK

O

End of the proof of Theorem 1.1-(iii). By Lemma 2.1 the functional J
achieves its minimum in H (R4+) at some ws # 0, and ws can be assumed
to be nonnegative since J is even. By the strong maximum principle
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ws > 0, and by the method used in the proof of [15, Proposition 1] is is
easy to prove that positive solutions belong to H (R4). Assume that @
is another positive solution, then

< ((Kwl) (Ko 2 .9
ABWs) A Hs) —&3)dn = 0.
/0 ( . 5. ) (Ws = @)dn =0
Integration by parts, easily justified by regularity, yields

I (M - M) (w2 — &2)dn

Ws Ws

This implies that ws = @s. The proof of (10) is similar as the proof of
estimate (2.5) in [13, Theorem 4.1]. a

2.4. The explicit approach

This part is an adaptation to our problem of what has been done in [9]
concerning the blow-up problem in equation (23). Let w be a solution of

1" 1 / 1 .
— _— = ]R .
W' e 2(p_1)w 0 in Ry (30)
We set )
r= % and w(n) = r_ie_gZ(r)A
Then Z satisfies the Whittaker equation (with the standard notations)
1 k1442
Ly -4 = Z = 1
+<4+T+ o ) 0 (31)
where k = 2(p—1_1) — i and p = i Notice that the only difference with

the expression in [9, Lemma 3.1] is the value of the coefficient k. This
equation admits two linearly independent solutions

Z1(r) = e Epatry (3 +n—k1+2u,r7),

and .
Zo(r) = e TrEtHM (L 4 p— k14 2u,7).
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The functions U and M are the Whittaker functions which play an im-
portant role not only in analysis but also in group theory. The have the
following asymptotic expansion as r — co (see e.g. [1]),

U(3+p—k1l+2pur)= pFoHS (1—}—0(7"_1) S = (1—}—0(7"_1) ,

and
M (5 +u—k1+2ur) = F(F%(Tﬁ')k) eI (14067
= T F(%)err_ﬂp’;l) (1+o0(r™h).
then Zi(r) =r2e-D “ieTh (1+ O(ril) ,
and (%) 11 g 1
Za(r) = mr‘* -1 "e? (14 0(r ).

To this corresponds the two linearly independent solutions w; and w2 of
(30) with the following behaviour as n — oo,

. 1 _n2 _2
(i) wi(n) =cnr1 e” T (1+0(n%),
(32)
1
(i) ws(n) = 7T (14+0(57?)
Clearly only wy satisfies the decay estimate w(n) = o(n_ﬁ) as 1 — oo.

Hence the solution w is a multiple of w; and the multiplicative constant
c is adjusted in order to fit the condition w’(0) = wP?(0).

3. Problem with measure data

3.1. The regular problem
Set G(r) = [, g(s)ds. We consider the functional J in L*(Ry) with
domain D(J) = H*(R4) defined by

J(u) = %/ w2dz + G(u(0)).

0

It is convex and lower semicontinuous in L?(R.) and its subdifferential
0J sastisfies
/ 0J (u)¢dx :/ uzCedz + g(u(0))¢(0),
0 0

for all ¢ € H'(R;). Therefore

/0 o (u)de = — / " taaCz + (g(u(0)) — ua(0))C(0).
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Hence

0J(u) = —ugs for all we D(OJ) ={v € HI(R+) 102 (0) = g(v(0))}.
(33)
The operator 0J is maximal monotone, hence it generates a semi-group of
contractions. Furthermore, for any ug € L?>(Ry) and F' € L?(0,T; L*(L?(R4))
there exists a unique strong solution to

U +0J(U)=F ae. on (0,7) (34)

U(O) = UgQ.
PROPOSITION 3.1. Let u € H'(0,T) and v € L*(Ry). Then there exists a
unique function u € C([0,T]; L*(Ry) such that vtuz. € L*((0,T) x R4)
which satisfies (35). The mapping (p,v) — u 1= Uy, is non-decreasing
and u s a weak solution in the sense that it satisfies (14).

Proof. Let n € C3([0,00)) such that n(0) = 0, n(0) = 1. If f €
H'(0,T), v e L*(R;), and u is a solution of

Ut — Ugge = 0 in QH€+
—uz(.,0) +g(u(., 0)) = u(t) in [0,7) (35)
u(0,.) =v in Ry,

where v € L*(R4), then the function v(t,z) = u(t, x) — u(t)n(x) satisfies

Vt — VUzz = F in QD{#»
—vz(,,0) + g(v(.,0)) =0 in [0,7) (36)
v(0,.) =v — u(0)n in Ry,
with F(t,z) = — (' (t)n(z) + p(t)n”(z)). The proof of the existence

follows by using [3, Theorem 3.6].
Next, let (fi,7) € H'(0,T) x L*(R4) such that i < p and # < v and let
U = up,p, then

s @t [T 0= w0 de— (ale) = u(0) (1.0) — u(t,0)+

+ (g9(a(t,0)) — g(u(t,0))))(a(t, 0) — u(t,0)) = 0.

Then
/ (@ — u)%dz| =0 = / (@ —u)ider =0 on [0,T).
0 0

We can also use (18) to express the solution of (35):

ult, z) = / T B(t, 2, y)v(y)dy + 2 / B(t — 5,2)(u(s) — glu(s, 0)))ds.
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In particular, if g(0) = 0, then

W@mﬂSAWE@%wW@WM+?AE@—&@W@W&

The proof of (14) follows since w is a strong solution. O
Next, we prove that the problem is well-posed if x4 € L' (0, T).

PROPOSITION 3.2. Assume {vn} C Ce(R4) and {u.} C C*([0,T)) are
Cauchy sequences in L'(Ry) and L'(0,T) respectively. Then the se-
quence {un} of solutions of

Unt — Unze = 0 n Q§+
—Una(-0) + g(un(.,0)) = pn(t) in [0,T) (37)
un(0,.) = vn mn Ry,

converges in C([0, T]; L* (R+) to a function u which satisfies (14).

Proof. For € > 0 let p. be an odd C? function defined on R such that
pe >0 and pe(r) =1 on [¢,00), and put je(r) = [ pe(s)ds. Then

%/Oooje(un — U )dx + /Ooo(unz — U 2) 2D (Un — U )d
+ (9(un(t,0)) = g(um(t,0))) pe(un(t,0) — um(t,0))

= (pn(t) = pm(t)) pe(un(t, 0) — um(t, 0)).

Hence

/Oooje(un = um)(t, 2)dz + (9(un(t, 0)) — g(um(t,0))) pe(un(t,0) — um(t,0))

sl%wwwmm+wwfwwmmmmfwwm.

Letting € — 0 implies pc — sgno, hence for any t € [0, 7],

/ﬂw—wwmm+m%wm—mwww
0 . (38)
SA|%HMW+M@—M@L

Therefore {u,} and {g(un(.,0)} are Cauchy sequences in C([0, T]; L* (R4))
and C([0,T]) respectively with limit v and g(u) and u = w,,, satisfies
(14). If we assume that (v, ) and (u, i) are couples of elements of L' (R)
and L'(0,T) respectively and if v = u,,, and @ = us,5, there holds by
the above technique,

/Ooolu — al(t, x)dx + |g(u(t, 0)) — g(a(t, 0)|

- (39)
< /0 |0 — pl|dz + |a(t) — a(¢)| for all ¢ € [0,T].



12

LAURENT VERON

O
The following lemma is a parabolic version of an inequality due to
Brezis.

LeEMMA 3.3. Letv € L' (Ry) and p € L*(0,T) and v be a function defined
in [0,T) x Ry, belonging to Ll(QD€+) N L1(8¢Q£+) and satisfying

_/OT/OOO(Q + () vdadt = /OTC(A,O)udth /Oooygdm. (40)

Then for any ¢ € X(Q]@), ¢ >0, there holds

T roo oo oo
*/ / (Gt + Cae)|v|dadt < / ¢(.,0)sign(v)pdt +/ lv|¢de.  (41)
0Jo 0 0

Similarly

T oo oo o
f// (¢t + Caow)vydadt §/ C(.,O)sign+(v)pdt+/ viCda.
0Jo 0 0
(42)
Proof. Let p. be the approximation of signo used in Proposition 3.2
and 7. be the solution of
—Net — Newa = Pe(vV) in Q§+
Nex(.,0) =0 in [0,7]
7e(0,.) =0 in Ry.
Then |n.| < n* where n* satisfies
=M =1 inQf,
7:(,0) =0 in[0,7]
7n*(0,.) =0 in Ry.
Although 7. does not belong to X(Q%L) (it is not in C2([0, T) x R4), it
is an admissible test function and we deduce that there exists a unique
solution to (40). Thus v is given by expression (18).

In order to prove (41), we can assume that p and v are smooth,
¢ e X(QD€+), ¢ > 0 and set he = pe(v)¢ and we = vp(v), then

/ T / (2L (0)0sCo + Pe(0)Con + C(pe(v))an) v
0 0

- /0 " (20p (0)0sCe — WenCo — (v0)a(pe(v))a) d
- C(t7 O)U(t7 0)]); (U(tv O))Uz (t7 O)
= —/ (C2(fe(v))a + CP'(v)ev2) dw — ((t, 0)v(t, 0)pe(v(t, 0))ve(t,0)

oo

[T 0)ev? = jo(0)Cor) dr — C(t, 00t 0)pL (u(E, 0))v (2, 0),
’ (43)
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and
[ herwdt = [ 016+ plo)conyude. (44)
0 0

Since v is smooth

O—/ / (vt — Vza)hedzdt
/ / et+hexx vdxdt — / he Ox

[ eot,0) — ot 0ot 0D 0, O

0

Therefore, using (41) and (42),

[ Gacen + w1 o
+ /OT/OOO (¢pt(v)vi — vpl(v)veC) dadt (45)
_ /0 (0, 2)v(x)dz + /O et Oyt

Put lc(s) = [, rp.(r)dr, then | (s) < cefls2x[75’5] (s)|. Since

/OT/Ovapé(v)vtdmdt = —/Oooee(v((L 2))¢(z)dz — / / Gl (v)dadt,

and ¢ has compact support, it follows that

T oo
lim/ / CopL(v)vedadt = 0.
e—0 0 0

Letting ¢ — 0 in (45), we derive (41) for smooth v. Using Proposition 3.2
completes the proof of (41). The proof of (42) is similar. O

Remark. Inequalities (41) and (42) hold if {(¢,x) does not vanish if |z| >
R for some R but if it satisfies

lim sup (¢(t,z) + | (t, 2)]) = 0. (46)

T t[0,T)

The proof follows by replacing (¢, z) by ((¢, )nn(x) where n, € C°(R4)
with 0 <, <1, nu(z )_1on [0,n], 7n(z) =0 on [n+ 1,00), || < 2,
[7n] < 4. Then n,¢ € X(th) by letting n — oo and the proof follows
by letting n — oco.

13
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3.2. Proof of Theorem 1.3

We give first some heat-ball estimates relative to our problem. For r > 0,
z € Ry and ¢t € R we set

e(t,z;r) = {(s,y) €(0,T) xRy :s<t, B(t —s,2,y) > r}. (47)

Since
e(t,z;r) C [t — ez, ] X [z — r;\/ﬁ7x+ T—\/IEL
there holds

1
e(t,z;r)| < ——5, 48
e, < gy (49)
and if
e(t;r)={s€(0,T):s<t, E(t—s,0,0) >}, (49)
then we have
e (tr) Clt— ﬁ,t] = le"(t;7)] < (50)

4r2me’

If G is a measured space, A a positive measure on G and ¢ > 1, M4(G, \)
is the Marcinkiewicz space of measurable functions f : G — R satisfying
for some constant ¢ > 0 and all measurable set £ C G,

/E |FlaA < e (AE)) 7, (51)

and

1 flara e ny = inf{c >0 s.t. (50) holds}.

LEMMA 3.4. Assume p,v are bounded measure in Ry and Ry respectively
and u is the solution of (17) given by (18) and vy, is the solution of (17).
Then

< ¢ (Il + Moz, )

(52)

HUu,u||M3(Q§+)+ vwﬂa@@

M2(0QE, )

Proof. First we consider vo,,

vo,u(t,z) = 2/0 E(t — s,z)du(s).
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If F C [0,T] is a Borel set, than for any 7 > 0
/Etfs,O)ds:/ E(tfs,())ds+/ E(t—s,0)d
F Fn{E<T} Fn{E>T}
§T|F|+/ E(t —s,0)ds
{E>T1}
<rlF| = [ade (e )

<7|F| + / Adle* (£, M)

<7|F|+

dmer’
If we choose 72

1 .
Tre[F] W derive

N[=

[ Bt 5,00 as < T

If F C (0,7T) is a Borel set then

ﬁ

(53)
0)d E( dtd 21F |%
[ e 0y / = 5. 0)dtdu(s)| < 2 g
This proves that
v <c 54
0,1 LaQ{+ V20T ) HNHsm(aQ R (54)
+
Similarly, if G C [0,T] x [0, 00) is a Borel set, then
2lG3
E(t - 0)ds < 55
/ s,x,0)ds e’ (55)
and
|‘U0,HHMS(QD{+) < CHNHm(aQT ) (56)
In the same way we prove that
+ ||ve, T <cllv . 57
Ry 0\_@@le+ M2(aQD{+) || ||<,m(QD{+) ( )
This ends the proof.

O
Proof of Theorem 1.3

Uniqueness. Assume u and @ are solutions of (1), then w = u— @ satisfies

Wt — Wgz =0 in QH€+
— wz(.,0) + g(u(.,0)) — g(a(.,0)) =0 in [0,7) (58)
w(0,.) =0

in R+.

15
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Applying (41), we obtain
- / / (Gt G o+ / " (g, 0))~g (., 0)))sign(w)C(t, 0)dt < 0,

for any ¢ € XH€+ with ¢ > 0. Let 6 € Ccl(QH€+), n > 0, we take ¢ to be
the solution of

_Ct - Cacx =40 in (0, T) X R+
Cx(t,0) =0 in (0,7)
¢(T,z)=0 in (0, 00).

Then ¢ satisfies (46), hence

/0 /0009|w|dxdt + /Ooo(g(u(.,O)) —g(a(.,0)))sign(w)¢(¢,0)dt < 0.

This implies w = 0.

Existence. Without loss of generality we can assume that p and v are
nonnegative. Let {vn} C Ce(Ry) and {pn} C Cc([R+]0,T)) converging
to v and p in the sense of measures and let u, be the solution of (37).
Then from (39),

T ¢S} T oo T
// |un|dacdt+/ |g(un(t70))|dt§T/ |Vn|da;+/ ] dt.
0 0 0 0 0
(59)

Therefore u, and g(un(.,0)) remain bounded respectively in LI(QD€+)

and in Ll(O,T). Furthermore, by Lemma 3.4, u, remains bounded in
MS(QD%L) and in MQ(GQ]@)A We can also write u, under the form

un(t,z) = / T B(t, 2, y)pn () dy + 2 / E(t — 5,2)(vn(t) — glun(t,0)))ds

= An(t,z) + Bn(t, x).
(60)
Since we can perform the even reflexion through y = 0, the mapping

(t,2) > An(t,z) = / Y Btz y) i (y)dy,

is relatively compact in C{ZC(QH€+) for any m € N*. Hence we can extract
a subsequence {un, } which converges uniformly on every compact subset
of (0, 7] x [0,00), hence a.e. on (0,T] for the 1-dimensional Lebesque
measure. Concerning the boundary term

¢
(t,x) = Bn(t,z) := / E(t —s,z)(va(t) — g(un(t,0)))ds,
0
it is relatively compact on every compact subset of [0, 7] x (0,00). If
z = 0, then
ds

Ba(t,0) = /0 (vn(t) — g(un(t, 0)))\/ﬁ~
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Since [|vn(.) = g(un(.,0))l[ L1 (o,7)> t = Bn(t,0) is uniformly integrable on
(0, T), hence relatively compact by the Frechet-Kolmogorov Theorem.
Therefore there exists a subsequence, still denoted by {nx} such that
B, (t,0) converges for almost all ¢ € (0,7). This implies that the se-

quence of function {un, } defined by (60) converges in QH€+ up to a set

OUA where © C QF . is neglectable for the 2-dimensional Lebesgue mea-
sure and A C BZQD€+ neglectable for the 1-dimensional Lebesgue measure.
From Lemma 3.4, (tn,k LQ% U LE,EQ% ) converges in L}OC(Q]@) x L (BZQD€+)

and the convergence of each of the components holds also almost every-
where (up to a subsequence). Since un, is a weak solution, it satisfies

for any ¢ € X(Q%L)
- (Gt Con)um pdzdt + [ @) oy
0 0 0 (61)

oS} T
:/ Cun’k(x)dx—&—/ C(t,0)pn,k(t)dt.
0 0

In order to prove the convergence of g(un i (t,0)), we use Vitali’s conver-
gence theorem and the assumption (19). Let F' C [0,T] be a Borel set.
Using the fact that 0 < upkx < v, 4, , and the estimate of Lemma 3.4,
we have for any A > 0,

/ 9 i (£, 0))] it < / 19 (£, 0)) dt
F FO{up 5 (£,0) <A}

+f 9., 0))
{un,k(3,0)>2}

< gWIF| - / " odl{t : 1g(uni(t,0))] > o}

oo

< gW)IF| + e / lg(0)|ods,

where ¢ depends of HM||931(6Q§+) + HV”SUI(QL{ ). For € > 0 given, we chose

A large enough so that the integral term above is smaller than e and
then |F| such that g(A)|F|+ < e. Hence {g(un,x(.,0))} is uniformly
integrable. Therefore up to a subsequence, it converges to g(u(.,0)) in
L'(0,T). Clearly u satisfies
T poo T
[+ Goudade + [ (w0 (1.0
0 Jo 0 (62)

_ /Ooogy(x)d:v+/OTC(t,O),u(t)dt,

which ends the existence proof.

Monotonicity. If v > U and pu > [i; we can choose the approximations
such that v, > Un and pn > fin. It follows from (42) that uu,,u, >
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Up,,in- Choosing the same subsequence {ny}, the limits u, @ are in the
same order. The conclusion follows by uniqueness. g

3.3. The case g(u) = |[u[~tu

Condition (19) is satisfied if p < 2. If this condition holds there exists a
solution wues, = uo,e5, and the mapping £ — wugs, is increasing.

THEOREM 3.5. (1) If 1 <p < %, ues, tends to oo when k — oo.
(i) If 3 < p <2, ws, converges to U, defined by
I
Vo (t,2) = ¢ T T 00, (),
when k — oo.

Proof. By uniqueness and using (3), there holds

Tk [wesy] = Uki_:zlze%v (63)
for any k,¢ > 0. Since £ — wugs, is increasing, its limit 4o, when £ — oo,
satisfies

Tr[tiss] = Uoo- (64)
Hence uo is a positive self-similar solution of (2), provided it exists.
Hence v = U, if % <p<2.Ifl<p< %, Uks, admits no finite limit
when k — oo which ends the proof. O

Remark. As a consequence of this result, no a priori estimate of Brezis-
Friedman type (parabolic Keller-Osserman) exists for a nonnegative func-
tion u € (72’1(Q]§°+ \ {(0,0)} solution of

Ut — Ugz =0 in Qg
— gz (,0) + JulP"tu(.,0) =0  forall t>0 (65)
u(0,2) =0 for all = > 0.

when 1 < p < % When % < p < 2 it is expected that

c

u(t,z) < —8M8 ———.
(=2 + )70

(66)

The type of phenomenon (i) in Theorem 3.5 is characteristic of fractional
diffusion. It has already been observed in [6, Theorem 1.3] with equations

w4+ (—A)% 4+ tPuP =0 in Ry x RY

u(0,.) = kdp  in RV, (67)

when 0 < a < 1 is small and p > 1 is close to 1.
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4. Extension and open problems

The natural extension is to replace a one dimensional domain by a mu-
tidimenional one. The main open problem is the question of a priori
estimate as stated in the last remark above.

4.1. Self-similar solutions

Let n = (n1,...,mn) be the coordinates in R™ and denote R} = {n =

In|? I’ |2
M1y m) = (0'yMn) 1 > 0}, Weset K(n) = e s and K'(n") = e T
Similarly to Section 2 we define L in C3(R™) by

Lix(¢) = —K 'div(KVg). (68)

If « = (a1,...,an) € N, we set |a] = a1 + a2 + ... + an. We denote
by ¢1 the function K ~'. Then the set of eigenvalues of Lx is the set of
numbers {/\;€ = %’“ ke N} with corresponding set of eigenspaces

Ny = span{D“¢1 : |a| = k} .

The operators E}’N and E}’D are defined acoordingly in H (R%}) and
H}’(R7) respectively and o(£™) = {2tk k € N} and o(LP) =
{”T'H“ ke N*} Furthermore

Ny N = ker (L',-’I}’N — "TH“[d) = span{D%¢1 : |a| = k,an, = 2¢, £ € N},

(69)
and

Ni.p = ker (L',-’I}’D — "Tﬂld) =span{D%¢1 : |a| = k,an =20+ 1, £ € N}.

(70)
Since [,;’N and L}’D are Fredholm operators,
Hi(R}Y) = @ New and H(RY) = €D Ny, p. (71)
k=0 k=1
We define the following functional on H (R7)
s =3 [ (1968~ gty ) Kan e [ joray
2)en 2(p—1) p+1/on
(72)
The critical points of J satisfies
—Aw—anW—#w—O in R%}
2" 2(p—1) i (73)
— Wy, F|wPTw =0 in ORY%.

If w is a solution of (73), the function

1
Uy (t, ) = ¢ 2= w(

) (74)

<
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satisfies
Uot — Auy, =0 in Q]ﬁ = (0,00) x R}

75
— U 3, + |uw|p71uw =0 in BZQ]T& = (0,00) x ORY. (75)

Here we have set R’} = {z = (z1,..., zn) = (2, %) : T» > 0}. We denote
by & the subset H (RT)NLP(OR%; dn’) of solutions of (73) and by £ the
subset of positive solutions. As for the case n =1 we have the following
non-existence result

PROPOSITION 4.1. 1- If p > 1+ +, then € = {0}.

2-If 1 <p <1+ =7, then &4 = {0}

The proof is similar to the one of Theorem 1.1. Hence the existence
is to be found in the range 1 + n#ﬂ <p<l+ %

Conjecture Assume 1 + -2 < p < 1+ %, then the functional J is

n+1
bounded from below in Hj (Rt) N LY, (OR}). Purthermore J(¢) tends to
infinity when ||¢||H}( ®1) + H(M_(’}]Ri HLT/I(QM) tends to infinity.

4.2. Problem with measure data

The method for proving Theorem 1.3 can be adapted to prove the fol-
lowing n-dimensional result

THEOREM 4.2. Let g : R — R be a nondecreasing continuous function
such that g(0) =0 and

2n

/1°O(g(s) —g(—s))s™ T ds < o0, (76)

then for any bounded Radon measures v in R} and wp in (0,T) x ORY,

there exists a unique Borel function u := wu,,, defined in Qﬂii = [0,77] x
R such that u € L* (Q?*), ul(0,r)xomn € L*((0,T) x ORY) and g(u) €
L*((0,T) x OR%) solution of

u — Au =0 n QD@
— Uz, +g(u) = p in 0¢Qin (77)
u(0,.)=v in RY,

in the sense that

//Qlﬁ(—atC—AC)udmdt+//a[Qgig(u)Cdm’dt

— [ cav+ / / cd,
R7 82@1{1

for all ¢ € C+2 (Qﬂgi) such that (z, =0 on (0,T) x OR} and ¢(T,.) = 0.

Furthermore (v, p) — uy,,.) is nondecreasing.

(78)
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