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Abstract

We consider the problem of existence of a solution u to ∂tu−∂xxu = 0
in (0, T )×R+ subject to the boundary condition −ux(t, 0)+g(u(t, 0)) = µ

on (0, T ) where µ is a measure on (0, T ) and g a continuous nondecreasing
function. When p > 1 we study the set of self-similar solutions of ∂tu−
∂xxu = 0 in R+ × R+ such that −ux(t, 0) + up = 0 on (0,∞). At end,
we present various extensions to a higher dimensional framework.

1. Introduction

Let g : R 7→ R be a continuous nondecreasing function. Set QTR+
=

(0, T )×R+ for 0 < T ≤ ∞ and ∂ℓQ
T
R+

= R+×{0}. The aim of this article
is to study the following 1-dimensional heat equation with a nonlinear
flux on the parabolic boundary

ut − uxx = 0 in QTR+

− ux(., 0) + g(u(., 0)) = µ in [0, T )

u(0, .) = ν in R+,

(1)

where ν, µ are Radon measures in R+ and [0, T ) respectively. A related
problem in Q∞

R+
for which there exist explicit solutions is the following,

ut − uxx = 0 in Q∞
R+

− ux(t, 0) + |u|p−1u(t, 0) = 0 for all t > 0

lim
t→0

u(t, x) = 0 for all x > 0,
(2)

where p > 1. Problem (2) is invariant under the transformation Tk
defined for all k > 0 by

Tk[u](t, x) = k
1

p−1 u(k2t, kx). (3)
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This leads naturaly to look for existence of self-similar solutions under
the form

us(t, x) = t
− 1

2(p−1) ω
(

x√
t

)

. (4)

Putting η = x√
t
, ω satisfies

−ω′′ − 1

2
ηω′ − 1

2(p− 1)
ω = 0 in R+

− ω′(0) + |ω|p−1ω(0) = 0

lim
η→∞

η
1

p−1ω(η) = 0.

(5)

Self-similar solutions of non-linear diffusion equations such as porous-
media or fast-diffusion equation were discovered long time ago by Kom-
paneets and Zeldovich and a thourougful study was made by Barenblatt,
reducing the study to the one of integrable ordinary differential equations
with explicit solutions. Concerning semilinear heat equation Brezis, Ter-
man and Peletier opened the study of self-similar solutions of semilinear
heat equations in proving in [5] the existence of a positive strongly sin-
gular function satisfying

ut −∆u+ |u|p−1u = 0 in R+ × R
n, (6)

and vanishing at t = 0 on R
n \ {0}. They called it the very singular

solution. Their method of construction is based upon the study of an
ordinary differential equation with a phase space analysis. A new and
more flexible method based upon variational analysis has been provided
by [7]. Other singular solutions of (6) in different configurations such as

boundary singularities have been studied in [13]. We set K(η) = eη
2/4

and

L2
K(R+) =

{

φ ∈ L1
loc(R+) :

∫

R+

φ2Kdx := ‖φ‖2L2
K
<∞

}

, (7)

and, for k ≥ 1,

H
k
K(R+) =

{

φ ∈ L
2
K(R+) :

k
∑

α=0

∥

∥

∥
φ
(α)
∥

∥

∥

2

L2
K

:= ‖φ‖2Hk
K
<∞

}

. (8)

Let us denote by E the subset of H1
K(R+) of weak solutions of (5) that

is the set of functions satisfying

∫ ∞

0

(

ω
′
ζ
′ − 1

2(p− 1)
ωζ

)

K(η)dη +
(

|ω|p−1
ωζ
)

(0) = 0, (9)

and by E+ the subset of nonnegative solutions. The next result gives the
structure of E .
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Theorem 1.1. 1- If p ≥ 2, then E = {0}.
2- If 1 < p ≤ 3

2
, then E+ = {0}

3 - If 3
2
< p < 2 then E = {ωs,−ωs, 0} where ωs is the unique positive

solution of (5). Furthermore there exists c > 1 such that

c−1η
1

p−1
−1 ≤ e

η2

4 ωs(η) ≤ cη
1

p−1
−1 for all η > 0. (10)

Whenever it exists the function us defined in (4) is the limit, when
ℓ→ ∞ of the positive solutions uℓδ0 of

ut − uxx = 0 in Q∞
R+

− ux(t, .) + |u|p−1u(t, .) = ℓδ0 in [0, T )

lim
t→0

u(t, x) = 0 for all x ∈ R+.

(11)

When such a function us does not exits the sequence {uℓδ0} tends to
infinity. This is a charateristic phenomenon of an underlying fractional
diffusion associated to the linear equation

ut − uxx = 0 in Q∞
R+

− ux(., 0) = µ in [0,∞)

u(0, .) = 0 in R+.

(12)

More generaly we consider problem (1). We define the set X(QTR+
) of

test functions by

X(QTR+
) =

{

ζ ∈ C1,2
c ([0, T )× [0,∞)) : ζx(t, 0) = 0 for t ∈ [0, T ]

}

.

(13)

Definition 1.2. Let ν, µ be Radon measures in R+ and [0, T ) respectively.

A function u defined in QT
R+

and belonging to L1
loc(Q

T
R+

)∩L1(∂ℓQ
T
R+

; dt)

such that g(u) ∈ L1(∂ℓQ
T
R+

; dt) is a weak solution of (1) if for every

ζ ∈ X(QTR+
) there holds

−
∫ T

0

∫ ∞

0

(ζt + ζxx)udxdt+

∫ T

0

(g(u)ζ) (t, 0)dt

=

∫ ∞

0

ζdν(x) +

∫ T

0

ζ(t, 0)dµ(t).

(14)

We denote by E(t, x) the Gaussian kernel in R+ ×R. The solution of

vt − vxx = 0 in Q∞
R+

− vx = δ0 in R+

v(0, .) = 0 in R+,

(15)
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has explicit expression

v(t, x) = 2E(t, x) =
1√
πt
e−

x2

4t . (16)

If x, y > 0 and s < t we set Ẽ(t−s, x, y) = E(t−s,x−y)+E(t−s,x+y).
When ν ∈ M

b(R+) and µ ∈ M
b(R+) the solution of

vt − vxx = 0 in Q∞
R+

− vx(., 0) = µ in R+

u(0, .) = ν in R+,

(17)

is given by

vν,µ(t, x) =

∫ ∞

0

Ẽ(t, x, y)dν(y) + 2

∫ t

0

E(t− s, x)dµ(s)

= ER+ [ν](t, x) + ER+×{0}[µ](t, x) = EQ∞
R+

[(ν, µ)](t, x).
(18)

We prove the following existence and uniqueness result.

Theorem 1.3. Let g : R 7→ R be a continuous nondecreasing function
such that g(0) = 0. If g satisfies

∫ ∞

1

(g(s)− g(−s))s−3ds <∞, (19)

then for any bounded Borel measures ν in R+ and µ in [0, T ), there
exists a unique weak solution u := uν,µ ∈ L1(QTR+

) of (1). Furthermore
the mapping (ν, µ) 7→ uν,µ is nondecreasing.

When g(s) = |s|p−1s, condition (19) is satisfied if

0 < p < 2. (20)

The above result is still valid under minor modifications if R+ is
replaced by a bounded interval I := (a, b), and problem (1) by

ut − uxx = 0 in QTI

ux(., b) + g(u(., b)) = µ1 in [0, T )

− ux(., a) + g(u(., a)) = µ2 in [0, T )

u(0, .) = ν in (a, b),

(21)

where ν, µj (j = 1, 2) are Radon measures in I and (0, T ) respectively.

In the last section we present the scheme of the natural extensions of
this problem to a multidimensional framework

ut −∆u = 0 in QTRn
+

− uxn + g(u) = µ in ∂ℓQ
T
Rn
+

u(0, .) = ν in R
n
+,

(22)
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The construction of solutions with measure data can be generalized but
there are some difficulties in the obtention of self-similar solutions. The
equation with a source flux

ut −∆u = 0 in QTRn
+

uxn + g(u) = 0 in ∂ℓQ
T
Rn
+

u(0, .) = ν in R
n
+,

(23)

has been studied by several authors, in particular Fila, Ishige, Kawakami
and Sato [8], [10], [11]. Their main concern deals with global existence
of solutions.

Aknowledgements. The author is grateful to the reviewer for mentioning
reference [9] which pointed out the role of Whittaker’s equation which
was used for analyzing the blow-up of positive solutions of (23) when
g(u) = up when n = 1.

2. Self-similar solutions

2.1. The symmetrization

We define the operator LK in C2
0 (R) by

LK(φ) = −K−1(Kφ′)′.

The operator LK has been thouroughly studied in [7]. In particular

inf

{∫ ∞

−∞
φ
′2
K(η)η :

∫ ∞

−∞
φ
2
K(η)dη = 1

}

=
1

2
. (24)

The above infimum is achieved by φ1 = (4π)−
1
2K−1 and LK is an iso-

morphism from H1
K(R) onto its dual (H1

K(R))′ ∼ H−1
K (R). Finally L−1

K is
compact from L2

K(R) into H1
K(R), which implies that LK is a Fredholm

self-adjoint operator with

σ(LK) =
{

λj =
1+j−1

2
: j = 1, 2, ...

}

,

and
ker (LK − λjId) = span

{

φ
(j)
1

}

.

If φ is defined in R+, φ̃(x) = φ(−x) is the symmetric with respect to
0 while φ∗(x) = −φ(−x) is the antisymmetric with respect to 0. The
operator LK restricted to R+ is denoted by L+

K . The operator L+,N
K with

Neumann condition at x = 0 is again a Fredholm operator. This is also
valid for the operator L+,D

K with Dirichlet condition at x = 0. Hence, if φ
is an eigenfunction of L+,N

K , then φ̃ is an eigenfunction of LK in L2
K(R).

Similarly, if φ is an eigenfunction of L+,D
K , then φ∗ is an eigenfunction of

LK in L2
K(R). Conversely, any even (resp. odd) eigenfunction of LK in
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L2
K(R) satisfies Neumann (resp. Dirichlet) boundary condition at x = 0.

Hence its restiction to L2
K(R+) is an eigenfunction of L+,N

K (resp. L+,D
K ).

Since φ
(j)
1 is even (resp. odd) if and only if j is even (resp. odd), we

derive

H
1,0
K (R+) =

∞
⊕

ℓ=1

span
{

φ
(2ℓ+1)
1

}

, (25)

and

H
1
K(R+) =

∞
⊕

ℓ=0

span
{

φ
(2ℓ)
1

}

. (26)

Note that φ ∈ H1
K(R+) such that φx(0) = 0 (resp. φ(0) = 0) implies

φ̃ ∈ H1
K(R) (resp. φ∗ ∈ H1

K(R)). Furthermore, φ1 is an eigenfunction of
L+
K in H1

K(Rn+) with Neumann boundary condition on ∂Rn+ while ∂xnφ1

is an eigenfunction of L+
K in H1

K(Rn+) with Dirichlet boundary condition
on ∂Rn+. We list below two important properties of H1

K(R+) valid for
any β > 0. Actually they are proved in [7, Prop. 1.12] with H1

Kβ (R) but
the proof is valid with H1

Kβ (R+).

(i) φ ∈ H1
Kβ (R+) =⇒ K

β
2 φ ∈ C0, 1

2 (R+)

(ii) H1
Kβ (R+) →֒ L2

Kβ (R+) is compact for all n ≥ 1.
(27)

2.2. Proof of Theorem 1.1-(i)-(ii)

Assume p ≥ 2, then 1
2(p−1)

≤ 1
2
. If ω is a weak solution, then

∫ ∞

0

(

ω
′2 − 1

2(p− 1)
ω

2

)

Kdη + |ω|p+1(0) = 0.

If 1
2
> 1

2(p−1)
we deduce that ω = 0. Furthermore, when 1

2
= 1

2(p−1)
then

|ω|p+1(0) = 0.

If ω is nonzero, it is an eigenfunction of L+,D
K . Since the first eigenvalue

is 1 it would imply 1 = 1
2(p−1)

≤ 1
2
, contradiction.

Assume 1 < p ≤ 3
2

and ω is a nonnegative weak solution. We take

ζ(η) = ηe−
η2

4 = −2φ′
1 (η), then

∫ ∞

0

(

−ζ′′ − 1

2(p− 1)
ζ

)

ωK(η)dη + ζ′(0)ωp(0) = 0.

Since −ζ′′ = ζ⌊R+> 0 and ζ′(0) = φ1(0) = 1, we derive ωζ = 0 if
1 > 1

2(p−1)
and ω(0) = 0 if 1 = 1

2(p−1)
. Hence ω′(0) = 0 by the equation

and ω ≡ 0 by the Cauchy-Lipschitz theorem. �
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2.3. Proof of Theorem 1.1-(iii)

We define the following functional on H1
K(Rn+)

J(φ) =
1

2

∫ ∞

0

(

φ
′2 − 1

2(p− 1)
φ
2

)

Kdη +
1

p+ 1
|φ(0)|p+1

. (28)

Lemma 2.1. The functional J is lower semicontinuous in H1
K(R+). It

tends to infinity at infinity and achieves negative values.

Proof. We write

J(ψ) = J1(ψ)− J2(ψ) = J1(ψ)−
1

2(p− 1)
‖ψ‖2L2

K
.

Clearly J1 is convex and J2 is continuous in the weak topology ofH1
K(R+)

since the imbedding of H1
K(R+) into L2

K(R+) is compact. Hence J is
weakly semicontinuous in H1

K(R+).

Let ǫ > 0, then

J(ǫφ1) =

(

1

4
− 1

4(p− 1)

)

ǫ2
√
π

2
+
ǫp+1

p+ 1
.

Since 1 < p < 2, 1
4
− 1

4(p−1)
< 0. Hence J(ǫφ1) < 0 for ǫ small enough,

thus J achieves negative values on H1
K(R+).

If ψ ∈ H1
K(R+) it can be written in a unique way under the form ψ =

aφ1 + ψ1 where a = 2
√
πψ(0) and ψ1 ∈ H

1,0
K (R+). Hence, for any ǫ > 0,

J(ψ) =
1

2

∫ ∞

0

(

ψ′2
1 − 1

2(p− 1)
ψ2

1

)

Kdη +
a2

2

∫ ∞

0

(

φ′2
1 − 1

2(p− 1)
φ2
1

)

Kdη

+ a

∫ ∞

0

(

ψ′
1φ

′
1 −

1

2(p− 1)
ψ1φ1

)

Kdη +
1

p+ 1
|a|p+1

≥ 2p− 3

4(p− 1)

∫ ∞

0

ψ′2
1 Kdη −

aǫ

2

∫ ∞

0

(

ψ′2
1 +

1

2(p− 1)
ψ2

1

)

Kdη

+
a2(p− 2)

√
π

4(p− 1)
− ap

√
π

4(p− 1)ǫ
+

1

p+ 1
|a|p+1.

Note that ‖ψ‖2H1
K

≤ 4
(

‖ψ′
1‖2L2

K
+ a2

)

. Since 2p − 3 > 0, we can take

ǫ > 0 small enough in order that

lim
‖ψ‖

H1
K

→∞
J(ψ) = ∞. (29)

�

End of the proof of Theorem 1.1-(iii). By Lemma 2.1 the functional J
achieves its minimum in H1

K(R+) at some ωs 6= 0, and ωs can be assumed
to be nonnegative since J is even. By the strong maximum principle
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ωs > 0, and by the method used in the proof of [15, Proposition 1] is is
easy to prove that positive solutions belong to H2

K(R+). Assume that ω̃
is another positive solution, then

∫ ∞

0

(

(Kω′
s)

′

ωs
− (Kω̃′

s)
′

ω̃s

)

(ω2
s − ω̃

2
s)dη = 0.

Integration by parts, easily justified by regularity, yields

∫ ∞

0

(

(Kω′
s)

′

ωs
− (Kω̃′

s)
′

ω̃s

)

(ω2
s − ω̃2

s)dη

=

[

Kω′
s

(

ωs − ω̃2
s

ωs

)

−Kω̃′
s

(

ω2
s

ω̃s
− ω̃s

)]∞

0

−
∫ ∞

0

(

ωs − ω̃2
s

ωs

)′
Kω′

sdη +

∫ ∞

0

(

ω2
s

ω̃s
− ω̃s

)′
Kω′

sdη

= −
(

ωp−1
s − ω̃p−1

s

) (

ω2
s − ω̃2

s

)

(0)

−
∫ ∞

0

(

(

ω′
sω̃s − ωsω̃

′
s

ω̃s

)2

+

(

ωsω̃
′
s − ω̃sω

′
s

ωs

)2
)

dη.

This implies that ωs = ω̃s. The proof of (10) is similar as the proof of
estimate (2.5) in [13, Theorem 4.1]. �

2.4. The explicit approach

This part is an adaptation to our problem of what has been done in [9]
concerning the blow-up problem in equation (23). Let ω be a solution of

ω
′′ +

1

2
ηω

′ +
1

2(p− 1)
ω = 0 in R+. (30)

We set

r =
η2

4
and ω(η) = r

− 1
4 e

− r
2Z(r).

Then Z satisfies the Whittaker equation (with the standard notations)

Zrr +

(

−1

4
+
k

r
+

1− 4µ2

4r2

)

Z = 0 (31)

where k = 1
2(p−1)

− 1
4
and µ = 1

4
. Notice that the only difference with

the expression in [9, Lemma 3.1] is the value of the coefficient k. This
equation admits two linearly independent solutions

Z1(r) = e
− r

2 r
1
2
+µ
U
(

1
2
+ µ− k, 1 + 2µ, r

)

,

and
Z2(r) = e

− r
2 r

1
2
+µ
M
(

1
2
+ µ− k, 1 + 2µ, r

)

.
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The functions U and M are the Whittaker functions which play an im-
portant role not only in analysis but also in group theory. The have the
following asymptotic expansion as r → ∞ (see e.g. [1]),

U
(

1
2
+ µ− k, 1 + 2µ, r

)

= r
k−µ− 1

2
(

1 +O(r−1) = r
1

2(p−1)
−1 (

1 +O(r−1)
,

and

M
(

1
2
+ µ− k, 1 + 2µ, r

)

=
Γ(1 + 2µ)

Γ( 1
2
+ µ− k)

err−(µ+ 1
2
+k)
(

1 +O(r−1
)

=
Γ( 3

2
)

Γ(1− 1
2(p−1)

)
err

− p
2(p−1)

(

1 +O(r−1
)

.

Then
Z1(r) = r

1
2(p−1)

− 1
4 e

− r
2
(

1 +O(r−1)
,

and

Z2(r) =
Γ( 3

2
)

Γ(1− 1
2(p−1)

)
r

1
4
− 1

2(p−1)
−
e

r
2
(

1 +O(r−1
)

.

To this corresponds the two linearly independent solutions ω1 and ω2 of
(30) with the following behaviour as η → ∞,

(i) ω1(η) = c1η
1

p−1
−1
e−

η2

4
(

1 +O(η−2
)

,

(ii) ω2(η) = c2η
− 1

p−1
(

1 +O(η−2
)

.

(32)

Clearly only ω1 satisfies the decay estimate ω(η) = o(η−
1

p−1 ) as η → ∞.
Hence the solution ω is a multiple of ω1 and the multiplicative constant
c is adjusted in order to fit the condition ω′(0) = ωp(0).

3. Problem with measure data

3.1. The regular problem

Set G(r) =
∫ r

0
g(s)ds. We consider the functional J in L2(R+) with

domain D(J) = H1(R+) defined by

J(u) =
1

2

∫ ∞

0

u
2
xdx+G(v(0)).

It is convex and lower semicontinuous in L2(R+) and its subdifferential
∂J sastisfies

∫ ∞

0

∂J(u)ζdx =

∫ ∞

0

uxζxdx+ g(u(0))ζ(0),

for all ζ ∈ H1(R+). Therefore
∫ ∞

0

∂J(u)ζdx = −
∫ ∞

0

uxxζdx+ (g(u(0))− ux(0))ζ(0).



10 LAURENT VÉRON

Hence

∂J(u) = −uxx for all u ∈ D(∂J) = {v ∈ H
1(R+) : vx(0) = g(v(0))}.

(33)
The operator ∂J is maximal monotone, hence it generates a semi-group of
contractions. Furthermore, for any u0 ∈ L2(R+) and F ∈ L2(0, T ;L2(L2(R+))
there exists a unique strong solution to

Ut + ∂J(U) = F a.e. on (0, T )
U(0) = u0.

(34)

Proposition 3.1. Let µ ∈ H1(0, T ) and ν ∈ L2(R+). Then there exists a
unique function u ∈ C([0, T ];L2(R+) such that

√
tuxx ∈ L2((0, T )×R+)

which satisfies (35). The mapping (µ, ν) 7→ u := uµ,ν is non-decreasing
and u is a weak solution in the sense that it satisfies (14).

Proof. Let η ∈ C2
0 ([0,∞)) such that η(0) = 0, η′(0) = 1. If f ∈

H1(0, T ), ν ∈ L2(R+), and u is a solution of

ut − uxx = 0 in QTR+

− ux(., 0) + g(u(., 0)) = µ(t) in [0, T )

u(0, .) = ν in R+,

(35)

where ν ∈ L2(R+), then the function v(t, x) = u(t, x)−µ(t)η(x) satisfies

vt − vxx = F in QTR+

− vx(., 0) + g(v(., 0)) = 0 in [0, T )

v(0, .) = ν − µ(0)η in R+,

(36)

with F (t, x) = −(µ′(t)η(x) + µ(t)η′′(x)). The proof of the existence
follows by using [3, Theorem 3.6].
Next, let (µ̃, ν̃) ∈ H1(0, T )× L2(R+) such that µ̃ ≤ µ and ν̃ ≤ ν and let
ũ = uµ̃,ν̃ , then

1

2

d

dt

∫ ∞

0

(ũ− u)2+dx+

∫ ∞

0

(∂x(ũ− u)+)
2
dx− (µ̃(t)− µ(t)) (ũ(t, 0)− u(t, 0))+

+ (g(ũ(t, 0))− g(u(t, 0))))(ũ(t, 0)− u(t, 0)) = 0.

Then
∫ ∞

0

(ũ− u)2+dx⌊t=0 =⇒
∫ ∞

0

(ũ− u)2+dx = 0 on [0, T ].

We can also use (18) to express the solution of (35):

u(t, x) =

∫ ∞

0

Ẽ(t, x, y)ν(y)dy+ 2

∫ t

0

E(t− s, x)(µ(s)− g(u(s, 0)))ds.
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In particular, if g(0) = 0, then

|u(t, x)| ≤
∫ ∞

0

Ẽ(t, x, y)|ν(y)|dy + 2

∫ t

0

E(t− s, x)|µ(s)|ds.

The proof of (14) follows since u is a strong solution. �

Next, we prove that the problem is well-posed if µ ∈ L1(0, T ).

Proposition 3.2. Assume {νn} ⊂ Cc(R+) and {µn} ⊂ C1([0, T ]) are
Cauchy sequences in L1(R+) and L1(0, T ) respectively. Then the se-
quence {un} of solutions of

un t − unxx = 0 in QTR+

−unx(., 0) + g(un(., 0)) = µn(t) in [0, T )

un(0, .) = νn in R+,

(37)

converges in C([0, T ];L1(R+) to a function u which satisfies (14).

Proof. For ǫ > 0 let pǫ be an odd C1 function defined on R such that
p′ǫ ≥ 0 and pǫ(r) = 1 on [ǫ,∞), and put jǫ(r) =

∫ r

0
pǫ(s)ds. Then

d

dt

∫ ∞

0

jǫ(un − um)dx+

∫ ∞

0

(unx − umx)
2p′ǫ(un − um)dx

+ (g(un(t, 0)) − g(um(t, 0))) pǫ(un(t, 0)− um(t, 0))

= (µn(t)− µm(t)) pǫ(un(t, 0)− um(t, 0)).

Hence
∫ ∞

0

jǫ(un − um)(t, x)dx+ (g(un(t, 0))− g(um(t, 0))) pǫ(un(t, 0) − um(t, 0))

≤
∫ ∞

0

jǫ(νn − νm)dx+ (µn(t)− µm(t)) pǫ(un(t, 0)− um(t, 0)).

Letting ǫ→ 0 implies pǫ → sgn0, hence for any t ∈ [0, T ],
∫ ∞

0

|un − um|(t, x)dx+ |g(un(t, 0))− g(um(t, 0)|

≤
∫ ∞

0

|νn − νm|dx+ |µn(t)− µm(t)|.
(38)

Therefore {un} and {g(un(., 0)} are Cauchy sequences in C([0, T ];L1(R+))
and C([0, T ]) respectively with limit u and g(u) and u = uν,µ satisfies
(14). If we assume that (ν, ν̃) and (µ, µ̃) are couples of elements of L1(R+)
and L1(0, T ) respectively and if u = uν,µ and ũ = uν̃,µ̃, there holds by
the above technique,
∫ ∞

0

|u− ũ|(t, x)dx+ |g(u(t, 0)) − g(ũ(t, 0)|

≤
∫ ∞

0

|ν̃ − ν̃|dx+ |µ̃(t)− µ̃(t)| for all t ∈ [0, T ].

(39)
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�

The following lemma is a parabolic version of an inequality due to
Brezis.

Lemma 3.3. Let ν ∈ L1(R+) and µ ∈ L1(0, T ) and v be a function defined
in [0, T )× R+, belonging to L1(QTR+

) ∩ L1(∂ℓQ
T
R+

) and satisfying

−
∫ T

0

∫ ∞

0

(ζt + ζxx)vdxdt =

∫ T

0

ζ(., 0)µdt+

∫ ∞

0

νζdx. (40)

Then for any ζ ∈ X(QTR+
), ζ ≥ 0, there holds

−
∫ T

0

∫ ∞

0

(ζt + ζxx)|v|dxdt ≤
∫ ∞

0

ζ(., 0)sign(v)µdt+

∫ ∞

0

|ν|ζdx. (41)

Similarly

−
∫ T

0

∫ ∞

0

(ζt + ζxx)v+dxdt ≤
∫ ∞

0

ζ(., 0)sign+(v)µdt+

∫ ∞

0

ν+ζdx.

(42)

Proof. Let pǫ be the approximation of sign0 used in Proposition 3.2
and ηǫ be the solution of

−ηǫ t − ηǫ xx = pǫ(v) in QTR+

ηǫ x(., 0) = 0 in [0, T ]

ηǫ(0, .) = 0 in R+.

Then |ηǫ| ≤ η∗ where η∗ satisfies

−η∗t − η∗xx = 1 in QTR+

η∗x(., 0) = 0 in [0, T ]

η∗(0, .) = 0 in R+.

Although ηǫ does not belong to X(QTR+
) (it is not in C1,2([0, T )×R+), it

is an admissible test function and we deduce that there exists a unique
solution to (40). Thus v is given by expression (18).

In order to prove (41), we can assume that µ and ν are smooth,
ζ ∈ X(QTR+

), ζ ≥ 0 and set hǫ = pǫ(v)ζ and wǫ = vpǫ(v), then
∫ ∞

0

hǫ xxvdx =

∫ ∞

0

(2p′ǫ(v)vxζx + pǫ(v)ζxx + ζ(pǫ(v))xx) vdx

=

∫ ∞

0

(2vp′ǫ(v)vxζx − wǫ xζx − (vζ)x(pǫ(v))x) dx

− ζ(t, 0)v(t, 0)p′ǫ(v(t, 0))vx(t, 0)

= −
∫ ∞

0

(

ζx(jǫ(v))x + ζp′(v)ǫv
2
x

)

dx− ζ(t, 0)v(t, 0)p′ǫ(v(t, 0))vx(t, 0)

= −
∫ ∞

0

(

ζp′(v)ǫv
2
x − jǫ(v)ζxx

)

dx− ζ(t, 0)v(t, 0)p′ǫ(v(t, 0))vx(t, 0),

(43)
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and
∫ T

0

hǫ tvdt =

∫ T

0

(pǫ(v)ζt + p′ǫ(v)ζvt)vdt. (44)

Since v is smooth

0 =

∫ T

0

∫ ∞

0

(vt − vxx)hǫdxdt

= −
∫ T

0

∫ ∞

0

(hǫ t + hǫ xx)vdxdt−
∫ ∞

0

hǫ(0, x)ν(x)dx

−
∫ T

0

[pǫ(v(t, 0))− v(t, 0)p′ǫ(v(t, 0))] ζ(t, 0)µ(t)dt.

Therefore, using (41) and (42),

−
∫ T

0

∫ ∞

0

(jǫv)ζxx + vpǫ(v)ζt) dxdt

+

∫ T

0

∫ ∞

0

(

ζp′ǫ(v)v
2
x − vp′ǫ(v)vtζ

)

dxdt

=

∫ ∞

0

hǫ(0, x)ν(x)dx+

∫ T

0

hǫ(t, 0)µ(t)dt.

(45)

Put ℓǫ(s) =
∫ s

0
rp′ǫ(r)dr, then |ℓǫ(s) ≤ cǫ−1s2χ

[−ǫ,ǫ]
(s)|. Since

∫ T

0

∫ ∞

0

ζvp′ǫ(v)vtdxdt = −
∫ ∞

0

ℓǫ(v(0, x))ζ(x)dx−
∫ T

0

∫ ∞

0

ζtℓǫ(v)dxdt,

and ζ has compact support, it follows that

lim
ǫ→0

∫ T

0

∫ ∞

0

ζvp
′
ǫ(v)vtdxdt = 0.

Letting ǫ → 0 in (45), we derive (41) for smooth v. Using Proposition 3.2
completes the proof of (41). The proof of (42) is similar. �

Remark. Inequalities (41) and (42) hold if ζ(t, x) does not vanish if |x| ≥
R for some R but if it satisfies

lim
x→∞

sup
t∈[0,T ]

(ζ(t, x) + |ζx(t, x)|) = 0. (46)

The proof follows by replacing ζ(t, x) by ζ(t, x)ηn(x) where ηn ∈ C∞
c (R+)

with 0 ≤ ηn ≤ 1, ηn(x) = 1 on [0, n], ηn(x) = 0 on [n+ 1,∞), |η′n| ≤ 2,
|η′′n| ≤ 4. Then ηnζ ∈ X(QTR+

) by letting n → ∞ and the proof follows
by letting n→ ∞.
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3.2. Proof of Theorem 1.3

We give first some heat-ball estimates relative to our problem. For r > 0,
x ∈ R+ and t ∈ R we set

e(t, x; r) =
{

(s, y) ∈ (0, T )× R+ : s ≤ t, Ẽ(t− s, x, y) ≥ r
}

. (47)

Since

e(t, x; r) ⊂ [t− 1
4πer2

, t]× [x− 1
r
√
πe
, x+ 1

r
√
πe

],

there holds

|e(t, x; r)| ≤ 1

2r3(πe)
3
2

, (48)

and if

e
∗(t; r) = {s ∈ (0, T ) : s ≤ t, E(t− s, 0, 0) ≥ r} , (49)

then we have

e
∗(t; r) ⊂ [t− 1

4πer2
, t] =⇒ |e∗(t; r)| ≤ 1

4r2πe
. (50)

If G is a measured space, λ a positive measure on G and q > 1, Mq(G,λ)
is the Marcinkiewicz space of measurable functions f : G 7→ R satisfying
for some constant c > 0 and all measurable set E ⊂ G,

∫

E

|f |dλ ≤ c (λ(E))
1
p′ , (51)

and

‖f‖Mq(G,λ) = inf{c > 0 s.t. (50) holds}.

Lemma 3.4. Assume µ,ν are bounded measure in R+ and R+ respectively
and u is the solution of (17) given by (18) and vν,µ is the solution of (17).
Then

‖vν,µ‖M3(QT
R+

)+

∥

∥

∥

∥

vν,µ⌊∂QT
R+

∥

∥

∥

∥

M2(∂QT
R+

)

≤ c

(

‖µ‖
M(∂QT

R+
) + ‖ν‖

M(QT
R+

)

)

.

(52)

Proof. First we consider v0,µ

v0,µ(t, x) = 2

∫ t

0

E(t− s, x)dµ(s).
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If F ⊂ [0, T ] is a Borel set, than for any τ > 0
∫

F

E(t− s, 0)ds =

∫

F∩{E≤τ}
E(t− s, 0)ds+

∫

F∩{E>τ}
E(t− s, 0)ds

≤ τ |F |+
∫

{E>τ}
E(t− s, 0)ds

≤ τ |F | −
∫ ∞

τ

λd|e∗(t, λ)|

≤ τ |F |+
∫ ∞

τ

λd|e∗(t, λ)|

≤ τ |F |+ 1

4πeτ
.

If we choose τ 2 = 1
4πe|F | , we derive

∫

F

E(t− s, 0)ds ≤ |F | 12√
πe
. (53)

If F ⊂ (0, T ) is a Borel set then

∣

∣

∣

∣

∫

F

v0,µ(t, 0)dt

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∫ t

0

∫

F

E(t− s, 0)dtdµ(s)

∣

∣

∣

∣

≤ 2|F | 12√
πe

‖µ‖
M(∂QT

R+
) .

This proves that
∥

∥

∥

∥

v0,µ⌊∂QT
R+

∥

∥

∥

∥

M2(∂QT
R+

)

≤ c ‖µ‖
M(∂QT

R+
) . (54)

Similarly, if G ⊂ [0, T ]× [0,∞) is a Borel set, then

∫

G

Ẽ(t− s, x, 0)ds ≤ 2|G| 13√
πe

, (55)

and
‖v0,µ‖M3(QT

R+
) ≤ c ‖µ‖

M(∂QT
R+

) . (56)

In the same way we prove that

‖vν,0‖M3(QT
R+

) +

∥

∥

∥

∥

vν,0⌊∂QT
R+

∥

∥

∥

∥

M2(∂QT
R+

)

≤ c ‖ν‖
M(QT

R+
) . (57)

This ends the proof. �

Proof of Theorem 1.3

Uniqueness. Assume u and ũ are solutions of (1), then w = u− ũ satisfies

wt −wxx = 0 in QTR+

− wx(., 0) + g(u(., 0))− g(ũ(., 0)) = 0 in [0, T )

w(0, .) = 0 in R+.

(58)
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Applying (41), we obtain

−
∫ T

0

∫ ∞

0

(ζt+ζxx)|w|dxdt+
∫ ∞

0

(g(u(., 0))−g(ũ(., 0)))sign(w)ζ(t, 0)dt ≤ 0,

for any ζ ∈ X
T
R+

with ζ ≥ 0. Let θ ∈ C1
c (Q

T
R+

), η ≥ 0, we take ζ to be
the solution of

−ζt − ζxx = θ in (0, T )× R+

ζx(t, 0) = 0 in (0, T )
ζ(T, x) = 0 in (0,∞).

Then ζ satisfies (46), hence
∫ T

0

∫ ∞

0

θ|w|dxdt+
∫ ∞

0

(g(u(., 0))− g(ũ(., 0)))sign(w)ζ(t, 0)dt ≤ 0.

This implies w = 0.

Existence. Without loss of generality we can assume that µ and ν are
nonnegative. Let {νn} ⊂ Cc(R+) and {µn} ⊂ Cc([R+]0, T )) converging
to ν and µ in the sense of measures and let un be the solution of (37).
Then from (39),

∫ T

0

∫ ∞

0

|un|dxdt+
∫ T

0

|g(un(t, 0))|dt ≤ T

∫ ∞

0

|νn|dx+

∫ T

0

|µn|dt.
(59)

Therefore un and g(un(., 0)) remain bounded respectively in L1(QTR+
)

and in L1(0, T ). Furthermore, by Lemma 3.4, un remains bounded in
M3(QTR+

) and in M2(∂QTR+
). We can also write un under the form

un(t, x) =

∫ ∞

0

Ẽ(t, x, y)µn(y)dy + 2

∫ t

0

E(t− s, x)(νn(t)− g(un(t, 0)))ds

= An(t, x) +Bn(t, x).
(60)

Since we can perform the even reflexion through y = 0, the mapping

(t, x) 7→ An(t, x) :=

∫ ∞

0

Ẽ(t, x, y)µn(y)dy,

is relatively compact in Cmloc(Q
T
R+

) for any m ∈ N
∗. Hence we can extract

a subsequence {unk
} which converges uniformly on every compact subset

of (0, T ] × [0,∞), hence a.e. on (0, T ] for the 1-dimensional Lebesque
measure. Concerning the boundary term

(t, x) 7→ Bn(t, x) :=

∫ t

0

E(t− s, x)(νn(t)− g(un(t, 0)))ds,

it is relatively compact on every compact subset of [0, T ] × (0,∞). If
x = 0, then

Bn(t, 0) =

∫ t

0

(νn(t)− g(un(t, 0)))
ds

√

π(t− s)
.
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Since ‖νn(.)− g(un(., 0))‖L1(0,T ), t 7→ Bn(t, 0) is uniformly integrable on
(0, T ), hence relatively compact by the Frechet-Kolmogorov Theorem.
Therefore there exists a subsequence, still denoted by {nk} such that
Bnk

(t, 0) converges for almost all t ∈ (0, T ). This implies that the se-

quence of function {unk
} defined by (60) converges in QT

R+
up to a set

Θ∪Λ where Θ ⊂ QTR+
is neglectable for the 2-dimensional Lebesgue mea-

sure and Λ ⊂ ∂ℓQ
T
R+

neglectable for the 1-dimensional Lebesgue measure.

From Lemma 3.4, (un,k⌊QT
R+

, u⌊∂ℓQT
R+

) converges in L1
loc(Q

T
R+

)×L1(∂ℓQ
T
R+

)

and the convergence of each of the components holds also almost every-
where (up to a subsequence). Since un,k is a weak solution, it satisfies
for any ζ ∈ X(QTR+

)

−
∫ T

0

∫ ∞

0

(ζt + ζxx)un,kdxdt+

∫ T

0

(g(un,k)ζ) (t, 0)dt

=

∫ ∞

0

ζνn,k(x)dx+

∫ T

0

ζ(t, 0)µn,k(t)dt.

(61)

In order to prove the convergence of g(un,k(t, 0)), we use Vitali’s conver-
gence theorem and the assumption (19). Let F ⊂ [0, T ] be a Borel set.
Using the fact that 0 ≤ un,k ≤ vνn,k,µn,k

and the estimate of Lemma 3.4,
we have for any λ > 0,
∫

F

|g(un,k(t, 0))|dt ≤
∫

F∩{un,k(t,0)≤λ}
|g(un,k(t, 0))|dt

+

∫

{un,k(t,0)>λ}
|g(un,k(t, 0))|dt

≤ g(λ)|F | −
∫ ∞

λ

σd|{t : |g(un,k(t, 0))| > σ}|

≤ g(λ)|F |+ c

∫ ∞

λ

|g(σ)|σ−3ds,

where c depends of ‖µ‖
M(∂QT

R+
) + ‖ν‖

M(QT
R+

). For ǫ > 0 given, we chose

λ large enough so that the integral term above is smaller than ǫ and
then |F | such that g(λ)|F |+ ≤ ǫ. Hence {g(un,k(., 0))} is uniformly
integrable. Therefore up to a subsequence, it converges to g(u(., 0)) in
L1(0, T ). Clearly u satisfies

−
∫ T

0

∫ ∞

0

(ζt + ζxx)udxdt+

∫ T

0

(g(u)ζ) (t, 0)dt

=

∫ ∞

0

ζν(x)dx+

∫ T

0

ζ(t, 0)µ(t)dt,

(62)

which ends the existence proof.

Monotonicity. If ν ≥ ν̃ and µ ≥ µ̃; we can choose the approximations
such that νn ≥ ν̃n and µn ≥ µ̃n. It follows from (42) that uνn,µn ≥
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uν̃n,µ̃n . Choosing the same subsequence {nk}, the limits u, ũ are in the
same order. The conclusion follows by uniqueness. �

3.3. The case g(u) = |u|p−1
u

Condition (19) is satisfied if p < 2. If this condition holds there exists a
solution uℓδ0 = u0,ℓδ0 and the mapping ℓ 7→ uℓδ0 is increasing.

Theorem 3.5. (i) If 1 < p ≤ 3
2
, uℓδ0 tends to ∞ when k → ∞.

(ii) If 3
2
< p < 2, uℓδ0 converges to Uωs defined by

Uωs(t, x) = t
− 1

2(p−1) ωs(
x√
t
),

when k → ∞.

Proof. By uniqueness and using (3), there holds

Tk[uℓδ0 ] = u
k

2−p
p−1

ℓ
δ0

, (63)

for any k, ℓ > 0. Since ℓ 7→ uℓδ0 is increasing, its limit u∞, when ℓ→ ∞,
satisfies

Tk[u∞] = u∞. (64)

Hence u∞ is a positive self-similar solution of (2), provided it exists.
Hence u∞ = Uωs if 3

2
< p < 2. If 1 < p ≤ 3

2
, ukδ0 admits no finite limit

when k → ∞ which ends the proof. �

Remark. As a consequence of this result, no a priori estimate of Brezis-
Friedman type (parabolic Keller-Osserman) exists for a nonnegative func-
tion u ∈ C2,1(Q∞

R+
\ {(0, 0)} solution of

ut − uxx = 0 in Q∞
R+

− ux(., 0) + |u|p−1u(., 0) = 0 for all t > 0

u(0, x) = 0 for all x > 0.

(65)

when 1 < p ≤ 3
2
. When 3

2
< p < 2 it is expected that

u(t, x) ≤ c

(|x|2 + t)
1

2(p−1)

. (66)

The type of phenomenon (i) in Theorem 3.5 is characteristic of fractional
diffusion. It has already been observed in [6, Theorem 1.3] with equations

ut + (−∆)αu+ tβup = 0 in R+ × R
N

u(0, .) = kδ0 in R
N ,

(67)

when 0 < α < 1 is small and p > 1 is close to 1.
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4. Extension and open problems

The natural extension is to replace a one dimensional domain by a mu-
tidimenional one. The main open problem is the question of a priori
estimate as stated in the last remark above.

4.1. Self-similar solutions

Let η = (η1, ..., ηn) be the coordinates in R
n and denote R

n
+ = {η =

(η1, ..., ηn) = (η′, ηn) : ηn > 0}. We setK(η) = e
|η|2

4 andK′(η′) = e
|η′|2

4 .
Similarly to Section 2 we define LK in C2

0 (R
n) by

LK(φ) = −K−1div(K∇φ). (68)

If α = (α1, ..., αn) ∈ N
n, we set |α| = α1 + α2 + ... + αn. We denote

by φ1 the function K−1. Then the set of eigenvalues of LK is the set of
numbers

{

λk = n+k
2

: k ∈ N
}

with corresponding set of eigenspaces

Nk = span {Dα
φ1 : |α| = k} .

The operators L+,N
K and L+,D

K are defined acoordingly in H1
K(Rn+) and

H
1,0
K (Rn+) respectively and σ(L+,N

K ) =
{

n+k
2

: k ∈ N
}

and σ(L+,D
K ) =

{

n+k
2

: k ∈ N
∗} Furthermore

Nk,N = ker
(

L+,N
K − n+k

2
Id

)

= span {Dα
φ1 : |α| = k, αn = 2ℓ , ℓ ∈ N} ,

(69)
and

Nk,D = ker
(

L+,D
K − n+k

2
Id

)

= span {Dα
φ1 : |α| = k, αn = 2ℓ+ 1 , ℓ ∈ N} .

(70)
Since L+,N

K and L+,D
K are Fredholm operators,

H
1
K(Rn+) =

∞
⊕

k=0

Nk,N and H
1,0
K (Rn+) =

∞
⊕

k=1

Nk,D. (71)

We define the following functional on H1
K(Rn+)

J(φ) =
1

2

∫

Rn
+

(

|∇φ|2 − 1

2(p− 1)
φ
2

)

Kdη +
1

p+ 1

∫

∂Rn
+

|φ|p+1
K

′
dη

′
.

(72)
The critical points of J satisfies

−∆ω − 1

2
η.∇ω − 1

2(p− 1)
ω = 0 in R

n
+

− ωηn + |ω|p−1ω = 0 in ∂Rn+.
(73)

If ω is a solution of (73), the function

uω(t, x) = t
− 1

2(p−1) ω(
x√
t
) (74)
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satisfies

uω t −∆uω = 0 in Q∞
R
n
+
:= (0,∞)× R

n
+

−uω xn + |uω|p−1uω = 0 in ∂ℓQ
∞
R
n
+
:= (0,∞)× ∂Rn+.

(75)

Here we have set Rn+ = {x = (x1, ..., xn) = (x′, xn) : xn > 0}. We denote
by E the subset H1

K(Rn+)∩Lp(∂Rn+; dη′) of solutions of (73) and by E+ the
subset of positive solutions. As for the case n = 1 we have the following
non-existence result

Proposition 4.1. 1- If p ≥ 1 + 1
n
, then E = {0}.

2- If 1 < p ≤ 1 + 1
n+1

, then E+ = {0}

The proof is similar to the one of Theorem 1.1. Hence the existence
is to be found in the range 1 + 1

n+1
< p < 1 + 1

n
.

Conjecture Assume 1 + 1
n+1

< p < 1 + 1
n
, then the functional J is

bounded from below in H1
K(Rn+)∩LpK′(∂R

n
+). Furthermore J(φ) tends to

infinity when ‖φ‖H1
K

(Rn
+) +

∥

∥

∥
φ⌊∂Rn

+

∥

∥

∥

L
p+1

K′ (∂Rn
+)

tends to infinity.

4.2. Problem with measure data

The method for proving Theorem 1.3 can be adapted to prove the fol-
lowing n-dimensional result

Theorem 4.2. Let g : R 7→ R be a nondecreasing continuous function
such that g(0) = 0 and

∫ ∞

1

(g(s)− g(−s))s− 2n+1
n ds <∞, (76)

then for any bounded Radon measures ν in R
n
+ and µ in (0, T ) × ∂Rn+,

there exists a unique Borel function u := uν,µ defined in Q
Rn
+

T := [0, T ]×
R
n
+ such that u ∈ L1(Q

R
n
+

T ), u⌊(0,T )×∂Rn
+
∈ L1((0, T ) × ∂Rn+) and g(u) ∈

L1((0, T )× ∂Rn+) solution of

ut −∆u = 0 in QTRn
+

− uxn + g(u) = µ in ∂ℓQ
T
Rn
+

u(0, .) = ν in R
n
+,

(77)

in the sense that
∫ ∫

QT
Rn
+

(−∂tζ −∆ζ)udxdt+

∫ ∫

∂ℓQ
T
Rn
+

g(u)ζdx′dt

=

∫

Rn
+

ζdν +

∫ ∫

∂ℓQ
T
Rn
+

ζdµ,
(78)

for all ζ ∈ C1,2
c (QT

Rn
+
) such that ζxn = 0 on (0, T )× ∂Rn+ and ζ(T, .) = 0.

Furthermore (ν, µ) 7→ uν,µ) is nondecreasing.
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