Nonlinear boundary value problems relative to one dimensional heat equation

Laurent Veron

To cite this version:

Laurent Veron. Nonlinear boundary value problems relative to one dimensional heat equation. 2020, 52, pp.1-23. 10.13137/0049-4704/xxxxx . hal-02771254v3

HAL Id: hal-02771254
 https://hal.science/hal-02771254v3

Submitted on 20 Aug 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Nonlinear boundary value problems relative to the one dimensional heat equation

Laurent Véron
To Julian with high esteem and sincere friendship

Keywords: Nonlinear heat flux, Singularities, Radon measures, Marcinkiewicz spaces. MS Classification 2010: 35J65, 35L71.

Abstract

We consider the problem of existence of a solution u to $\partial_{t} u-\partial_{x x} u=0$ in $(0, T) \times \mathbb{R}_{+}$subject to the boundary condition $-u_{x}(t, 0)+g(u(t, 0))=\mu$ on ($0, T$) where μ is a measure on $(0, T)$ and g a continuous nondecreasing function. When $p>1$ we study the set of self-similar solutions of $\partial_{t} u-$ $\partial_{x x} u=0$ in $\mathbb{R}_{+} \times \mathbb{R}_{+}$such that $-u_{x}(t, 0)+u^{p}=0$ on $(0, \infty)$. At end, we present various extensions to a higher dimensional framework.

1. Introduction

Let $g: \mathbb{R} \mapsto \mathbb{R}$ be a continuous nondecreasing function. Set $Q_{\mathbb{R}_{+}}^{T}=$ $(0, T) \times \mathbb{R}_{+}$for $0<T \leq \infty$ and $\partial_{\ell} Q_{\mathbb{R}_{+}}^{T}=\overline{\mathbb{R}_{+}} \times\{0\}$. The aim of this article is to study the following 1-dimensional heat equation with a nonlinear flux on the parabolic boundary

$$
\begin{align*}
u_{t}-u_{x x}=0 & \text { in } Q_{\mathbb{R}_{+}}^{T} \\
-u_{x}(., 0)+g(u(., 0))=\mu & \text { in }[0, T) \\
u(0, .)=\nu & \text { in } \mathbb{R}_{+} \tag{1}
\end{align*}
$$

where ν, μ are Radon measures in \mathbb{R}_{+}and $[0, T)$ respectively. A related problem in $Q_{\mathbb{R}_{+}}^{\infty}$ for which there exist explicit solutions is the following,

$$
\begin{align*}
u_{t}-u_{x x}=0 & \text { in } Q_{\mathbb{R}_{+}}^{\infty} \tag{2}\\
-u_{x}(t, 0)+|u|^{p-1} u(t, 0)=0 & \text { for all } t>0 \\
\lim _{t \rightarrow 0} u(t, x)=0 & \text { for all } x>0
\end{align*}
$$

where $p>1$. Problem (2) is invariant under the transformation T_{k} defined for all $k>0$ by

$$
\begin{equation*}
T_{k}[u](t, x)=k^{\frac{1}{p-1}} u\left(k^{2} t, k x\right) \tag{3}
\end{equation*}
$$

This leads naturaly to look for existence of self-similar solutions under the form

$$
\begin{equation*}
u_{s}(t, x)=t^{-\frac{1}{2(p-1)}} \omega\left(\frac{x}{\sqrt{t}}\right) \tag{4}
\end{equation*}
$$

Putting $\eta=\frac{x}{\sqrt{t}}$, ω satisfies

$$
\begin{align*}
-\omega^{\prime \prime}-\frac{1}{2} \eta \omega^{\prime}-\frac{1}{2(p-1)} \omega=0 \quad \text { in } \mathbb{R}_{+} \\
-\omega^{\prime}(0)+|\omega|^{p-1} \omega(0)=0 \tag{5}\\
\lim _{\eta \rightarrow \infty} \eta^{\frac{1}{p-1}} \omega(\eta)=0
\end{align*}
$$

Self-similar solutions of non-linear diffusion equations such as porousmedia or fast-diffusion equation were discovered long time ago by Kompaneets and Zeldovich and a thourougful study was made by Barenblatt, reducing the study to the one of integrable ordinary differential equations with explicit solutions. Concerning semilinear heat equation Brezis, Terman and Peletier opened the study of self-similar solutions of semilinear heat equations in proving in [5] the existence of a positive strongly singular function satisfying

$$
\begin{equation*}
u_{t}-\Delta u+|u|^{p-1} u=0 \quad \text { in } \quad \mathbb{R}_{+} \times \mathbb{R}^{n} \tag{6}
\end{equation*}
$$

and vanishing at $t=0$ on $\mathbb{R}^{n} \backslash\{0\}$. They called it the very singular solution. Their method of construction is based upon the study of an ordinary differential equation with a phase space analysis. A new and more flexible method based upon variational analysis has been provided by [7]. Other singular solutions of (6) in different configurations such as boundary singularities have been studied in [13]. We set $K(\eta)=e^{\eta^{2} / 4}$ and

$$
\begin{equation*}
L_{K}^{2}\left(\mathbb{R}_{+}\right)=\left\{\phi \in L_{l o c}^{1}\left(\mathbb{R}_{+}\right): \int_{\mathbb{R}_{+}} \phi^{2} K d x:=\|\phi\|_{L_{K}^{2}}^{2}<\infty\right\}, \tag{7}
\end{equation*}
$$

and, for $k \geq 1$,

$$
\begin{equation*}
H_{K}^{k}\left(\mathbb{R}_{+}\right)=\left\{\phi \in L_{K}^{2}\left(\mathbb{R}_{+}\right): \sum_{\alpha=0}^{k}\left\|\phi^{(\alpha)}\right\|_{L_{K}^{2}}^{2}:=\|\phi\|_{H_{K}^{k}}^{2}<\infty\right\} \tag{8}
\end{equation*}
$$

Let us denote by \mathcal{E} the subset of $H_{K}^{1}\left(\mathbb{R}_{+}\right)$of weak solutions of (5) that is the set of functions satisfying

$$
\begin{equation*}
\int_{0}^{\infty}\left(\omega^{\prime} \zeta^{\prime}-\frac{1}{2(p-1)} \omega \zeta\right) K(\eta) d \eta+\left(|\omega|^{p-1} \omega \zeta\right)(0)=0 \tag{9}
\end{equation*}
$$

and by \mathcal{E}_{+}the subset of nonnegative solutions. The next result gives the structure of \mathcal{E}.

Theorem 1.1. 1- If $p \geq 2$, then $\mathcal{E}=\{0\}$.
2- If $1<p \leq \frac{3}{2}$, then $\mathcal{E}_{+}=\{0\}$
3-If $\frac{3}{2}<p<2$ then $\mathcal{E}=\left\{\omega_{s},-\omega_{s}, 0\right\}$ where ω_{s} is the unique positive solution of (5). Furthermore there exists $c>1$ such that

$$
\begin{equation*}
c^{-1} \eta^{\frac{1}{p-1}-1} \leq e^{\frac{\eta^{2}}{4}} \omega_{s}(\eta) \leq c \eta^{\frac{1}{p-1}-1} \text { for all } \eta>0 \tag{10}
\end{equation*}
$$

Whenever it exists the function u_{s} defined in (4) is the limit, when $\ell \rightarrow \infty$ of the positive solutions $u_{\ell \delta_{0}}$ of

$$
\begin{align*}
u_{t}-u_{x x} & =0 & \text { in } Q_{\mathbb{R}_{+}}^{\infty} \\
-u_{x}(t, .)+|u|^{p-1} u(t, .)=\ell \delta_{0} & & \text { in }[0, T) \tag{11}\\
\lim _{t \rightarrow 0} u(t, x)=0 & & \text { for all } x \in \mathbb{R}_{+} .
\end{align*}
$$

When such a function u_{s} does not exits the sequence $\left\{u_{\ell \delta_{0}}\right\}$ tends to infinity. This is a charateristic phenomenon of an underlying fractional diffusion associated to the linear equation

$$
\begin{align*}
u_{t}-u_{x x}=0 & \text { in } Q_{\mathbb{R}_{+}}^{\infty} \\
-u_{x}(., 0)=\mu & \text { in }[0, \infty) \tag{12}\\
u(0, .)=0 & \text { in } \mathbb{R}_{+} .
\end{align*}
$$

More generaly we consider problem (1). We define the set $\mathbb{X}\left(Q_{\mathbb{R}_{+}}^{T}\right)$ of test functions by

$$
\begin{equation*}
\mathbb{X}\left(Q_{\mathbb{R}_{+}}^{T}\right)=\left\{\zeta \in C_{c}^{1,2}([0, T) \times[0, \infty)): \zeta_{x}(t, 0)=0 \text { for } t \in[0, T]\right\} \tag{13}
\end{equation*}
$$

Definition 1.2. Let ν, μ be Radon measures in \mathbb{R}_{+}and $[0, T)$ respectively. A function u defined in $\overline{Q_{\mathbb{R}_{+}}^{T}}$ and belonging to $L_{\text {loc }}^{1}\left(\overline{Q_{\mathbb{R}_{+}}^{T}}\right) \cap L^{1}\left(\partial_{\ell} Q_{\mathbb{R}_{+}}^{T} ; d t\right)$ such that $g(u) \in L^{1}\left(\partial_{\ell} Q_{\mathbb{R}_{+}}^{T} ; d t\right)$ is a weak solution of (1) if for every $\zeta \in \mathbb{X}\left(Q_{\mathbb{R}_{+}}^{T}\right)$ there holds

$$
\begin{align*}
-\int_{0}^{T} \int_{0}^{\infty}\left(\zeta_{t}+\zeta_{x x}\right) u d x d t+\int_{0}^{T} & (g(u) \zeta)(t, 0) d t \\
& =\int_{0}^{\infty} \zeta d \nu(x)+\int_{0}^{T} \zeta(t, 0) d \mu(t) \tag{14}
\end{align*}
$$

We denote by $E(t, x)$ the Gaussian kernel in $\mathbb{R}_{+} \times \mathbb{R}$. The solution of

$$
\begin{align*}
v_{t}-v_{x x}=0 & \text { in } Q_{\mathbb{R}_{+}}^{\infty} \\
-v_{x}=\delta_{0} & \text { in } \mathbb{R}_{+} \\
v(0, .)=0 & \text { in } \mathbb{R}_{+},
\end{align*}
$$

has explicit expression

$$
\begin{equation*}
v(t, x)=2 E(t, x)=\frac{1}{\sqrt{\pi t}} e^{-\frac{x^{2}}{4 t}} \tag{16}
\end{equation*}
$$

If $x, y>0$ and $s<t$ we set $\tilde{E}(t-s, x, y)=E(t-s, x-y)+E(t-s, x+y)$. When $\nu \in \mathfrak{M}^{b}\left(\mathbb{R}_{+}\right)$and $\mu \in \mathfrak{M}^{b}\left(\overline{\mathbb{R}_{+}}\right)$the solution of

$$
\begin{align*}
v_{t}-v_{x x}=0 & \text { in } Q_{\mathbb{R}_{+}}^{\infty} \\
-v_{x}(., 0)=\mu & \text { in } \mathbb{R}_{+} \tag{17}\\
u(0, .)=\nu & \text { in } \mathbb{R}_{+},
\end{align*}
$$

is given by

$$
\begin{align*}
v_{\nu, \mu}(t, x) & =\int_{0}^{\infty} \tilde{E}(t, x, y) d \nu(y)+2 \int_{0}^{t} E(t-s, x) d \mu(s) \tag{18}\\
& =\mathcal{E}_{\mathbb{R}_{+}}[\nu](t, x)+\mathcal{E}_{\mathbb{R}_{+} \times\{0\}}[\mu](t, x)=\mathcal{E}_{Q_{\mathbb{R}_{+}}^{\infty}}[(\nu, \mu)](t, x) .
\end{align*}
$$

We prove the following existence and uniqueness result.
Theorem 1.3. Let $g: \mathbb{R} \mapsto \mathbb{R}$ be a continuous nondecreasing function such that $g(0)=0$. If g satisfies

$$
\begin{equation*}
\int_{1}^{\infty}(g(s)-g(-s)) s^{-3} d s<\infty \tag{19}
\end{equation*}
$$

then for any bounded Borel measures ν in \mathbb{R}_{+}and μ in $[0, T)$, there exists a unique weak solution $u:=u_{\nu, \mu} \in L^{1}\left(Q_{\mathbb{R}_{+}}^{T}\right)$ of (1). Furthermore the mapping $(\nu, \mu) \mapsto u_{\nu, \mu}$ is nondecreasing.

When $g(s)=|s|^{p-1} s$, condition (19) is satisfied if

$$
\begin{equation*}
0<p<2 \tag{20}
\end{equation*}
$$

The above result is still valid under minor modifications if \mathbb{R}_{+}is replaced by a bounded interval $I:=(a, b)$, and problem (1) by

$$
\begin{align*}
u_{t}-u_{x x}=0 & \text { in } Q_{I}^{T} \\
u_{x}(., b)+g(u(., b))=\mu_{1} & \text { in }[0, T) \tag{21}\\
-u_{x}(., a)+g(u(., a))=\mu_{2} & \text { in }[0, T) \\
u(0, .)=\nu & \text { in }(a, b),
\end{align*}
$$

where $\nu, \mu_{j}(j=1,2)$ are Radon measures in I and $(0, T)$ respectively.
In the last section we present the scheme of the natural extensions of this problem to a multidimensional framework

$$
\begin{align*}
u_{t}-\Delta u=0 & \text { in } Q_{\mathbb{R}_{+}^{n}}^{T} \\
-u_{x_{n}}+g(u)=\mu & \text { in } \partial_{\ell} Q_{\mathbb{R}_{+}^{n}}^{T} \tag{22}\\
u(0, .)=\nu & \text { in } \mathbb{R}_{+}^{n},
\end{align*}
$$

The construction of solutions with measure data can be generalized but there are some difficulties in the obtention of self-similar solutions. The equation with a source flux

$$
\begin{align*}
u_{t}-\Delta u=0 & \text { in } Q_{\mathbb{R}_{+}^{n}}^{T} \\
u_{x_{n}}+g(u)=0 & \text { in } \partial_{\ell} Q_{\mathbb{R}_{+}^{n}}^{T} \tag{23}\\
u(0, .)=\nu & \text { in } \mathbb{R}_{+}^{n},
\end{align*}
$$

has been studied by several authors, in particular Fila, Ishige, Kawakami and Sato [8], [10], [11]. Their main concern deals with global existence of solutions.

Aknowledgements. The author is grateful to the reviewer for mentioning reference [9] which pointed out the role of Whittaker's equation which was used for analyzing the blow-up of positive solutions of (23) when $g(u)=u^{p}$ when $n=1$.

2. Self-similar solutions

2.1. The symmetrization

We define the operator \mathcal{L}_{K} in $C_{0}^{2}(\mathbb{R})$ by

$$
\mathcal{L}_{K}(\phi)=-K^{-1}\left(K \phi^{\prime}\right)^{\prime} .
$$

The operator \mathcal{L}_{K} has been thouroughly studied in [7]. In particular

$$
\begin{equation*}
\inf \left\{\int_{-\infty}^{\infty} \phi^{\prime 2} K(\eta) \eta: \int_{-\infty}^{\infty} \phi^{2} K(\eta) d \eta=1\right\}=\frac{1}{2} \tag{24}
\end{equation*}
$$

The above infimum is achieved by $\phi_{1}=(4 \pi)^{-\frac{1}{2}} K^{-1}$ and \mathcal{L}_{K} is an isomorphism from $H_{K}^{1}(\mathbb{R})$ onto its dual $\left(H_{K}^{1}(\mathbb{R})\right)^{\prime} \sim H_{K}^{-1}(\mathbb{R})$. Finally \mathcal{L}_{K}^{-1} is compact from $L_{K}^{2}(\mathbb{R})$ into $H_{K}^{1}(\mathbb{R})$, which implies that \mathcal{L}_{K} is a Fredholm self-adjoint operator with

$$
\sigma\left(\mathcal{L}_{K}\right)=\left\{\lambda_{j}=\frac{1+j-1}{2}: j=1,2, \ldots\right\},
$$

and

$$
\operatorname{ker}\left(\mathcal{L}_{K}-\lambda_{j} I_{d}\right)=\operatorname{span}\left\{\phi_{1}^{(j)}\right\}
$$

If ϕ is defined in $\mathbb{R}_{+}, \tilde{\phi}(x)=\phi(-x)$ is the symmetric with respect to 0 while $\phi^{*}(x)=-\phi(-x)$ is the antisymmetric with respect to 0 . The operator \mathcal{L}_{K} restricted to \mathbb{R}_{+}is denoted by \mathcal{L}_{K}^{+}. The operator $\mathcal{L}_{K}^{+, N}$ with Neumann condition at $x=0$ is again a Fredholm operator. This is also valid for the operator $\mathcal{L}_{K}^{+, D}$ with Dirichlet condition at $x=0$. Hence, if ϕ is an eigenfunction of $\mathcal{L}_{K}^{+, N}$, then $\tilde{\phi}$ is an eigenfunction of \mathcal{L}_{K} in $L_{K}^{2}(\mathbb{R})$. Similarly, if ϕ is an eigenfunction of $\mathcal{L}_{K}^{+, D}$, then ϕ^{*} is an eigenfunction of \mathcal{L}_{K} in $L_{K}^{2}(\mathbb{R})$. Conversely, any even (resp. odd) eigenfunction of \mathcal{L}_{K} in
$L_{K}^{2}(\mathbb{R})$ satisfies Neumann (resp. Dirichlet) boundary condition at $x=0$. Hence its restiction to $L_{K}^{2}\left(\mathbb{R}_{+}\right)$is an eigenfunction of $\mathcal{L}_{K}^{+, N}\left(\right.$ resp. $\left.\mathcal{L}_{K}^{+, D}\right)$. Since $\phi_{1}^{(j)}$ is even (resp. odd) if and only if j is even (resp. odd), we derive

$$
\begin{equation*}
H_{K}^{1,0}\left(\mathbb{R}_{+}\right)=\bigoplus_{\ell=1}^{\infty} \operatorname{span}\left\{\phi_{1}^{(2 \ell+1)}\right\} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{K}^{1}\left(\mathbb{R}_{+}\right)=\bigoplus_{\ell=0}^{\infty} \operatorname{span}\left\{\phi_{1}^{(2 \ell)}\right\} \tag{26}
\end{equation*}
$$

Note that $\phi \in H_{K}^{1}\left(\mathbb{R}_{+}\right)$such that $\phi_{x}(0)=0$ (resp. $\phi(0)=0$) implies $\tilde{\phi} \in H_{K}^{1}(\mathbb{R})$ (resp. $\phi^{*} \in H_{K}^{1}(\mathbb{R})$). Furthermore, ϕ_{1} is an eigenfunction of \mathcal{L}_{K}^{+}in $H_{K}^{1}\left(\mathbb{R}_{+}^{n}\right)$ with Neumann boundary condition on $\partial \mathbb{R}_{+}^{n}$ while $\partial_{x_{n}} \phi_{1}$ is an eigenfunction of \mathcal{L}_{K}^{+}in $H_{K}^{1}\left(\mathbb{R}_{+}^{n}\right)$ with Dirichlet boundary condition on $\partial \mathbb{R}_{+}^{n}$. We list below two important properties of $H_{K}^{1}\left(\mathbb{R}_{+}\right)$valid for any $\beta>0$. Actually they are proved in [7, Prop. 1.12] with $H_{K^{\beta}}^{1}(\mathbb{R})$ but the proof is valid with $H_{K^{\beta}}^{1}\left(\mathbb{R}_{+}\right)$.
(i) $\quad \phi \in H_{K^{\beta}}^{1}\left(\mathbb{R}_{+}\right) \Longrightarrow K^{\frac{\beta}{2}} \phi \in C^{0, \frac{1}{2}}\left(\mathbb{R}_{+}\right)$
(ii) $\quad H_{K^{\beta}}^{1}\left(\mathbb{R}_{+}\right) \hookrightarrow L_{K^{\beta}}^{2}\left(\mathbb{R}_{+}\right) \quad$ is compact for all $n \geq 1$.

2.2. Proof of Theorem 1.1-(i)-(ii)

Assume $p \geq 2$, then $\frac{1}{2(p-1)} \leq \frac{1}{2}$. If ω is a weak solution, then

$$
\int_{0}^{\infty}\left(\omega^{\prime 2}-\frac{1}{2(p-1)} \omega^{2}\right) K d \eta+|\omega|^{p+1}(0)=0
$$

If $\frac{1}{2}>\frac{1}{2(p-1)}$ we deduce that $\omega=0$. Furthermore, when $\frac{1}{2}=\frac{1}{2(p-1)}$ then

$$
|\omega|^{p+1}(0)=0 .
$$

If ω is nonzero, it is an eigenfunction of $\mathcal{L}_{K}^{+, D}$. Since the first eigenvalue is 1 it would imply $1=\frac{1}{2(p-1)} \leq \frac{1}{2}$, contradiction.
Assume $1<p \leq \frac{3}{2}$ and ω is a nonnegative weak solution. We take $\zeta(\eta)=\eta e^{-\frac{\eta^{2}}{4}}=-2 \phi_{1}^{\prime}(\eta)$, then

$$
\int_{0}^{\infty}\left(-\zeta^{\prime \prime}-\frac{1}{2(p-1)} \zeta\right) \omega K(\eta) d \eta+\zeta^{\prime}(0) \omega^{p}(0)=0
$$

Since $-\zeta^{\prime \prime}=\zeta\left\lfloor_{\mathbb{R}_{+}}>0\right.$ and $\zeta^{\prime}(0)=\phi_{1}(0)=1$, we derive $\omega \zeta=0$ if $1>\frac{1}{2(p-1)}$ and $\omega(0)=0$ if $1=\frac{1}{2(p-1)}$. Hence $\omega^{\prime}(0)=0$ by the equation and $\omega \stackrel{2(p-1)}{\equiv} 0$ by the Cauchy-Lipschitz theorem.

2.3. Proof of Theorem 1.1-(iii)

We define the following functional on $H_{K}^{1}\left(\mathbb{R}_{+}^{n}\right)$

$$
\begin{equation*}
J(\phi)=\frac{1}{2} \int_{0}^{\infty}\left(\phi^{\prime 2}-\frac{1}{2(p-1)} \phi^{2}\right) K d \eta+\frac{1}{p+1}|\phi(0)|^{p+1} \tag{28}
\end{equation*}
$$

Lemma 2.1. The functional J is lower semicontinuous in $H_{K}^{1}\left(\mathbb{R}_{+}\right)$. It tends to infinity at infinity and achieves negative values.

Proof. We write

$$
J(\psi)=J_{1}(\psi)-J_{2}(\psi)=J_{1}(\psi)-\frac{1}{2(p-1)}\|\psi\|_{L_{K}^{2}}^{2}
$$

Clearly J_{1} is convex and J_{2} is continuous in the weak topology of $H_{K}^{1}\left(\mathbb{R}_{+}\right)$ since the imbedding of $H_{K}^{1}\left(\mathbb{R}_{+}\right)$into $L_{K}^{2}\left(\mathbb{R}_{+}\right)$is compact. Hence J is weakly semicontinuous in $H_{K}^{1}\left(\mathbb{R}_{+}\right)$.
Let $\epsilon>0$, then

$$
J\left(\epsilon \phi_{1}\right)=\left(\frac{1}{4}-\frac{1}{4(p-1)}\right) \frac{\epsilon^{2} \sqrt{\pi}}{2}+\frac{\epsilon^{p+1}}{p+1} .
$$

Since $1<p<2, \frac{1}{4}-\frac{1}{4(p-1)}<0$. Hence $J\left(\epsilon \phi_{1}\right)<0$ for ϵ small enough, thus J achieves negative values on $H_{K}^{1}\left(\mathbb{R}_{+}\right)$.
If $\psi \in H_{K}^{1}\left(\mathbb{R}_{+}\right)$it can be written in a unique way under the form $\psi=$ $a \phi_{1}+\psi_{1}$ where $a=2 \sqrt{\pi} \psi(0)$ and $\psi_{1} \in H_{K}^{1,0}\left(\mathbb{R}_{+}\right)$. Hence, for any $\epsilon>0$,

$$
\begin{aligned}
J(\psi)= & \frac{1}{2} \int_{0}^{\infty}\left(\psi_{1}^{\prime 2}-\frac{1}{2(p-1)} \psi_{1}^{2}\right) K d \eta+\frac{a^{2}}{2} \int_{0}^{\infty}\left(\phi_{1}^{\prime 2}-\frac{1}{2(p-1)} \phi_{1}^{2}\right) K d \eta \\
& +a \int_{0}^{\infty}\left(\psi_{1}^{\prime} \phi_{1}^{\prime}-\frac{1}{2(p-1)} \psi_{1} \phi_{1}\right) K d \eta+\frac{1}{p+1}|a|^{p+1} \\
\geq & \frac{2 p-3}{4(p-1)} \int_{0}^{\infty} \psi_{1}^{\prime 2} K d \eta-\frac{a \epsilon}{2} \int_{0}^{\infty}\left(\psi_{1}^{\prime 2}+\frac{1}{2(p-1)} \psi_{1}^{2}\right) K d \eta \\
& +\frac{a^{2}(p-2) \sqrt{\pi}}{4(p-1)}-\frac{a p \sqrt{\pi}}{4(p-1) \epsilon}+\frac{1}{p+1}|a|^{p+1} .
\end{aligned}
$$

Note that $\|\psi\|_{H_{K}^{1}}^{2} \leq 4\left(\left\|\psi_{1}^{\prime}\right\|_{L_{K}^{2}}^{2}+a^{2}\right)$. Since $2 p-3>0$, we can take $\epsilon>0$ small enough in order that

$$
\begin{equation*}
\lim _{\|\psi\|_{H_{K}^{1}} \rightarrow \infty} J(\psi)=\infty . \tag{29}
\end{equation*}
$$

End of the proof of Theorem 1.1-(iii). By Lemma 2.1 the functional J achieves its minimum in $H_{K}^{1}\left(\mathbb{R}_{+}\right)$at some $\omega_{s} \neq 0$, and ω_{s} can be assumed to be nonnegative since J is even. By the strong maximum principle
$\omega_{s}>0$, and by the method used in the proof of [15, Proposition 1] is is easy to prove that positive solutions belong to $H_{K}^{2}\left(\mathbb{R}_{+}\right)$. Assume that $\tilde{\omega}$ is another positive solution, then

$$
\int_{0}^{\infty}\left(\frac{\left(K \omega_{s}^{\prime}\right)^{\prime}}{\omega_{s}}-\frac{\left(K \tilde{\omega}_{s}^{\prime}\right)^{\prime}}{\tilde{\omega}_{s}}\right)\left(\omega_{s}^{2}-\tilde{\omega}_{s}^{2}\right) d \eta=0
$$

Integration by parts, easily justified by regularity, yields

$$
\begin{aligned}
\int_{0}^{\infty}\left(\frac{\left(K \omega_{s}^{\prime}\right)^{\prime}}{\omega_{s}}-\right. & \left.\left(K \tilde{\omega}_{s}^{\prime}\right)^{\prime}\right)\left(\omega_{s}^{2}-\tilde{\omega}_{s}^{2}\right) d \eta \\
= & {\left[K \omega_{s}^{\prime}\left(\omega_{s}-\frac{\tilde{\omega}_{s}^{2}}{\omega_{s}}\right)-K \tilde{\omega}_{s}^{\prime}\left(\frac{\omega_{s}^{2}}{\tilde{\omega}_{s}}-\tilde{\omega}_{s}\right)\right]_{0}^{\infty} } \\
& -\int_{0}^{\infty}\left(\omega_{s}-\frac{\tilde{\omega}_{s}^{2}}{\omega_{s}}\right)^{\prime} K \omega_{s}^{\prime} d \eta+\int_{0}^{\infty}\left(\frac{\omega_{s}^{2}}{\tilde{\omega}_{s}}-\tilde{\omega}_{s}\right)^{\prime} K \omega_{s}^{\prime} d \eta \\
=- & \left(\omega_{s}^{p-1}-\tilde{\omega}_{s}^{p-1}\right)\left(\omega_{s}^{2}-\tilde{\omega}_{s}^{2}\right)(0) \\
& -\int_{0}^{\infty}\left(\left(\frac{\omega_{s}^{\prime} \tilde{\omega}_{s}-\omega_{s} \tilde{\omega}_{s}^{\prime}}{\tilde{\omega}_{s}}\right)^{2}+\left(\frac{\omega_{s} \tilde{\omega}_{s}^{\prime}-\tilde{\omega}_{s} \omega_{s}^{\prime}}{\omega_{s}}\right)^{2}\right) d \eta
\end{aligned}
$$

This implies that $\omega_{s}=\tilde{\omega}_{s}$. The proof of (10) is similar as the proof of estimate (2.5) in [13, Theorem 4.1].

2.4. The explicit approach

This part is an adaptation to our problem of what has been done in [9] concerning the blow-up problem in equation (23). Let ω be a solution of

$$
\begin{equation*}
\omega^{\prime \prime}+\frac{1}{2} \eta \omega^{\prime}+\frac{1}{2(p-1)} \omega=0 \quad \text { in } \mathbb{R}_{+} \tag{30}
\end{equation*}
$$

We set

$$
r=\frac{\eta^{2}}{4} \text { and } \omega(\eta)=r^{-\frac{1}{4}} e^{-\frac{r}{2}} Z(r)
$$

Then Z satisfies the Whittaker equation (with the standard notations)

$$
\begin{equation*}
Z_{r r}+\left(-\frac{1}{4}+\frac{k}{r}+\frac{1-4 \mu^{2}}{4 r^{2}}\right) Z=0 \tag{31}
\end{equation*}
$$

where $k=\frac{1}{2(p-1)}-\frac{1}{4}$ and $\mu=\frac{1}{4}$. Notice that the only difference with the expression in [9, Lemma 3.1] is the value of the coefficient k. This equation admits two linearly independent solutions

$$
Z_{1}(r)=e^{-\frac{r}{2}} r^{\frac{1}{2}+\mu} U\left(\frac{1}{2}+\mu-k, 1+2 \mu, r\right)
$$

and

$$
Z_{2}(r)=e^{-\frac{r}{2}} r^{\frac{1}{2}+\mu} M\left(\frac{1}{2}+\mu-k, 1+2 \mu, r\right) .
$$

The functions U and M are the Whittaker functions which play an important role not only in analysis but also in group theory. The have the following asymptotic expansion as $r \rightarrow \infty$ (see e.g. [1]),
$U\left(\frac{1}{2}+\mu-k, 1+2 \mu, r\right)=r^{k-\mu-\frac{1}{2}}\left(1+O\left(r^{-1}\right)=r^{\frac{1}{2(p-1)}-1}\left(1+O\left(r^{-1}\right)\right.\right.$,
and

$$
\begin{aligned}
M\left(\frac{1}{2}+\mu-k, 1+2 \mu, r\right) & =\frac{\Gamma(1+2 \mu)}{\Gamma\left(\frac{1}{2}+\mu-k\right)} e^{r} r^{-\left(\mu+\frac{1}{2}+k\right)}\left(1+O\left(r^{-1}\right)\right. \\
& =\frac{\Gamma\left(\frac{3}{2}\right)}{\Gamma\left(1-\frac{1}{2(p-1)}\right)} e^{r} r^{-\frac{p}{2(p-1)}}\left(1+O\left(r^{-1}\right) .\right.
\end{aligned}
$$

Then

$$
Z_{1}(r)=r^{\frac{1}{2(p-1)}-\frac{1}{4}} e^{-\frac{r}{2}}\left(1+O\left(r^{-1}\right)\right.
$$

and

$$
Z_{2}(r)=\frac{\Gamma\left(\frac{3}{2}\right)}{\Gamma\left(1-\frac{1}{2(p-1)}\right)} r^{\frac{1}{4}-\frac{1}{2(p-1)}-} e^{\frac{r}{2}}\left(1+O\left(r^{-1}\right) .\right.
$$

To this corresponds the two linearly independent solutions ω_{1} and ω_{2} of (30) with the following behaviour as $\eta \rightarrow \infty$,
(i) $\quad \omega_{1}(\eta)=c_{1} \eta^{\frac{1}{p-1}-1} e^{-\frac{\eta^{2}}{4}}\left(1+O\left(\eta^{-2}\right)\right.$,
(ii) $\quad \omega_{2}(\eta)=c_{2} \eta^{-\frac{1}{p-1}}\left(1+O\left(\eta^{-2}\right)\right.$.

Clearly only ω_{1} satisfies the decay estimate $\omega(\eta)=o\left(\eta^{-\frac{1}{p-1}}\right)$ as $\eta \rightarrow \infty$. Hence the solution ω is a multiple of ω_{1} and the multiplicative constant c is adjusted in order to fit the condition $\omega^{\prime}(0)=\omega^{p}(0)$.

3. Problem with measure data

3.1. The regular problem

Set $G(r)=\int_{0}^{r} g(s) d s$. We consider the functional J in $L^{2}\left(\mathbb{R}_{+}\right)$with domain $D(J)=H^{1}\left(\mathbb{R}_{+}\right)$defined by

$$
J(u)=\frac{1}{2} \int_{0}^{\infty} u_{x}^{2} d x+G(v(0)) .
$$

It is convex and lower semicontinuous in $L^{2}\left(\mathbb{R}_{+}\right)$and its subdifferential ∂J sastisfies

$$
\int_{0}^{\infty} \partial J(u) \zeta d x=\int_{0}^{\infty} u_{x} \zeta_{x} d x+g(u(0)) \zeta(0)
$$

for all $\zeta \in H^{1}\left(\mathbb{R}_{+}\right)$. Therefore

$$
\int_{0}^{\infty} \partial J(u) \zeta d x=-\int_{0}^{\infty} u_{x x} \zeta d x+\left(g(u(0))-u_{x}(0)\right) \zeta(0) .
$$

Hence

$$
\begin{equation*}
\partial J(u)=-u_{x x} \text { for all } u \in D(\partial J)=\left\{v \in H^{1}\left(\mathbb{R}_{+}\right): v_{x}(0)=g(v(0))\right\} . \tag{33}
\end{equation*}
$$

The operator ∂J is maximal monotone, hence it generates a semi-group of contractions. Furthermore, for any $u_{0} \in L^{2}\left(\mathbb{R}_{+}\right)$and $F \in L^{2}\left(0, T ; L^{2}\left(L^{2}\left(\mathbb{R}_{+}\right)\right)\right.$ there exists a unique strong solution to

$$
\begin{align*}
U_{t}+\partial J(U) & =F \quad \text { a.e. on }(0, T) \tag{34}\\
U(0) & =u_{0} .
\end{align*}
$$

Proposition 3.1. Let $\mu \in H^{1}(0, T)$ and $\nu \in L^{2}\left(\mathbb{R}_{+}\right)$. Then there exists a unique function $u \in C\left([0, T] ; L^{2}\left(\mathbb{R}_{+}\right)\right.$such that $\sqrt{t} u_{x x} \in L^{2}\left((0, T) \times \mathbb{R}_{+}\right)$ which satisfies (35). The mapping $(\mu, \nu) \mapsto u:=u_{\mu, \nu}$ is non-decreasing and u is a weak solution in the sense that it satisfies (14).

Proof. Let $\eta \in C_{0}^{2}([0, \infty))$ such that $\eta(0)=0, \eta^{\prime}(0)=1$. If $f \in$ $H^{1}(0, T), \nu \in L^{2}\left(\mathbb{R}_{+}\right)$, and u is a solution of

$$
\begin{array}{cl}
u_{t}-u_{x x}=0 & \text { in } Q_{\mathbb{R}_{+}}^{T} \\
-u_{x}(., 0)+g(u(., 0))=\mu(t) & \text { in }[0, T) \tag{35}\\
u(0, .)=\nu & \text { in } \mathbb{R}_{+},
\end{array}
$$

where $\nu \in L^{2}\left(\mathbb{R}_{+}\right)$, then the function $v(t, x)=u(t, x)-\mu(t) \eta(x)$ satisfies

$$
\begin{array}{cl}
v_{t}-v_{x x}=F & \text { in } Q_{\mathbb{R}_{+}}^{T} \\
-v_{x}(., 0)+g(v(., 0))=0 & \text { in }[0, T) \tag{36}\\
v(0, .)=\nu-\mu(0) \eta & \text { in } \mathbb{R}_{+},
\end{array}
$$

with $F(t, x)=-\left(\mu^{\prime}(t) \eta(x)+\mu(t) \eta^{\prime \prime}(x)\right)$. The proof of the existence follows by using [3, Theorem 3.6].
Next, let $(\tilde{\mu}, \tilde{\nu}) \in H^{1}(0, T) \times L^{2}\left(\mathbb{R}_{+}\right)$such that $\tilde{\mu} \leq \mu$ and $\tilde{\nu} \leq \nu$ and let $\tilde{u}=u_{\tilde{\mu}, \tilde{\nu}}$, then

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t} \int_{0}^{\infty}(\tilde{u}-u)_{+}^{2} d x+\int_{0}^{\infty} & \left(\partial_{x}(\tilde{u}-u)_{+}\right)^{2} d x-(\tilde{\mu}(t)-\mu(t))(\tilde{u}(t, 0)-u(t, 0))_{+} \\
+ & (g(\tilde{u}(t, 0))-g(u(t, 0))))(\tilde{u}(t, 0)-u(t, 0))=0 .
\end{aligned}
$$

Then

$$
\int_{0}^{\infty}(\tilde{u}-u)_{+}^{2} d x\left\lfloor_{t=0} \Longrightarrow \int_{0}^{\infty}(\tilde{u}-u)_{+}^{2} d x=0 \quad \text { on }[0, T] .\right.
$$

We can also use (18) to express the solution of (35):

$$
u(t, x)=\int_{0}^{\infty} \tilde{E}(t, x, y) \nu(y) d y+2 \int_{0}^{t} E(t-s, x)(\mu(s)-g(u(s, 0))) d s
$$

In particular, if $g(0)=0$, then

$$
|u(t, x)| \leq \int_{0}^{\infty} \tilde{E}(t, x, y)|\nu(y)| d y+2 \int_{0}^{t} E(t-s, x)|\mu(s)| d s
$$

The proof of (14) follows since u is a strong solution.
Next, we prove that the problem is well-posed if $\mu \in L^{1}(0, T)$.
Proposition 3.2. Assume $\left\{\nu_{n}\right\} \subset C_{c}\left(\mathbb{R}_{+}\right)$and $\left\{\mu_{n}\right\} \subset C^{1}([0, T])$ are Cauchy sequences in $L^{1}\left(\mathbb{R}_{+}\right)$and $L^{1}(0, T)$ respectively. Then the sequence $\left\{u_{n}\right\}$ of solutions of

$$
\begin{align*}
u_{n t}-u_{n x x} & =0 & & \text { in } Q_{\mathbb{R}_{+}}^{T} \\
-u_{n x}(., 0)+g\left(u_{n}(., 0)\right) & =\mu_{n}(t) & & \text { in }[0, T) \\
u_{n}(0, .) & =\nu_{n} & & \text { in } \mathbb{R}_{+}, \tag{37}
\end{align*}
$$

converges in $C\left([0, T] ; L^{1}\left(\mathbb{R}_{+}\right)\right.$to a function u which satisfies (14).
Proof. For $\epsilon>0$ let p_{ϵ} be an odd C^{1} function defined on \mathbb{R} such that $p_{\epsilon}^{\prime} \geq 0$ and $p_{\epsilon}(r)=1$ on $[\epsilon, \infty)$, and put $j_{\epsilon}(r)=\int_{0}^{r} p_{\epsilon}(s) d s$. Then

$$
\begin{aligned}
& \frac{d}{d t} \int_{0}^{\infty} j_{\epsilon}\left(u_{n}-u_{m}\right) d x+\int_{0}^{\infty}\left(u_{n x}-u_{m x}\right)^{2} p_{\epsilon}^{\prime}\left(u_{n}-u_{m}\right) d x \\
& +\left(g\left(u_{n}(t, 0)\right)-g\left(u_{m}(t, 0)\right)\right) p_{\epsilon}\left(u_{n}(t, 0)-u_{m}(t, 0)\right) \\
& \quad=\left(\mu_{n}(t)-\mu_{m}(t)\right) p_{\epsilon}\left(u_{n}(t, 0)-u_{m}(t, 0)\right) .
\end{aligned}
$$

Hence

$$
\begin{array}{r}
\int_{0}^{\infty} j_{\epsilon}\left(u_{n}-u_{m}\right)(t, x) d x+\left(g\left(u_{n}(t, 0)\right)-g\left(u_{m}(t, 0)\right)\right) p_{\epsilon}\left(u_{n}(t, 0)-u_{m}(t, 0)\right) \\
\leq \int_{0}^{\infty} j_{\epsilon}\left(\nu_{n}-\nu_{m}\right) d x+\left(\mu_{n}(t)-\mu_{m}(t)\right) p_{\epsilon}\left(u_{n}(t, 0)-u_{m}(t, 0)\right) .
\end{array}
$$

Letting $\epsilon \rightarrow 0$ implies $p_{\epsilon} \rightarrow s g n_{0}$, hence for any $t \in[0, T]$,

$$
\begin{align*}
\int_{0}^{\infty}\left|u_{n}-u_{m}\right|(t, x) d x+\mid & g\left(u_{n}(t, 0)\right)-g\left(u_{m}(t, 0) \mid\right. \\
& \leq \int_{0}^{\infty}\left|\nu_{n}-\nu_{m}\right| d x+\left|\mu_{n}(t)-\mu_{m}(t)\right| \tag{38}
\end{align*}
$$

Therefore $\left\{u_{n}\right\}$ and $\left\{g\left(u_{n}(., 0)\right\}\right.$ are Cauchy sequences in $C\left([0, T] ; L^{1}\left(\mathbb{R}_{+}\right)\right)$ and $C([0, T])$ respectively with limit u and $g(u)$ and $u=u_{\nu, \mu}$ satisfies (14). If we assume that $(\nu, \tilde{\nu})$ and $(\mu, \tilde{\mu})$ are couples of elements of $L^{1}\left(\mathbb{R}_{+}\right)$ and $L^{1}(0, T)$ respectively and if $u=u_{\nu, \mu}$ and $\tilde{u}=u_{\tilde{\nu}, \tilde{\mu}}$, there holds by the above technique,

$$
\begin{align*}
& \int_{0}^{\infty}|u-\tilde{u}|(t, x) d x+\mid g(u(t, 0))-g(\tilde{u}(t, 0) \mid \tag{39}\\
& \quad \leq \int_{0}^{\infty}|\tilde{\nu}-\tilde{\nu}| d x+|\tilde{\mu}(t)-\tilde{\mu}(t)| \quad \text { for all } t \in[0, T]
\end{align*}
$$

The following lemma is a parabolic version of an inequality due to Brezis.

Lemma 3.3. Let $\nu \in L^{1}\left(\mathbb{R}_{+}\right)$and $\mu \in L^{1}(0, T)$ and v be a function defined in $[0, T) \times \mathbb{R}_{+}$, belonging to $L^{1}\left(Q_{\mathbb{R}_{+}}^{T}\right) \cap L^{1}\left(\partial_{\ell} Q_{\mathbb{R}_{+}}^{T}\right)$ and satisfying

$$
\begin{equation*}
-\int_{0}^{T} \int_{0}^{\infty}\left(\zeta_{t}+\zeta_{x x}\right) v d x d t=\int_{0}^{T} \zeta(., 0) \mu d t+\int_{0}^{\infty} \nu \zeta d x \tag{40}
\end{equation*}
$$

Then for any $\zeta \in \mathbb{X}\left(Q_{\mathbb{R}_{+}}^{T}\right), \zeta \geq 0$, there holds

$$
\begin{equation*}
-\int_{0}^{T} \int_{0}^{\infty}\left(\zeta_{t}+\zeta_{x x}\right)|v| d x d t \leq \int_{0}^{\infty} \zeta(., 0) \operatorname{sign}(v) \mu d t+\int_{0}^{\infty}|\nu| \zeta d x \tag{41}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
-\int_{0}^{T} \int_{0}^{\infty}\left(\zeta_{t}+\zeta_{x x}\right) v_{+} d x d t \leq \int_{0}^{\infty} \zeta(., 0) \operatorname{sign}_{+}(v) \mu d t+\int_{0}^{\infty} \nu_{+} \zeta d x \tag{42}
\end{equation*}
$$

Proof. Let p_{ϵ} be the approximation of sign_{0} used in Proposition 3.2 and η_{ϵ} be the solution of

$$
\begin{array}{cl}
-\eta_{\epsilon t}-\eta_{\epsilon x x}=p_{\epsilon}(v) & \text { in } Q_{\mathbb{R}_{+}}^{T} \\
\eta_{\epsilon x}(., 0)=0 & \text { in }[0, T] \\
\eta_{\epsilon}(0, .)=0 & \text { in } \mathbb{R}_{+}
\end{array}
$$

Then $\left|\eta_{\epsilon}\right| \leq \eta^{*}$ where η^{*} satisfies

$$
\begin{aligned}
-\eta_{t}^{*}-\eta_{x x}^{*}=1 & \text { in } Q_{\mathbb{R}_{+}}^{T} \\
\eta_{x}^{*}(., 0)=0 & \text { in }[0, T] \\
\eta^{*}(0, .)=0 & \text { in } \mathbb{R}_{+}
\end{aligned}
$$

Although η_{ϵ} does not belong to $\mathbb{X}\left(Q_{\mathbb{R}_{+}}^{T}\right)$ (it is not in $C^{1,2}\left([0, T) \times \mathbb{R}_{+}\right)$, it is an admissible test function and we deduce that there exists a unique solution to (40). Thus v is given by expression (18).

In order to prove (41), we can assume that μ and ν are smooth, $\zeta \in \mathbb{X}\left(Q_{\mathbb{R}_{+}}^{T}\right), \zeta \geq 0$ and set $h_{\epsilon}=p_{\epsilon}(v) \zeta$ and $w_{\epsilon}=v p_{\epsilon}(v)$, then

$$
\begin{align*}
& \int_{0}^{\infty} h_{\epsilon x x} v d x=\int_{0}^{\infty}\left(2 p_{\epsilon}^{\prime}(v) v_{x} \zeta_{x}+p_{\epsilon}(v) \zeta_{x x}+\zeta\left(p_{\epsilon}(v)\right)_{x x}\right) v d x \\
& \begin{aligned}
= & \int_{0}^{\infty}\left(2 v p_{\epsilon}^{\prime}(v) v_{x} \zeta_{x}-w_{\epsilon x} \zeta_{x}-(v \zeta)_{x}\left(p_{\epsilon}(v)\right)_{x}\right) d x \\
& \quad-\zeta(t, 0) v(t, 0) p_{\epsilon}^{\prime}(v(t, 0)) v_{x}(t, 0) \\
= & -\int_{0}^{\infty}\left(\zeta_{x}\left(j_{\epsilon}(v)\right)_{x}+\zeta p^{\prime}(v)_{\epsilon} v_{x}^{2}\right) d x-\zeta(t, 0) v(t, 0) p_{\epsilon}^{\prime}(v(t, 0)) v_{x}(t, 0) \\
& =-\int_{0}^{\infty}\left(\zeta p^{\prime}(v)_{\epsilon} v_{x}^{2}-j_{\epsilon}(v) \zeta_{x x}\right) d x-\zeta(t, 0) v(t, 0) p_{\epsilon}^{\prime}(v(t, 0)) v_{x}(t, 0)
\end{aligned}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{0}^{T} h_{\epsilon t} v d t=\int_{0}^{T}\left(p_{\epsilon}(v) \zeta_{t}+p_{\epsilon}^{\prime}(v) \zeta v_{t}\right) v d t \tag{44}
\end{equation*}
$$

Since v is smooth

$$
\begin{aligned}
0 & =\int_{0}^{T} \int_{0}^{\infty}\left(v_{t}-v_{x x}\right) h_{\epsilon} d x d t \\
= & -\int_{0}^{T} \int_{0}^{\infty}\left(h_{\epsilon t}+h_{\epsilon x x}\right) v d x d t-\int_{0}^{\infty} h_{\epsilon}(0, x) \nu(x) d x \\
& \quad-\int_{0}^{T}\left[p_{\epsilon}(v(t, 0))-v(t, 0) p_{\epsilon}^{\prime}(v(t, 0))\right] \zeta(t, 0) \mu(t) d t
\end{aligned}
$$

Therefore, using (41) and (42),

$$
\begin{align*}
-\int_{0}^{T} \int_{0}^{\infty}\left(j_{\epsilon} v\right) \zeta_{x x}+ & \left.v p_{\epsilon}(v) \zeta_{t}\right) d x d t \\
& +\int_{0}^{T} \int_{0}^{\infty}\left(\zeta p_{\epsilon}^{\prime}(v) v_{x}^{2}-v p_{\epsilon}^{\prime}(v) v_{t} \zeta\right) d x d t \tag{45}\\
& =\int_{0}^{\infty} h_{\epsilon}(0, x) \nu(x) d x+\int_{0}^{T} h_{\epsilon}(t, 0) \mu(t) d t
\end{align*}
$$

Put $\ell_{\epsilon}(s)=\int_{0}^{s} r p_{\epsilon}^{\prime}(r) d r$, then $\left|\ell_{\epsilon}(s) \leq c \epsilon^{-1} s^{2} \chi_{[-\epsilon, \epsilon]}(s)\right|$. Since

$$
\int_{0}^{T} \int_{0}^{\infty} \zeta v p_{\epsilon}^{\prime}(v) v_{t} d x d t=-\int_{0}^{\infty} \ell_{\epsilon}(v(0, x)) \zeta(x) d x-\int_{0}^{T} \int_{0}^{\infty} \zeta_{t} \ell_{\epsilon}(v) d x d t
$$

and ζ has compact support, it follows that

$$
\lim _{\epsilon \rightarrow 0} \int_{0}^{T} \int_{0}^{\infty} \zeta v p_{\epsilon}^{\prime}(v) v_{t} d x d t=0
$$

Letting $\epsilon \rightarrow 0$ in (45), we derive (41) for smooth v. Using Proposition 3.2 completes the proof of (41). The proof of (42) is similar.

Remark. Inequalities (41) and (42) hold if $\zeta(t, x)$ does not vanish if $|x| \geq$ R for some R but if it satisfies

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sup _{t \in[0, T]}\left(\zeta(t, x)+\left|\zeta_{x}(t, x)\right|\right)=0 \tag{46}
\end{equation*}
$$

The proof follows by replacing $\zeta(t, x)$ by $\zeta(t, x) \eta_{n}(x)$ where $\eta_{n} \in C_{c}^{\infty}\left(\mathbb{R}_{+}\right)$ with $0 \leq \eta_{n} \leq 1, \eta_{n}(x)=1$ on $[0, n], \eta_{n}(x)=0$ on $[n+1, \infty),\left|\eta_{n}^{\prime}\right| \leq 2$, $\left|\eta_{n}^{\prime \prime}\right| \leq 4$. Then $\eta_{n} \zeta \in \mathbb{X}\left(Q_{\mathbb{R}_{+}}^{T}\right)$ by letting $n \rightarrow \infty$ and the proof follows by letting $n \rightarrow \infty$.

3.2. Proof of Theorem 1.3

We give first some heat-ball estimates relative to our problem. For $r>0$, $x \in \mathbb{R}_{+}$and $t \in \mathbb{R}$ we set

$$
\begin{equation*}
e(t, x ; r)=\left\{(s, y) \in(0, T) \times \mathbb{R}_{+}: s \leq t, \tilde{E}(t-s, x, y) \geq r\right\} \tag{47}
\end{equation*}
$$

Since

$$
e(t, x ; r) \subset\left[t-\frac{1}{4 \pi e r^{2}}, t\right] \times\left[x-\frac{1}{r \sqrt{\pi e}}, x+\frac{1}{r \sqrt{\pi e}}\right]
$$

there holds

$$
\begin{equation*}
|e(t, x ; r)| \leq \frac{1}{2 r^{3}(\pi e)^{\frac{3}{2}}} \tag{48}
\end{equation*}
$$

and if

$$
\begin{equation*}
e^{*}(t ; r)=\{s \in(0, T): s \leq t, E(t-s, 0,0) \geq r\} \tag{49}
\end{equation*}
$$

then we have

$$
\begin{equation*}
e^{*}(t ; r) \subset\left[t-\frac{1}{4 \pi e r^{2}}, t\right] \Longrightarrow\left|e^{*}(t ; r)\right| \leq \frac{1}{4 r^{2} \pi e} \tag{50}
\end{equation*}
$$

If G is a measured space, λ a positive measure on G and $q>1, M^{q}(G, \lambda)$ is the Marcinkiewicz space of measurable functions $f: G \mapsto \mathbb{R}$ satisfying for some constant $c>0$ and all measurable set $E \subset G$,

$$
\begin{equation*}
\int_{E}|f| d \lambda \leq c(\lambda(E))^{\frac{1}{p^{\prime}}} \tag{51}
\end{equation*}
$$

and

$$
\|f\|_{M^{q}(G, \lambda)}=\inf \{c>0 \text { s.t. }(50) \text { holds }\}
$$

Lemma 3.4. Assume μ, ν are bounded measure in $\overline{\mathbb{R}_{+}}$and \mathbb{R}_{+}respectively and u is the solution of (17) given by (18) and $v_{\nu, \mu}$ is the solution of (17). Then
$\left\|v_{\nu, \mu}\right\|_{M^{3}\left(Q_{\mathbb{R}_{+}}^{T}\right)}+\left\|v_{\nu, \mu} L_{\partial Q_{\mathbb{R}_{+}}^{T}}\right\|_{M^{2}\left(\partial Q_{\mathbb{R}_{+}}^{T}\right)} \leq c\left(\|\mu\|_{\mathfrak{M}\left(\partial Q_{\mathbb{R}_{+}}^{T}\right)}+\|\nu\|_{\mathfrak{M}\left(Q_{\mathbb{R}_{+}}^{T}\right)}\right)$.

Proof. First we consider $v_{0, \mu}$

$$
v_{0, \mu}(t, x)=2 \int_{0}^{t} E(t-s, x) d \mu(s)
$$

If $F \subset[0, T]$ is a Borel set, than for any $\tau>0$

$$
\begin{aligned}
\int_{F} E(t-s, 0) d s & =\int_{F \cap\{E \leq \tau\}} E(t-s, 0) d s+\int_{F \cap\{E>\tau\}} E(t-s, 0) d s \\
& \leq \tau|F|+\int_{\{E>\tau\}} E(t-s, 0) d s \\
& \leq \tau|F|-\int_{\tau}^{\infty} \lambda d\left|e^{*}(t, \lambda)\right| \\
& \leq \tau|F|+\int_{\tau}^{\infty} \lambda d\left|e^{*}(t, \lambda)\right| \\
& \leq \tau|F|+\frac{1}{4 \pi e \tau}
\end{aligned}
$$

If we choose $\tau^{2}=\frac{1}{4 \pi e|F|}$, we derive

$$
\begin{equation*}
\int_{F} E(t-s, 0) d s \leq \frac{|F|^{\frac{1}{2}}}{\sqrt{\pi e}} \tag{53}
\end{equation*}
$$

If $F \subset(0, T)$ is a Borel set then

$$
\left|\int_{F} v_{0, \mu}(t, 0) d t\right|=2\left|\int_{0}^{t} \int_{F} E(t-s, 0) d t d \mu(s)\right| \leq \frac{2|F|^{\frac{1}{2}}}{\sqrt{\pi e}}\|\mu\|_{\mathfrak{M}\left(\partial Q_{\mathbb{R}_{+}}^{T}\right)}
$$

This proves that

$$
\begin{equation*}
\left\|v_{0, \mu} L_{\partial Q_{\mathbb{R}_{+}}^{T}}\right\|_{M^{2}\left(\partial Q_{\mathbb{R}_{+}}^{T}\right)} \leq c\|\mu\|_{\mathfrak{M}\left(\partial Q_{\mathbb{R}_{+}}^{T}\right)} \tag{54}
\end{equation*}
$$

Similarly, if $G \subset[0, T] \times[0, \infty)$ is a Borel set, then

$$
\begin{equation*}
\int_{G} \tilde{E}(t-s, x, 0) d s \leq \frac{2|G|^{\frac{1}{3}}}{\sqrt{\pi e}} \tag{55}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|v_{0, \mu}\right\|_{M^{3}\left(Q_{\mathbb{R}_{+}}^{T}\right)} \leq c\|\mu\|_{\mathfrak{M}\left(\partial Q_{\mathbb{R}_{+}}^{T}\right)} \tag{56}
\end{equation*}
$$

In the same way we prove that

$$
\begin{equation*}
\left\|v_{\nu, 0}\right\|_{M^{3}\left(Q_{\mathbb{R}_{+}}^{T}\right)}+\left\|v_{\nu, 0} L_{\partial Q_{\mathbb{R}_{+}}^{T}}\right\|_{M^{2}\left(\partial Q_{\mathbb{R}_{+}}^{T}\right)} \leq c\|\nu\|_{\mathfrak{M}\left(Q_{\mathbb{R}_{+}}^{T}\right)} \tag{57}
\end{equation*}
$$

This ends the proof.
Proof of Theorem 1.3
Uniqueness. Assume u and \tilde{u} are solutions of (1), then $w=u-\tilde{u}$ satisfies

$$
\begin{align*}
w_{t}-w_{x x}=0 & \text { in } Q_{\mathbb{R}_{+}}^{T} \\
-w_{x}(., 0)+g(u(., 0))-g(\tilde{u}(., 0))=0 & \text { in }[0, T) \tag{58}\\
w(0, .)=0 & \text { in } \mathbb{R}_{+}
\end{align*}
$$

Applying (41), we obtain
$-\int_{0}^{T} \int_{0}^{\infty}\left(\zeta_{t}+\zeta_{x x}\right)|w| d x d t+\int_{0}^{\infty}(g(u(., 0))-g(\tilde{u}(., 0))) \operatorname{sign}(w) \zeta(t, 0) d t \leq 0$,
for any $\zeta \in \mathbb{X}_{\mathbb{R}_{+}}^{T}$ with $\zeta \geq 0$. Let $\theta \in C_{c}^{1}\left(Q_{\mathbb{R}_{+}}^{T}\right), \eta \geq 0$, we take ζ to be the solution of

$$
\begin{aligned}
-\zeta_{t}-\zeta_{x x}=\theta & \text { in }(0, T) \times \mathbb{R}_{+} \\
\zeta_{x}(t, 0)=0 & \text { in }(0, T) \\
\zeta(T, x)=0 & \text { in }(0, \infty) .
\end{aligned}
$$

Then ζ satisfies (46), hence

$$
\int_{0}^{T} \int_{0}^{\infty} \theta|w| d x d t+\int_{0}^{\infty}(g(u(., 0))-g(\tilde{u}(., 0))) \operatorname{sign}(w) \zeta(t, 0) d t \leq 0 .
$$

This implies $w=0$.
Existence. Without loss of generality we can assume that μ and ν are nonnegative. Let $\left\{\nu_{n}\right\} \subset C_{c}\left(\mathbb{R}_{+}\right)$and $\left.\left\{\mu_{n}\right\} \subset C_{c}\left(\left[\mathbb{R}_{+}\right] 0, T\right)\right)$ converging to ν and μ in the sense of measures and let u_{n} be the solution of (37). Then from (39),

$$
\begin{equation*}
\int_{0}^{T} \int_{0}^{\infty}\left|u_{n}\right| d x d t+\int_{0}^{T}\left|g\left(u_{n}(t, 0)\right)\right| d t \leq T \int_{0}^{\infty}\left|\nu_{n}\right| d x+\int_{0}^{T}\left|\mu_{n}\right| d t \tag{59}
\end{equation*}
$$

Therefore u_{n} and $g\left(u_{n}(., 0)\right)$ remain bounded respectively in $L^{1}\left(Q_{\mathbb{R}_{+}}^{T}\right)$ and in $L^{1}(0, T)$. Furthermore, by Lemma 3.4, u_{n} remains bounded in $M^{3}\left(Q_{\mathbb{R}_{+}}^{T}\right)$ and in $M^{2}\left(\partial Q_{\mathbb{R}_{+}}^{T}\right)$. We can also write u_{n} under the form

$$
\begin{align*}
u_{n}(t, x) & =\int_{0}^{\infty} \tilde{E}(t, x, y) \mu_{n}(y) d y+2 \int_{0}^{t} E(t-s, x)\left(\nu_{n}(t)-g\left(u_{n}(t, 0)\right)\right) d s \\
& =A_{n}(t, x)+B_{n}(t, x) . \tag{60}
\end{align*}
$$

Since we can perform the even reflexion through $y=0$, the mapping

$$
(t, x) \mapsto A_{n}(t, x):=\int_{0}^{\infty} \tilde{E}(t, x, y) \mu_{n}(y) d y
$$

is relatively compact in $C_{\text {loc }}^{m}\left(\overline{Q_{\mathbb{R}_{+}}^{T}}\right)$ for any $m \in \mathbb{N}^{*}$. Hence we can extract a subsequence $\left\{u_{n_{k}}\right\}$ which converges uniformly on every compact subset of $(0, T] \times[0, \infty)$, hence a.e. on $(0, T]$ for the 1-dimensional Lebesque measure. Concerning the boundary term

$$
(t, x) \mapsto B_{n}(t, x):=\int_{0}^{t} E(t-s, x)\left(\nu_{n}(t)-g\left(u_{n}(t, 0)\right)\right) d s,
$$

it is relatively compact on every compact subset of $[0, T] \times(0, \infty)$. If $x=0$, then

$$
B_{n}(t, 0)=\int_{0}^{t}\left(\nu_{n}(t)-g\left(u_{n}(t, 0)\right)\right) \frac{d s}{\sqrt{\pi(t-s)}}
$$

Since $\left\|\nu_{n}(.)-g\left(u_{n}(., 0)\right)\right\|_{L^{1}(0, T)}, t \mapsto B_{n}(t, 0)$ is uniformly integrable on $(0, T)$, hence relatively compact by the Frechet-Kolmogorov Theorem. Therefore there exists a subsequence, still denoted by $\left\{n_{k}\right\}$ such that $B_{n_{k}}(t, 0)$ converges for almost all $t \in(0, T)$. This implies that the sequence of function $\left\{u_{n_{k}}\right\}$ defined by (60) converges in $\overline{Q_{\mathbb{R}_{+}}^{T}}$ up to a set $\Theta \cup \Lambda$ where $\Theta \subset Q_{\mathbb{R}_{+}}^{T}$ is neglectable for the 2-dimensional Lebesgue measure and $\Lambda \subset \partial_{\ell} Q_{\mathbb{R}_{+}}^{T}$ neglectable for the 1-dimensional Lebesgue measure.

From Lemma 3.4, $\left(u_{n, k} L_{Q_{\mathbb{R}_{+}}^{T}}, u L_{\partial_{\ell} Q_{\mathbb{R}_{+}}^{T}}\right)$ converges in $L_{l o c}^{1}\left(Q_{\mathbb{R}_{+}}^{T}\right) \times L^{1}\left(\partial_{\ell} Q_{\mathbb{R}_{+}}^{T}\right)$ and the convergence of each of the components holds also almost everywhere (up to a subsequence). Since $u_{n, k}$ is a weak solution, it satisfies for any $\zeta \in \mathbb{X}\left(Q_{\mathbb{R}_{+}}^{T}\right)$

$$
\begin{align*}
&-\int_{0}^{T} \int_{0}^{\infty}\left(\zeta_{t}+\zeta_{x x}\right) u_{n, k} d x d t+\int_{0}^{T}\left(g\left(u_{n, k}\right) \zeta\right)(t, 0) d t \\
&=\int_{0}^{\infty} \zeta \nu_{n, k}(x) d x+\int_{0}^{T} \zeta(t, 0) \mu_{n, k}(t) d t \tag{61}
\end{align*}
$$

In order to prove the convergence of $g\left(u_{n, k}(t, 0)\right)$, we use Vitali's convergence theorem and the assumption (19). Let $F \subset[0, T]$ be a Borel set. Using the fact that $0 \leq u_{n, k} \leq v_{\nu_{n, k}, \mu_{n, k}}$ and the estimate of Lemma 3.4, we have for any $\lambda>0$,

$$
\begin{aligned}
\int_{F}\left|g\left(u_{n, k}(t, 0)\right)\right| d t & \leq \int_{F \cap\left\{u_{n, k}(t, 0) \leq \lambda\right\}}\left|g\left(u_{n, k}(t, 0)\right)\right| d t \\
& +\int_{\left\{u_{n, k}(t, 0)>\lambda\right\}}\left|g\left(u_{n, k}(t, 0)\right)\right| d t \\
& \leq g(\lambda)|F|-\int_{\lambda}^{\infty} \sigma d\left|\left\{t:\left|g\left(u_{n, k}(t, 0)\right)\right|>\sigma\right\}\right| \\
& \leq g(\lambda)|F|+c \int_{\lambda}^{\infty}|g(\sigma)| \sigma^{-3} d s
\end{aligned}
$$

where c depends of $\|\mu\|_{\mathfrak{M}\left(\partial Q_{\mathbb{R}_{+}}^{T}\right)}+\|\nu\|_{\mathfrak{M}\left(Q_{\mathbb{R}_{+}}^{T}\right)}$. For $\epsilon>0$ given, we chose λ large enough so that the integral term above is smaller than ϵ and then $|F|$ such that $g(\lambda)|F|+\leq \epsilon$. Hence $\left\{g\left(u_{n, k}(., 0)\right)\right\}$ is uniformly integrable. Therefore up to a subsequence, it converges to $g(u(., 0))$ in $L^{1}(0, T)$. Clearly u satisfies

$$
\begin{align*}
&-\int_{0}^{T} \int_{0}^{\infty}\left(\zeta_{t}+\zeta_{x x}\right) u d x d t+\int_{0}^{T}(g(u) \zeta)(t, 0) d t \\
&=\int_{0}^{\infty} \zeta \nu(x) d x+\int_{0}^{T} \zeta(t, 0) \mu(t) d t \tag{62}
\end{align*}
$$

which ends the existence proof.
Monotonicity. If $\nu \geq \tilde{\nu}$ and $\mu \geq \tilde{\mu}$; we can choose the approximations such that $\nu_{n} \geq \tilde{\nu}_{n}$ and $\mu_{n} \geq \tilde{\mu}_{n}$. It follows from (42) that $u_{\nu_{n}, \mu_{n}} \geq$
$u_{\tilde{\nu}_{n}, \tilde{\mu}_{n}}$. Choosing the same subsequence $\left\{n_{k}\right\}$, the limits u, \tilde{u} are in the same order. The conclusion follows by uniqueness.

3.3. The case $g(u)=|u|^{p-1} u$

Condition (19) is satisfied if $p<2$. If this condition holds there exists a solution $u_{\ell \delta_{0}}=u_{0, \ell \delta_{0}}$ and the mapping $\ell \mapsto u_{\ell \delta_{0}}$ is increasing.

Theorem 3.5. (i) If $1<p \leq \frac{3}{2}$, $u_{\ell \delta_{0}}$ tends to ∞ when $k \rightarrow \infty$.
(ii) If $\frac{3}{2}<p<2$, u es $_{0}$ converges to $U_{\omega_{s}}$ defined by

$$
U_{\omega_{s}}(t, x)=t^{-\frac{1}{2(p-1)}} \omega_{s}\left(\frac{x}{\sqrt{t}}\right),
$$

when $k \rightarrow \infty$.
Proof. By uniqueness and using (3), there holds

$$
\begin{equation*}
T_{k}\left[u_{\ell \delta_{0}}\right]=u_{k}^{\frac{2-p}{p-1} \ell} \delta_{\delta_{0}}, \tag{63}
\end{equation*}
$$

for any $k, \ell>0$. Since $\ell \mapsto u_{\ell \delta_{0}}$ is increasing, its limit u_{∞}, when $\ell \rightarrow \infty$, satisfies

$$
\begin{equation*}
T_{k}\left[u_{\infty}\right]=u_{\infty} . \tag{64}
\end{equation*}
$$

Hence u_{∞} is a positive self-similar solution of (2), provided it exists. Hence $u_{\infty}=U_{\omega_{s}}$ if $\frac{3}{2}<p<2$. If $1<p \leq \frac{3}{2}, u_{k \delta_{0}}$ admits no finite limit when $k \rightarrow \infty$ which ends the proof.

Remark. As a consequence of this result, no a priori estimate of BrezisFriedman type (parabolic Keller-Osserman) exists for a nonnegative function $u \in C^{2,1} \overline{Q_{\mathbb{R}_{+}}^{\infty}} \backslash\{(0,0)\}$ solution of

$$
\begin{align*}
u_{t}-u_{x x}=0 & \text { in } Q_{\mathbb{R}_{+}}^{\infty} \\
-u_{x}(., 0)+|u|^{p-1} u(., 0)=0 & \text { for all } t>0 \tag{65}\\
u(0, x)=0 & \text { for all } x>0
\end{align*}
$$

when $1<p \leq \frac{3}{2}$. When $\frac{3}{2}<p<2$ it is expected that

$$
\begin{equation*}
u(t, x) \leq \frac{c}{\left(|x|^{2}+t\right)^{\frac{1}{2(p-1)}}} \tag{66}
\end{equation*}
$$

The type of phenomenon (i) in Theorem 3.5 is characteristic of fractional diffusion. It has already been observed in [6, Theorem 1.3] with equations

$$
\begin{align*}
u_{t}+(-\Delta)^{\alpha} u+t^{\beta} u^{p} & =0 & & \text { in } \mathbb{R}_{+} \times \mathbb{R}^{N} \\
u(0, .) & =k \delta_{0} & & \text { in } \mathbb{R}^{N}, \tag{67}
\end{align*}
$$

when $0<\alpha<1$ is small and $p>1$ is close to 1 .

4. Extension and open problems

The natural extension is to replace a one dimensional domain by a mutidimenional one. The main open problem is the question of a priori estimate as stated in the last remark above.

4.1. Self-similar solutions

Let $\eta=\left(\eta_{1}, \ldots, \eta_{n}\right)$ be the coordinates in \mathbb{R}^{n} and denote $\mathbb{R}_{+}^{n}=\{\eta=$ $\left.\left(\eta_{1}, \ldots, \eta_{n}\right)=\left(\eta^{\prime}, \eta_{n}\right): \eta_{n}>0\right\}$. We set $K(\eta)=e^{\frac{|\eta|^{2}}{4}}$ and $K^{\prime}\left(\eta^{\prime}\right)=e^{\frac{\left|\eta^{\prime}\right|^{2}}{4}}$. Similarly to Section 2 we define \mathcal{L}_{K} in $C_{0}^{2}\left(\mathbb{R}^{n}\right)$ by

$$
\begin{equation*}
\mathcal{L}_{K}(\phi)=-K^{-1} \operatorname{div}(K \nabla \phi) . \tag{68}
\end{equation*}
$$

If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$, we set $|\alpha|=\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}$. We denote by ϕ_{1} the function K^{-1}. Then the set of eigenvalues of \mathcal{L}_{K} is the set of numbers $\left\{\lambda_{k}=\frac{n+k}{2}: k \in \mathbb{N}\right\}$ with corresponding set of eigenspaces

$$
N_{k}=\operatorname{span}\left\{D^{\alpha} \phi_{1}:|\alpha|=k\right\} .
$$

The operators $\mathcal{L}_{K}^{+, N}$ and $\mathcal{L}_{K}^{+, D}$ are defined acoordingly in $H_{K}^{1}\left(\mathbb{R}_{+}^{n}\right)$ and $H_{K}^{1,0}\left(\mathbb{R}_{+}^{n}\right)$ respectively and $\sigma\left(\mathcal{L}_{K}^{+, N}\right)=\left\{\frac{n+k}{2}: k \in \mathbb{N}\right\}$ and $\sigma\left(\mathcal{L}_{K}^{+, D}\right)=$ $\left\{\frac{n+k}{2}: k \in \mathbb{N}^{*}\right\}$ Furthermore
$N_{k, N}=\operatorname{ker}\left(\mathcal{L}_{K}^{+, N}-\frac{n+k}{2} I_{d}\right)=\operatorname{span}\left\{D^{\alpha} \phi_{1}:|\alpha|=k, \alpha_{n}=2 \ell, \ell \in \mathbb{N}\right\}$,
and
$N_{k, D}=\operatorname{ker}\left(\mathcal{L}_{K}^{+, D}-\frac{n+k}{2} I_{d}\right)=\operatorname{span}\left\{D^{\alpha} \phi_{1}:|\alpha|=k, \alpha_{n}=2 \ell+1, \ell \in \mathbb{N}\right\}$.
Since $\mathcal{L}_{K}^{+, N}$ and $\mathcal{L}_{K}^{+, D}$ are Fredholm operators,

$$
\begin{equation*}
H_{K}^{1}\left(\mathbb{R}_{+}^{n}\right)=\bigoplus_{k=0}^{\infty} N_{k, N} \text { and } H_{K}^{1,0}\left(\mathbb{R}_{+}^{n}\right)=\bigoplus_{k=1}^{\infty} N_{k, D} \tag{70}
\end{equation*}
$$

We define the following functional on $H_{K}^{1}\left(\mathbb{R}_{+}^{n}\right)$

$$
\begin{equation*}
J(\phi)=\frac{1}{2} \int_{\mathbb{R}_{+}^{n}}\left(|\nabla \phi|^{2}-\frac{1}{2(p-1)} \phi^{2}\right) K d \eta+\frac{1}{p+1} \int_{\partial \mathbb{R}_{+}^{n}}|\phi|^{p+1} K^{\prime} d \eta^{\prime} . \tag{72}
\end{equation*}
$$

The critical points of J satisfies

$$
\begin{align*}
-\Delta \omega-\frac{1}{2} \eta \cdot \nabla \omega-\frac{1}{2(p-1)} \omega=0 & \text { in } \mathbb{R}_{+}^{n} \tag{73}\\
-\omega_{\eta_{n}}+|\omega|^{p-1} \omega=0 & \text { in } \partial \mathbb{R}_{+}^{n}
\end{align*}
$$

If ω is a solution of (73), the function

$$
\begin{equation*}
u_{\omega}(t, x)=t^{-\frac{1}{2(p-1)}} \omega\left(\frac{x}{\sqrt{t}}\right) \tag{74}
\end{equation*}
$$

satisfies

$$
\begin{align*}
u_{\omega t}-\Delta u_{\omega}=0 & \text { in } Q_{\mathbb{R}_{+}^{n}}^{\infty}:=(0, \infty) \times \mathbb{R}_{+}^{n} \\
-u_{\omega x_{n}}+\left|u_{\omega}\right|^{p-1} u_{\omega}=0 & \text { in } \partial_{\ell} Q_{\mathbb{R}_{+}^{\infty}}^{\infty}:=(0, \infty) \times \partial \mathbb{R}_{+}^{n} \tag{75}
\end{align*}
$$

Here we have set $\mathbb{R}_{+}^{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right)=\left(x^{\prime}, x_{n}\right): x_{n}>0\right\}$. We denote by \mathcal{E} the subset $H_{K}^{1}\left(\mathbb{R}_{+}^{n}\right) \cap L^{p}\left(\partial \mathbb{R}_{+}^{n} ; d \eta^{\prime}\right)$ of solutions of (73) and by \mathcal{E}_{+}the subset of positive solutions. As for the case $n=1$ we have the following non-existence result

Proposition 4.1. 1- If $p \geq 1+\frac{1}{n}$, then $\mathcal{E}=\{0\}$.
2- If $1<p \leq 1+\frac{1}{n+1}$, then $\mathcal{E}_{+}=\{0\}$
The proof is similar to the one of Theorem 1.1. Hence the existence is to be found in the range $1+\frac{1}{n+1}<p<1+\frac{1}{n}$.
Conjecture Assume $1+\frac{1}{n+1}<p<1+\frac{1}{n}$, then the functional J is bounded from below in $H_{K}^{1}\left(\mathbb{R}_{+}^{n}\right) \cap L_{K^{\prime}}^{p}\left(\partial \mathbb{R}_{+}^{n}\right)$. Furthermore $J(\phi)$ tends to infinity when $\|\phi\|_{H_{K}^{1}\left(\mathbb{R}_{+}^{n}\right)}+\| \phi\left\lfloor_{\partial \mathbb{R}_{+}^{n}} \|_{L_{K^{\prime}}^{p+1}\left(\partial \mathbb{R}_{+}^{n}\right)}\right.$ tends to infinity.

4.2. Problem with measure data

The method for proving Theorem 1.3 can be adapted to prove the following n-dimensional result
Theorem 4.2. Let $g: \mathbb{R} \mapsto \mathbb{R}$ be a nondecreasing continuous function such that $g(0)=0$ and

$$
\begin{equation*}
\int_{1}^{\infty}(g(s)-g(-s)) s^{-\frac{2 n+1}{n}} d s<\infty \tag{76}
\end{equation*}
$$

then for any bounded Radon measures ν in \mathbb{R}_{+}^{n} and μ in $(0, T) \times \partial \mathbb{R}_{+}^{n}$, there exists a unique Borel function $u:=u_{\nu, \mu}$ defined in $\overline{Q_{T}^{\mathbb{R}_{+}^{n}}}:=[0, T] \times$ \mathbb{R}_{+}^{n} such that $u \in L^{1}\left(Q_{T}^{\mathbb{R}_{+}^{n}}\right), u L_{(0, T) \times \partial \mathbb{R}_{+}^{n} \in L^{1}\left((0, T) \times \partial \mathbb{R}_{+}^{n}\right) \text { and } g(u) \in, ~}^{\text {a }}$ $L^{1}\left((0, T) \times \partial \mathbb{R}_{+}^{n}\right)$ solution of

$$
\begin{align*}
u_{t}-\Delta u & =0 & & \text { in } Q_{\mathbb{R}_{+}^{n}}^{T} \\
-u_{x_{n}}+g(u) & =\mu & & \text { in } \partial_{\ell} Q_{\mathbb{R}_{+}^{n}}^{T} \\
u(0, .) & =\nu & & \text { in } \mathbb{R}_{+}^{n}, \tag{77}
\end{align*}
$$

in the sense that

$$
\begin{array}{rl}
\iint_{Q_{\mathbb{R}_{+}^{T}}}\left(-\partial_{t} \zeta-\Delta \zeta\right) u d x d t+\iint_{\partial_{\ell} Q_{\mathbb{R}_{+}^{T}}^{T}} & g(u) \zeta d x^{\prime} d t \\
& =\int_{\mathbb{R}_{+}^{n}} \zeta d \nu+\iint_{\partial_{\ell} Q_{\mathbb{R}_{+}^{T}}} \zeta d \mu, \tag{78}
\end{array}
$$

for all $\zeta \in C_{c}^{1,2}\left(\overline{Q_{\mathbb{R}_{+}^{n}}^{T}}\right)$ such that $\zeta_{x_{n}}=0$ on $(0, T) \times \partial \mathbb{R}_{+}^{n}$ and $\zeta(T,)=$.0 . Furthermore $\left.(\nu, \mu) \mapsto u_{\nu, \mu}\right)$ is nondecreasing.

References

[1] M. Abramowitz, I. A. Stegun. Handbook of Mathematical Functions, National Bureau of Standards, Washington, 1964.
[2] O. Boukarabila, L. VÉron. Nonlinear boundary value problems relative to harmonic functions, Nonlinear Analysis, to appear. arXiv:2003.00871.
[3] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Notas de Matemàticas 5, North Holland (1971).
[4] H. Brezis, A. Friedman. Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl. 62 (1983), 73-97.
[5] H. Brezis, L.A. Peletier, D. Terman. A very singular solution of the heat equation with absorption, Arch. Rational Mech. Anal. 95 (1986), 185-209.
[6] H. Chen, L. Véron, Y. Wang. Fractional heat equations with subcritical absorption having a measure as initial data, Nonlinear Anal. 137 (2016), 306-337.
[7] M. Escobedo, O. Kavian. Variational problems related to the self-similar solutions of the heat equations, Nonlinear Anal. 10 (1987), 1103-1133.
[8] M. Fila, K. Ishige, T. Kawakami. Existence of positive solutions of a semilinear elliptic equation with a dynamical boundary condition, Calc. Var. 54 (2015), 2059-2078.
[9] M. Fila, P. Quittner. The blow-up rate for the heat equation with a non-linear boundary condition, Math. Methods in the Appl. Sci. 14 (1991), 197-205.
[10] K. Ishige, T. Kawakami. Global solutions of the heat equation with a nonlinear boundary condition, Calc. Var. 39 (2010), 429457.
[11] K. Ishige, R. Sato. Heat equation with a nonlinear boundary condition and uniformly local L^{r} spaces, Disc. Cont. Dyn. Syst. 36 (2016), 2627-2652.
[12] J. Keller. On solutions of $\Delta u=f(u)$, Comm. Pure Appl. Math. 10 (1957), 503-510.
[13] M. Marcus, L. Véron. Semilinear parabolic equations with measure boundary data and isolated singularities, J. Anal. Mat. 85 (2001), 245-290.
[14] M. Marcus, L. Veron. Isolated boundary singularities of signed solutions of some nonlinear parabolic equations, Adv. Diff. Equ. 6 (2001), 1281-1316.
[15] I. Moutoussamy, L. Véron. Isolated singularities and asymptotic behaviour of the solutions of a semilinear heat equation, Asymptotic Anal. 9 (1994), 259-289.
[16] R. Osserman. On the inequality $\Delta u \geq f(u)$, Pacific J. Math. 7 (1957), 1641-1647.

Author's address:
Laurent Véron
Institut Denis Poisson, CNRS UMR 7013,
Université de Tours, France.
E-mail: veronl@univ-tours.fr

