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We consider the problem of existence of a solution u to ∂tu-∂xxu = 0 in (0, T )×R+ subject to the boundary condition -ux(t, 0)+g(u(t, 0)) = µ on (0, T ) where µ is a measure on (0, T ) and g a continuous nondecreasing function. When p > 1 we study the set of self-similar solutions of ∂tu -∂xxu = 0 in R+ × R+ such that -ux(t, 0) + u p = 0 on (0, ∞). At end, we present various extensions to a higher dimensional framework.

Introduction

Let g : R → R be a continuous nondecreasing function. Set Q T R + = (0, T )×R+ for 0 < T ≤ ∞ and ∂ ℓ Q T R + = R+ ×{0}. The aim of this article is to study the following 1-dimensional heat equation with a nonlinear flux on the parabolic boundary

ut -uxx = 0 in Q T R + -ux(., 0) + g(u(., 0)) = µ in [0, T ) u(0, .) = ν in R+, (1) 
where ν, µ are Radon measures in R+ and [0, T ) respectively. A related problem in Q ∞ R + for which there exist explicit solutions is the following,

ut -uxx = 0 in Q ∞ R +
ux(t, 0) + |u| p-1 u(t, 0) = 0 for all t > 0 lim t→0 u(t, x) = 0 for all x > 0,

where p > 1. Problem ( 2) is invariant under the transformation T k defined for all k > 0 by

T k [u](t, x) = k 1 p-1 u(k 2 t, kx). (3) 
This leads naturaly to look for existence of self-similar solutions under the form us(t, x) = t

- 1 2(p-1) ω x √ t . (4) 
Putting η = x √ t , ω satisfies

-ω ′′ - 1 2 ηω ′ - 1 2(p -1) ω = 0 in R+ -ω ′ (0) + |ω| p-1 ω(0) = 0 lim η→∞ η 1 p-1 ω(η) = 0.
(5)

Self-similar solutions of non-linear diffusion equations such as porousmedia or fast-diffusion equation were discovered long time ago by Kompaneets and Zeldovich and a thourougful study was made by Barenblatt, reducing the study to the one of integrable ordinary differential equations with explicit solutions. Concerning semilinear heat equation Brezis, Terman and Peletier opened the study of self-similar solutions of semilinear heat equations in proving in [START_REF] Brezis | A very singular solution of the heat equation with absorption[END_REF] the existence of a positive strongly singular function satisfying

ut -∆u + |u| p-1 u = 0 in R+ × R n , (6) 
and vanishing at t = 0 on R n \ {0}. They called it the very singular solution. Their method of construction is based upon the study of an ordinary differential equation with a phase space analysis. A new and more flexible method based upon variational analysis has been provided by [START_REF] Escobedo | Variational problems related to the self-similar solutions of the heat equations[END_REF]. Other singular solutions of [START_REF] Chen | Fractional heat equations with subcritical absorption having a measure as initial data[END_REF] in different configurations such as boundary singularities have been studied in [START_REF] Marcus | Semilinear parabolic equations with measure boundary data and isolated singularities[END_REF]. We set K(η) = e η 2 /4 and

L 2 K (R+) = φ ∈ L 1 loc (R+) : R + φ 2 Kdx := φ 2 L 2 K < ∞ , (7) 
and, for k ≥ 1,

H k K (R+) = φ ∈ L 2 K (R+) : k α=0 φ (α) 2 L 2 K := φ 2 H k K < ∞ . (8) 
Let us denote by E the subset of H 1 K (R+) of weak solutions of (5) that is the set of functions satisfying

∞ 0 ω ′ ζ ′ - 1 2(p -1) ωζ K(η)dη + |ω| p-1 ωζ (0) = 0, (9) 
and by E+ the subset of nonnegative solutions. The next result gives the structure of E .

Theorem 1.1. 1-If p ≥ 2, then E = {0}. 2-If 1 < p ≤ 3 2 , then E+ = {0} 3 -If 3 2 < p < 2 then E = {ωs, -ωs, 0}
where ωs is the unique positive solution of [START_REF] Brezis | A very singular solution of the heat equation with absorption[END_REF]. Furthermore there exists c > 1 such that

c -1 η 1 p-1 -1 ≤ e η 2 4 ωs(η) ≤ cη 1 p-1 -1 for all η > 0. ( 10 
)
Whenever it exists the function us defined in ( 4) is the limit, when ℓ → ∞ of the positive solutions u ℓδ 0 of

ut -uxx = 0 in Q ∞ R + -ux(t, .) + |u| p-1 u(t, .) = ℓδ0 in [0, T ) lim t→0 u(t, x) = 0 for all x ∈ R+. (11) 
When such a function us does not exits the sequence {u ℓδ 0 } tends to infinity. This is a charateristic phenomenon of an underlying fractional diffusion associated to the linear equation

ut -uxx = 0 in Q ∞ R + -ux(., 0) = µ in [0, ∞) u(0, .) = 0 in R+. (12) 
More generaly we consider problem (1). We define the set X(Q T R + ) of test functions by

X(Q T R + ) = ζ ∈ C 1,2 c ([0, T ) × [0, ∞)) : ζx(t, 0) = 0 for t ∈ [0, T ] . ( 13 
)
Definition 1.2. Let ν, µ be Radon measures in R+ and [0, T ) respectively. A function u defined in Q T R + and belonging to

L 1 loc (Q T R + ) ∩ L 1 (∂ ℓ Q T R + ; dt) such that g(u) ∈ L 1 (∂ ℓ Q T R + ; dt) is a weak solution of (1) if for every ζ ∈ X(Q T R + ) there holds - T 0 ∞ 0 (ζt + ζxx)udxdt + T 0 (g(u)ζ) (t, 0)dt = ∞ 0 ζdν(x) + T 0 ζ(t, 0)dµ(t). (14) 
We denote by E(t, x) the Gaussian kernel in R+ × R. The solution of

vt -vxx = 0 in Q ∞ R + -vx = δ0 in R+ v(0, .) = 0 in R+, (15) 
has explicit expression

v(t, x) = 2E(t, x) = 1 √ πt e -x 2 4t . (16) 
If x, y > 0 and s < t we set Ẽ(ts, x, y) = E(ts, xy) + E(ts, x + y).

When ν ∈ M b (R+) and µ ∈ M b (R+) the solution of

vt -vxx = 0 in Q ∞ R + -vx(., 0) = µ in R+ u(0, .) = ν in R+, (17) 
is given by

vν,µ(t, x) = ∞ 0 Ẽ(t, x, y)dν(y) + 2 t 0 E(t -s, x)dµ(s) = E R + [ν](t, x) + E R + ×{0} [µ](t, x) = E Q ∞ R + [(ν, µ)](t, x). (18) 
We prove the following existence and uniqueness result.

Theorem 1.3. Let g : R → R be a continuous nondecreasing function such that g(0

) = 0. If g satisfies ∞ 1 (g(s) -g(-s))s -3 ds < ∞, (19) 
then for any bounded Borel measures ν in R+ and µ in [0, T ), there exists a unique weak solution u := uν,µ ∈ L 1 (Q T R + ) of (1). Furthermore the mapping (ν, µ) → uν,µ is nondecreasing.

When g(s) = |s| p-1 s, condition (19) is satisfied if 0 < p < 2. ( 20 
)
The above result is still valid under minor modifications if R+ is replaced by a bounded interval I := (a, b), and problem (1) by

ut -uxx = 0 in Q T I ux(., b) + g(u(., b)) = µ1 in [0, T ) -ux(., a) + g(u(., a)) = µ2 in [0, T ) u(0, .) = ν in (a, b), (21) 
where ν, µj (j = 1, 2) are Radon measures in I and (0, T ) respectively.

In the last section we present the scheme of the natural extensions of this problem to a multidimensional framework

ut -∆u = 0 in Q T R n + -ux n + g(u) = µ in ∂ ℓ Q T R n + u(0, .) = ν in R n + , (22) 
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The construction of solutions with measure data can be generalized but there are some difficulties in the obtention of self-similar solutions. The equation with a source flux

ut -∆u = 0 in Q T R n + ux n + g(u) = 0 in ∂ ℓ Q T R n + u(0, .) = ν in R n + , (23) 
has been studied by several authors, in particular Fila, Ishige, Kawakami and Sato [START_REF] Fila | Existence of positive solutions of a semilinear elliptic equation with a dynamical boundary condition[END_REF], [START_REF] Ishige | Global solutions of the heat equation with a nonlinear boundary condition[END_REF], [START_REF] Ishige | Heat equation with a nonlinear boundary condition and uniformly local L r spaces[END_REF]. Their main concern deals with global existence of solutions.

Aknowledgements. The author is grateful to the reviewer for mentioning reference [START_REF] Fila | The blow-up rate for the heat equation with a non-linear boundary condition[END_REF] which pointed out the role of Whittaker's equation which was used for analyzing the blow-up of positive solutions of (23) when g(u) = u p when n = 1.

Self-similar solutions

The symmetrization

We define the operator LK in C 2 0 (R) by

LK(φ) = -K -1 (Kφ ′ ) ′ .
The operator LK has been thouroughly studied in [START_REF] Escobedo | Variational problems related to the self-similar solutions of the heat equations[END_REF]. In particular inf

∞ -∞ φ ′2 K(η)η : ∞ -∞ φ 2 K(η)dη = 1 = 1 2 . ( 24 
)
The above infimum is achieved by φ1 = (4π) -1 2 K -1 and LK is an isomorphism from

H 1 K (R) onto its dual (H 1 K (R)) ′ ∼ H -1 K (R). Finally L -1 K is compact from L 2 K (R) into H 1 K (R), which implies that LK is a Fredholm self-adjoint operator with σ(LK ) = λj = 1+j-1 2 : j = 1, 2, ... , and 
ker (LK -λjI d ) = span φ (j) 1 . If φ is defined in R+, φ(x) = φ(-x)
is the symmetric with respect to 0 while φ * (x) = -φ(-x) is the antisymmetric with respect to 0. The operator LK restricted to R+ is denoted by L + K . The operator L +,N K with Neumann condition at x = 0 is again a Fredholm operator. This is also valid for the operator

L +,D K with Dirichlet condition at x = 0. Hence, if φ is an eigenfunction of L +,N K , then φ is an eigenfunction of LK in L 2 K (R). Similarly, if φ is an eigenfunction of L +,D K , then φ * is an eigenfunction of LK in L 2 K (R). Conversely, any even (resp. odd) eigenfunction of LK in L 2 K (R) satisfies Neumann (resp. Dirichlet) boundary condition at x = 0. Hence its restiction to L 2 K (R+) is an eigenfunction of L +,N K (resp. L +,D K ). Since φ (j) 1
is even (resp. odd) if and only if j is even (resp. odd), we derive

H 1,0 K (R+) = ∞ ℓ=1 span φ (2ℓ+1) 1 , (25) 
and

H 1 K (R+) = ∞ ℓ=0 span φ (2ℓ) 1 . ( 26 
) Note that φ ∈ H 1 K (R+) such that φx(0) = 0 (resp. φ(0) = 0) implies φ ∈ H 1 K (R) (resp. φ * ∈ H 1 K (R)). Furthermore, φ1 is an eigenfunction of L + K in H 1 K (R n + ) with Neumann boundary condition on ∂R n + while ∂x n φ1 is an eigenfunction of L + K in H 1 K (R n + )

with Dirichlet boundary condition on ∂R n

+ . We list below two important properties of H 1 K (R+) valid for any β > 0. Actually they are proved in [START_REF] Escobedo | Variational problems related to the self-similar solutions of the heat equations[END_REF]Prop. 1.12] with

H 1 K β (R) but the proof is valid with H 1 K β (R+). (i) φ ∈ H 1 K β (R+) =⇒ K β 2 φ ∈ C 0, 1 2 (R+) (ii) H 1 K β (R+) ֒→ L 2 K β (R+) is compact for all n ≥ 1. (27) 2.2. Proof of Theorem 1.1-(i)-(ii) Assume p ≥ 2, then 1 2(p-1) ≤ 1 2 . If ω is a weak solution, then ∞ 0 ω ′2 - 1 2(p -1) ω 2 Kdη + |ω| p+1 (0) = 0. If 1 2 > 1 2(p-1)
we deduce that ω = 0. Furthermore, when 1 2 = 1 2(p-1) then

|ω| p+1 (0) = 0.
If ω is nonzero, it is an eigenfunction of L +,D K . Since the first eigenvalue is 1 it would imply 1 = 1 2(p-1) ≤ 1 2 , contradiction. Assume 1 < p ≤ 3 2 and ω is a nonnegative weak solution. We take

ζ(η) = ηe -η 2 4 = -2φ ′ 1 (η), then ∞ 0 -ζ ′′ - 1 2(p -1) ζ ωK(η)dη + ζ ′ (0)ω p (0) = 0. Since -ζ ′′ = ζ⌊ R + > 0 and ζ ′ (0) = φ1(0) = 1, we derive ωζ = 0 if 1 > 1 2(p-1) and ω(0) = 0 if 1 = 1 2(p-1)
. Hence ω ′ (0) = 0 by the equation and ω ≡ 0 by the Cauchy-Lipschitz theorem.
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Proof of Theorem 1.1-(iii)

We define the following functional on

H 1 K (R n + ) J(φ) = 1 2 ∞ 0 φ ′2 - 1 2(p -1) φ 2 Kdη + 1 p + 1 |φ(0)| p+1 . ( 28 
)
Lemma 2.1. The functional J is lower semicontinuous in H 1 K (R+). It tends to infinity at infinity and achieves negative values.

Proof. We write

J(ψ) = J1(ψ) -J2(ψ) = J1(ψ) - 1 2(p -1) ψ 2 L 2 K .
Clearly J1 is convex and J2 is continuous in the weak topology of

H 1 K (R+) since the imbedding of H 1 K (R+) into L 2 K (R+) is compact. Hence J is weakly semicontinuous in H 1 K (R+). Let ǫ > 0, then J(ǫφ1) = 1 4 - 1 4(p -1)
ǫ 2 √ π 2 + ǫ p+1 p + 1 . Since 1 < p < 2, 1 4 -1 4(p-1) < 0. Hence J(ǫφ1) < 0 for ǫ small enough, thus J achieves negative values on H 1 K (R+). If ψ ∈ H 1 K (R+)
it can be written in a unique way under the form ψ = aφ1 + ψ1 where a = 2 √ πψ(0) and ψ1 ∈ H 1,0 K (R+). Hence, for any ǫ > 0,

J(ψ) = 1 2 ∞ 0 ψ ′2 1 - 1 2(p -1) ψ 2 1 Kdη + a 2 2 ∞ 0 φ ′2 1 - 1 2(p -1) φ 2 1 Kdη + a ∞ 0 ψ ′ 1 φ ′ 1 - 1 2(p -1) ψ1φ1 Kdη + 1 p + 1 |a| p+1 ≥ 2p -3 4(p -1) ∞ 0 ψ ′2 1 Kdη - aǫ 2 ∞ 0 ψ ′2 1 + 1 2(p -1) ψ 2 1 Kdη + a 2 (p -2) √ π 4(p -1) - ap √ π 4(p -1)ǫ + 1 p + 1 |a| p+1 .
Note that ψ 2

H 1 K ≤ 4 ψ ′ 1 2 L 2 K + a 2 .
Since 2p -3 > 0, we can take ǫ > 0 small enough in order that lim

ψ H 1 K →∞ J(ψ) = ∞. ( 29 
)
End of the proof of Theorem 1.1-(iii). By Lemma 2.1 the functional J achieves its minimum in H 1 K (R+) at some ωs = 0, and ωs can be assumed to be nonnegative since J is even. By the strong maximum principle ωs > 0, and by the method used in the proof of [START_REF] Moutoussamy | Isolated singularities and asymptotic behaviour of the solutions of a semilinear heat equation[END_REF]Proposition 1] is is easy to prove that positive solutions belong to H 2 K (R+). Assume that ω is another positive solution, then

∞ 0 (Kω ′ s ) ′ ωs - (K ω′ s ) ′ ωs (ω 2 s -ω2 s )dη = 0.
Integration by parts, easily justified by regularity, yields

∞ 0 (Kω ′ s ) ′ ωs - (K ω′ s ) ′ ωs (ω 2 s -ω2 s )dη = Kω ′ s ωs - ω2 s ωs -K ω′ s ω 2 s ωs -ωs ∞ 0 - ∞ 0 ωs - ω2 s ωs ′ Kω ′ s dη + ∞ 0 ω 2 s ωs -ωs ′ Kω ′ s dη = -ω p-1 s -ωp-1 s ω 2 s -ω2 s (0) - ∞ 0 ω ′ s ωs -ωs ω′ s ωs 2 + ωs ω′ s -ωsω ′ s ωs 2 dη.
This implies that ωs = ωs. The proof of ( 10) is similar as the proof of estimate (2.5) in [13, Theorem 4.1].

The explicit approach

This part is an adaptation to our problem of what has been done in [START_REF] Fila | The blow-up rate for the heat equation with a non-linear boundary condition[END_REF] concerning the blow-up problem in equation ( 23). Let ω be a solution of

ω ′′ + 1 2 ηω ′ + 1 2(p -1) ω = 0 in R+. ( 30 
)
We set r = η 2 4 and ω(η) = r -1 4 e -r 2 Z(r).

Then Z satisfies the Whittaker equation (with the standard notations)

Zrr + - 1 4 + k r + 1 -4µ 2 4r 2 Z = 0 (31) 
where k = 1 2(p-1) -1 4 and µ = 1 4 . Notice that the only difference with the expression in [9, Lemma 3.1] is the value of the coefficient k. This equation admits two linearly independent solutions

Z1(r) = e -r 2 r 1 2 +µ U 1 2 + µ -k, 1 + 2µ, r , and 
Z2(r) = e -r 2 r 1 2 +µ M 1 2 + µ -k, 1 + 2µ, r .
The functions U and M are the Whittaker functions which play an important role not only in analysis but also in group theory. The have the following asymptotic expansion as r → ∞ (see e.g. [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF]),

U 1 2 + µ -k, 1 + 2µ, r = r k-µ-1 2 1 + O(r -1 = r 1 2(p-1) -1 1 + O(r -1 ,
and

M 1 2 + µ -k, 1 + 2µ, r = Γ(1 + 2µ) Γ( 1 2 + µ -k) e r r -(µ+ 1 2 +k) 1 + O(r -1 = Γ( 3 2 ) Γ(1 -1 2(p-1) ) e r r - p 2(p-1) 1 + O(r -1 . Then Z1(r) = r 1 2(p-1) -1 4 e -r 2 1 + O(r -1 , and 
Z2(r) = Γ( 3 2 ) Γ(1 -1 2(p-1) ) r 1 4 - 1 2(p-1) -e r 2 1 + O(r -1 .
To this corresponds the two linearly independent solutions ω1 and ω2 of (30) with the following behaviour as η → ∞,

(i) ω1(η) = c1η 1 p-1 -1 e -η 2 4 1 + O(η -2 , (ii) ω2(η) = c2η -1 p-1 1 + O(η -2 . (32) 
Clearly only ω1 satisfies the decay estimate ω(η) = o(η -1 p-1 ) as η → ∞. Hence the solution ω is a multiple of ω1 and the multiplicative constant c is adjusted in order to fit the condition ω ′ (0) = ω p (0).

Problem with measure data

The regular problem

Set G(r) = r 0 g(s)ds. We consider the functional J in L 2 (R+) with domain D(J) = H 1 (R+) defined by

J(u) = 1 2 ∞ 0 u 2 x dx + G(v(0)).
It is convex and lower semicontinuous in L 2 (R+) and its subdifferential ∂J sastisfies

∞ 0 ∂J(u)ζdx = ∞ 0 uxζxdx + g(u(0))ζ(0), for all ζ ∈ H 1 (R+). Therefore ∞ 0 ∂J(u)ζdx = - ∞ 0 uxxζdx + (g(u(0)) -ux(0))ζ(0). Hence ∂J(u) = -uxx for all u ∈ D(∂J) = {v ∈ H 1 (R+) : vx(0) = g(v(0))}.
(33) The operator ∂J is maximal monotone, hence it generates a semi-group of contractions. Furthermore, for any u0 ∈ L 2 (R+) and F ∈ L 2 (0, T ; L 2 (L 2 (R+)) there exists a unique strong solution to Ut + ∂J(U ) = F a.e. on (0, T )

U (0) = u0. ( 34 
)
Proposition 3.1. Let µ ∈ H 1 (0, T ) and ν ∈ L 2 (R+). Then there exists a unique function u ∈ C([0, T ]; L 2 (R+) such that √ tuxx ∈ L 2 ((0, T ) × R+) which satisfies (35). The mapping (µ, ν) → u := uµ,ν is non-decreasing and u is a weak solution in the sense that it satisfies [START_REF] Marcus | Isolated boundary singularities of signed solutions of some nonlinear parabolic equations[END_REF].

Proof. Let η ∈ C 2 0 ([0, ∞)) such that η(0) = 0, η ′ (0) = 1. If f ∈ H 1 (0, T ), ν ∈ L 2 (R+), and u is a solution of ut -uxx = 0 in Q T R + -ux(., 0) + g(u(., 0)) = µ(t) in [0, T ) u(0, .) = ν in R+, (35) 
where ν ∈ L 2 (R+), then the function v(t, x) = u(t, x)µ(t)η(x) satisfies

vt -vxx = F in Q T R + -vx(., 0) + g(v(., 0)) = 0 in [0, T ) v(0, .) = ν -µ(0)η in R+, (36) 
with F (t, x) = -(µ ′ (t)η(x) + µ(t)η ′′ (x)). The proof of the existence follows by using [3, Theorem 3.6].

Next, let (μ, ν) ∈ H 1 (0, T ) × L 2 (R+) such that μ ≤ µ and ν ≤ ν and let ũ = uμ,ν , then 1 2

d dt ∞ 0 (ũ -u) 2 + dx + ∞ 0 (∂x(ũ -u)+) 2 dx -(μ(t) -µ(t)) (ũ(t, 0) -u(t, 0))+ + (g(ũ(t, 0)) -g(u(t, 0))))(ũ(t, 0) -u(t, 0)) = 0. Then ∞ 0 (ũ -u) 2 + dx⌊t=0 =⇒ ∞ 0 (ũ -u) 2 + dx = 0 on [0, T ].
We can also use (18) to express the solution of (35):

u(t, x) = ∞ 0 Ẽ(t, x, y)ν(y)dy + 2 t 0 E(t -s, x)(µ(s) -g(u(s, 0)))ds.
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In particular, if g(0) = 0, then

|u(t, x)| ≤ ∞ 0 Ẽ(t, x, y)|ν(y)|dy + 2 t 0 E(t -s, x)|µ(s)|ds.
The proof of ( 14) follows since u is a strong solution.

Next, we prove that the problem is well-posed if µ ∈ L 1 (0, T ).

Proposition 3.2. Assume {νn} ⊂ Cc(R+) and {µn} ⊂ C 1 ([0, T ]) are Cauchy sequences in L 1 (R+) and L 1 (0, T ) respectively. Then the sequence {un} of solutions of

un t -un xx = 0 in Q T R + -un x(., 0) + g(un(., 0)) = µn(t) in [0, T ) un(0, .) = νn in R+, (37) 
converges in C([0, T ]; L 1 (R+) to a function u which satisfies [START_REF] Marcus | Isolated boundary singularities of signed solutions of some nonlinear parabolic equations[END_REF].

Proof. For ǫ > 0 let pǫ be an odd C 1 function defined on R such that p ′ ǫ ≥ 0 and pǫ(r) = 1 on [ǫ, ∞), and put jǫ(r

) = r 0 pǫ(s)ds. Then d dt ∞ 0 jǫ(un -um)dx + ∞ 0 (un x -um x) 2 p ′ ǫ (un -um)dx + (g(un(t, 0)) -g(um(t, 0))) pǫ(un(t, 0) -um(t, 0)) = (µn(t) -µm(t)) pǫ(un(t, 0) -um(t, 0)). Hence ∞ 0 jǫ(un -um)(t, x)dx + (g(un(t, 0)) -g(um(t, 0))) pǫ(un(t, 0) -um(t, 0)) ≤ ∞ 0
jǫ(νnνm)dx + (µn(t)µm(t)) pǫ(un(t, 0)um(t, 0)).

Letting ǫ → 0 implies pǫ → sgn0, hence for any t ∈ [0, T ],

∞ 0 |un -um|(t, x)dx + |g(un(t, 0)) -g(um(t, 0)| ≤ ∞ 0 |νn -νm|dx + |µn(t) -µm(t)|. (38) 
Therefore {un} and {g(un(., 0)} are Cauchy sequences in C([0, T ]; L 1 (R+)) and C([0, T ]) respectively with limit u and g(u) and u = uν,µ satisfies [START_REF] Marcus | Isolated boundary singularities of signed solutions of some nonlinear parabolic equations[END_REF]. If we assume that (ν, ν) and (µ, μ) are couples of elements of L 1 (R+) and L 1 (0, T ) respectively and if u = uν,µ and ũ = uν,μ, there holds by the above technique,

∞ 0 |u -ũ|(t, x)dx + |g(u(t, 0)) -g(ũ(t, 0)| ≤ ∞ 0 |ν -ν|dx + |μ(t) -μ(t)| for all t ∈ [0, T ]. ( 39 
)
The following lemma is a parabolic version of an inequality due to Brezis.

Lemma 3.3. Let ν ∈ L 1 (R+) and µ ∈ L 1 (0, T ) and v be a function defined in [0, T ) × R+, belonging to L 1 (Q T R + ) ∩ L 1 (∂ ℓ Q T R + ) and satisfying - T 0 ∞ 0 (ζt + ζxx)vdxdt = T 0 ζ(., 0)µdt + ∞ 0 νζdx. (40) 
Then for any

ζ ∈ X(Q T R + ), ζ ≥ 0, there holds - T 0 ∞ 0 (ζt + ζxx)|v|dxdt ≤ ∞ 0 ζ(., 0)sign(v)µdt + ∞ 0 |ν|ζdx. (41) Similarly - T 0 ∞ 0 (ζt + ζxx)v+dxdt ≤ ∞ 0 ζ(., 0)sign+(v)µdt + ∞ 0 ν+ζdx. (42) 
Proof. Let pǫ be the approximation of sign0 used in Proposition 3.2 and ηǫ be the solution of

-ηǫ t -ηǫ xx = pǫ(v) in Q T R + ηǫ x(., 0) = 0 in [0, T ] ηǫ(0, .) = 0 in R+.
Then |ηǫ| ≤ η * where η * satisfies

-η * t -η * xx = 1 in Q T R + η * x (., 0) = 0 in [0, T ] η * (0, .) = 0 in R+.
Although ηǫ does not belong to

X(Q T R + ) (it is not in C 1,2 ([0, T ) × R+)
, it is an admissible test function and we deduce that there exists a unique solution to (40). Thus v is given by expression (18).

In order to prove (41), we can assume that µ and ν are smooth,

ζ ∈ X(Q T R + ), ζ ≥ 0 and set hǫ = pǫ(v)ζ and wǫ = vpǫ(v), then ∞ 0 hǫ xxvdx = ∞ 0 (2p ′ ǫ (v)vxζx + pǫ(v)ζxx + ζ(pǫ(v))xx) vdx = ∞ 0 (2vp ′ ǫ (v)vxζx -wǫ xζx -(vζ)x(pǫ(v))x) dx -ζ(t, 0)v(t, 0)p ′ ǫ (v(t, 0))vx(t, 0) = - ∞ 0 ζx(jǫ(v))x + ζp ′ (v)ǫv 2 x dx -ζ(t, 0)v(t, 0)p ′ ǫ (v(t, 0))vx(t, 0) = - ∞ 0 ζp ′ (v)ǫv 2 x -jǫ(v)ζxx dx -ζ(t, 0)v(t, 0)p ′ ǫ (v(t, 0))vx(t, 0), (43) 
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and

T 0 hǫ tvdt = T 0 (pǫ(v)ζt + p ′ ǫ (v)ζvt)vdt. ( 44 
) Since v is smooth 0 = T 0 ∞ 0 (vt -vxx)hǫdxdt = - T 0 ∞ 0 (hǫ t + hǫ xx)vdxdt - ∞ 0 hǫ(0, x)ν(x)dx - T 0 [pǫ(v(t, 0)) -v(t, 0)p ′ ǫ (v(t, 0))] ζ(t, 0)µ(t)dt.
Therefore, using (41) and ( 42),

- T 0 ∞ 0 (jǫv)ζxx + vpǫ(v)ζt) dxdt + T 0 ∞ 0 ζp ′ ǫ (v)v 2 x -vp ′ ǫ (v)vtζ dxdt = ∞ 0 hǫ(0, x)ν(x)dx + T 0 hǫ(t, 0)µ(t)dt. ( 45 
) Put ℓǫ(s) = s 0 rp ′ ǫ (r)dr, then |ℓǫ(s) ≤ cǫ -1 s 2 χ [-ǫ,ǫ] (s)|. Since T 0 ∞ 0 ζvp ′ ǫ (v)vtdxdt = - ∞ 0 ℓǫ(v(0, x))ζ(x)dx - T 0 ∞ 0 ζtℓǫ(v)dxdt,
and ζ has compact support, it follows that

lim ǫ→0 T 0 ∞ 0 ζvp ′ ǫ (v)vtdxdt = 0.
Letting ǫ → 0 in (45), we derive (41) for smooth v. Using Proposition 3.2 completes the proof of (41). The proof of (42) is similar. 

Remark

∈ C ∞ c (R+) with 0 ≤ ηn ≤ 1, ηn(x) = 1 on [0, n], ηn(x) = 0 on [n + 1, ∞), |η ′ n | ≤ 2, |η ′′ n | ≤ 4. Then ηnζ ∈ X(Q T R +
) by letting n → ∞ and the proof follows by letting n → ∞.

Proof of Theorem 1.3

We give first some heat-ball estimates relative to our problem. For r > 0, x ∈ R+ and t ∈ R we set e(t, x; r) = (s, y) ∈ (0, T ) × R+ : s ≤ t, Ẽ(ts, x, y) ≥ r .

(47) Since e(t, x; r)

⊂ [t -1 4πer 2 , t] × [x -1 r √ πe , x + 1 r √ πe ], there holds |e(t, x; r)| ≤ 1 2r 3 (πe) 3 2 , ( 48 
)
and if e * (t; r) = {s ∈ (0, T ) :

s ≤ t, E(t -s, 0, 0) ≥ r} , (49) 
then we have

e * (t; r) ⊂ [t -1 4πer 2 , t] =⇒ |e * (t; r)| ≤ 1 4r 2 πe . ( 50 
)
If G is a measured space, λ a positive measure on G and q > 1, M q (G, λ) is the Marcinkiewicz space of measurable functions f : G → R satisfying for some constant c > 0 and all measurable set E ⊂ G,

E |f |dλ ≤ c (λ(E)) 1 p ′ , (51) 
and f M q (G,λ) = inf{c > 0 s.t. (50) holds}.

Lemma 3.4. Assume µ,ν are bounded measure in R+ and R+ respectively and u is the solution of (17) given by (18) and vν,µ is the solution of (17). Then

vν,µ M 3 (Q T R + ) + vν,µ⌊ ∂Q T R + M 2 (∂Q T R + ) ≤ c µ M(∂Q T R + ) + ν M(Q T R +
) .

(52)

Proof. First we consider v0,µ v0,µ(t, x) = 2 t 0 E(ts, x)dµ(s).
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If F ⊂ [0, T ] is a Borel set, than for any τ > 0

F E(t -s, 0)ds = F ∩{E≤τ } E(t -s, 0)ds + F ∩{E>τ } E(t -s, 0)ds ≤ τ |F | + {E>τ } E(t -s, 0)ds ≤ τ |F | - ∞ τ λd|e * (t, λ)| ≤ τ |F | + ∞ τ λd|e * (t, λ)| ≤ τ |F | + 1 4πeτ
.

If we choose τ 2 = 1 4πe|F | , we derive F E(t -s, 0)ds ≤ |F | 1 2 √ πe . ( 53 
) If F ⊂ (0, T ) is a Borel set then F v0,µ(t, 0)dt = 2 t 0 F E(t -s, 0)dtdµ(s) ≤ 2|F | 1 2 √ πe µ M(∂Q T R +
) .

This proves that

v0,µ⌊ ∂Q T R + M 2 (∂Q T R + ) ≤ c µ M(∂Q T R + ) . (54) 
Similarly

, if G ⊂ [0, T ] × [0, ∞) is a Borel set, then G Ẽ(t -s, x, 0)ds ≤ 2|G| 1 3 √ πe , (55) 
and v0,µ

M 3 (Q T R + ) ≤ c µ M(∂Q T R + ) . (56) 
In the same way we prove that

vν,0 M 3 (Q T R + ) + vν,0⌊ ∂Q T R + M 2 (∂Q T R + ) ≤ c ν M(Q T R + ) . (57) 
This ends the proof.

Proof of Theorem 1.3 Uniqueness. Assume u and ũ are solutions of (1), then w = u-ũ satisfies

wt -wxx = 0 in Q T R + -wx(., 0) + g(u(., 0)) -g(ũ(., 0)) = 0 in [0, T ) w(0, .) = 0 in R+. (58) 
Applying (41), we obtain

- T 0 ∞ 0 (ζt+ζxx)|w|dxdt+ ∞ 0 (g(u(., 0))-g(ũ(., 0)))sign(w)ζ(t, 0)dt ≤ 0, for any ζ ∈ X T R + with ζ ≥ 0. Let θ ∈ C 1 c (Q T R + ), η ≥ 0, we take ζ to be the solution of -ζt -ζxx = θ in (0, T ) × R+ ζx(t, 0) = 0 in (0, T ) ζ(T, x) = 0 in (0, ∞).
Then ζ satisfies (46), hence

T 0 ∞ 0 θ|w|dxdt + ∞ 0 (g(u(., 0)) -g(ũ(., 0)))sign(w)ζ(t, 0)dt ≤ 0.
This implies w = 0.

Existence. Without loss of generality we can assume that µ and ν are nonnegative. Let {νn} ⊂ Cc(R+) and {µn} ⊂ Cc([R+]0, T )) converging to ν and µ in the sense of measures and let un be the solution of (37).

Then from (39),

T 0 ∞ 0 |un|dxdt + T 0 |g(un(t, 0))|dt ≤ T ∞ 0 |νn|dx + T 0 |µn|dt.
(59) Therefore un and g(un(., 0)) remain bounded respectively in L 1 (Q T R + ) and in L 1 (0, T ). Furthermore, by Lemma 3.4, un remains bounded in M 3 (Q T R + ) and in M 2 (∂Q T R + ). We can also write un under the form un(t, x) = ∞ 0 Ẽ(t, x, y)µn(y)dy + 2 t 0 E(ts, x)(νn(t)g(un(t, 0)))ds = An(t, x) + Bn(t, x).

(60) Since we can perform the even reflexion through y = 0, the mapping (t, x) → An(t, x) := ∞ 0 Ẽ(t, x, y)µn(y)dy, is relatively compact in C m loc (Q T R + ) for any m ∈ N * . Hence we can extract a subsequence {un k } which converges uniformly on every compact subset of (0, T ] × [0, ∞), hence a.e. on (0, T ] for the 1-dimensional Lebesque measure. Concerning the boundary term (t, x) → Bn(t, x) := t 0 E(ts, x)(νn(t)g(un(t, 0)))ds, it is relatively compact on every compact subset of [0, T ] × (0, ∞). If x = 0, then Bn(t, 0) = t 0 (νn(t)g(un(t, 0))) ds π(ts) .

Since νn(.)g(un(., 0)) L 1 (0,T ) , t → Bn(t, 0) is uniformly integrable on (0, T ), hence relatively compact by the Frechet-Kolmogorov Theorem. Therefore there exists a subsequence, still denoted by {n k } such that Bn k (t, 0) converges for almost all t ∈ (0, T ). This implies that the sequence of function {un k } defined by (60) converges in Q T R + up to a set Θ∪Λ where Θ ⊂ Q T R + is neglectable for the 2-dimensional Lebesgue measure and Λ ⊂ ∂ ℓ Q T R + neglectable for the 1-dimensional Lebesgue measure. From Lemma 3.4, (u n,k ) . For ǫ > 0 given, we chose λ large enough so that the integral term above is smaller than ǫ and then |F | such that g(λ)|F |+ ≤ ǫ. Hence {g(u n,k (., 0))} is uniformly integrable. Therefore up to a subsequence, it converges to g(u(., 0)) in L 1 (0, T ). Clearly u satisfies Monotonicity. If ν ≥ ν and µ ≥ μ; we can choose the approximations such that νn ≥ νn and µn ≥ μn. It follows from (42) that uν n ,µn ≥

⌊ Q T R + , u⌊ ∂ ℓ Q T R + ) converges in L 1 loc (Q T R + )×L 1 (∂ ℓ Q T R + )

  and the convergence of each of the components holds also almost everywhere (up to a subsequence). Since u n,k is a weak solution, it satisfies for anyζ ∈ X(Q T R + ) ζxx)u n,k dxdt + T 0 (g(u n,k )ζ) (t, 0)dt = ∞ 0 ζν n,k (x)dx + T 0 ζ(t, 0)µ n,k (t)dt.(61)In order to prove the convergence of g(u n,k (t, 0)), we use Vitali's convergence theorem and the assumption (19). Let F ⊂ [0, T ] be a Borel set.Using the fact that 0 ≤ u n,k ≤ vν n,k ,µ n,k and the estimate of Lemma 3.4, we have for any λ > 0,F |g(u n,k (t, 0))|dt ≤ F ∩{u n,k(t,0)≤λ} |g(u n,k (t, 0))|dt +{u n,k (t,0)>λ} |g(u n,k (t, 0))|dt ≤ g(λ)|F | -∞ λ σd|{t : |g(u n,k (t, 0))| > σ}| ≤ g(λ)|F | + c ∞ λ |g(σ)|σ -3 ds, where c depends of µ M(∂Q T R + ) + ν M(Q T R +
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uν n , μn . Choosing the same subsequence {n k }, the limits u, ũ are in the same order. The conclusion follows by uniqueness.

3.3. The case g(u) = |u| p-1 u Condition (19) is satisfied if p < 2. If this condition holds there exists a solution u ℓδ 0 = u 0,ℓδ 0 and the mapping ℓ → u ℓδ 0 is increasing. Theorem 3.5. (i) If 1 < p ≤ 3 2 , u ℓδ 0 tends to ∞ when k → ∞. (ii) If 3 2 < p < 2, u ℓδ 0 converges to Uω s defined by

when k → ∞.

Proof. By uniqueness and using (3), there holds

for any k, ℓ > 0. Since ℓ → u ℓδ 0 is increasing, its limit u∞, when ℓ → ∞, satisfies

Hence u∞ is a positive self-similar solution of (2), provided it exists.

, u kδ 0 admits no finite limit when k → ∞ which ends the proof.

Remark. As a consequence of this result, no a priori estimate of Brezis-Friedman type (parabolic Keller-Osserman) exists for a nonnegative func-

ux(., 0) + |u| p-1 u(., 0) = 0 for all t > 0 u(0, x) = 0 for all x > 0.

(65)

.

(66)

The type of phenomenon (i) in Theorem 3.5 is characteristic of fractional diffusion. It has already been observed in [6, Theorem 1.3] with equations

when 0 < α < 1 is small and p > 1 is close to 1.
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Extension and open problems

The natural extension is to replace a one dimensional domain by a mutidimenional one. The main open problem is the question of a priori estimate as stated in the last remark above.

Self-similar solutions

Let η = (η1, ..., ηn) be the coordinates in R n and denote R n

and

. Similarly to Section 2 we define LK in C 2 0 (R n ) by

If α = (α1, ..., αn) ∈ N n , we set |α| = α1 + α2 + ... + αn. We denote by φ1 the function K -1 . Then the set of eigenvalues of LK is the set of numbers λ k = n+k 2 : k ∈ N with corresponding set of eigenspaces

The operators L +,N K and L +,D K are defined acoordingly in 

We define the following functional on

If ω is a solution of (73), the function

Here we have set R n + = {x = (x1, ..., xn) = (x ′ , xn) : xn > 0}. We denote by E the subset H 1 K (R n + )∩L p (∂R n + ; dη ′ ) of solutions of (73) and by E+ the subset of positive solutions. As for the case n = 1 we have the following non-existence result

The proof is similar to the one of Theorem 1.1. Hence the existence is to be found in the range 1

tends to infinity.

Problem with measure data

The method for proving Theorem 1.3 can be adapted to prove the following n-dimensional result Theorem 4.2. Let g : R → R be a nondecreasing continuous function such that g(0) = 0 and

then for any bounded Radon measures ν in R n + and µ in (0, T ) × ∂R n + , there exists a unique Borel function u := uν,µ defined in Q

in the sense that

) such that ζx n = 0 on (0, T ) × ∂R n + and ζ(T, .) = 0. Furthermore (ν, µ) → uν,µ) is nondecreasing.