Asymptotic Independence ex machina - Extreme Value Theory for the Diagonal Stochastic Recurrence Equation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Asymptotic Independence ex machina - Extreme Value Theory for the Diagonal Stochastic Recurrence Equation

Résumé

We consider multivariate stationary processes $(\boldsymbol{X}_t)$ satisfying a stochastic recurrence equation of the form $$ \boldsymbol{X}_t= \boldsymbol{m}M_t \boldsymbol{X}_{t-1} + \boldsymbol{Q}_t,$$ where $(M_t)$ and $(\boldsymbol{Q}_t)$ are iid random variables and random vectors, respectively, and $\boldsymbol{m}=\mathrm{diag}(m_1, \dots, m_d)$ is a deterministic diagonal matrix. We obtain a full characterization of the multivariate regular variation properties of $(\boldsymbol{X}_t)$, proving that coordinates $X_{t,i}$ and $X_{t,j}$ are asymptotically independent if and only if $m_i \neq m_j$; even though all coordinates rely on the same random input $(M_t)$. We describe extremal properties of $(\boldsymbol{X}_t)$ in the framework of vector scaling regular variation. Our results are applied to multivariate autoregressive conditional heteroskedasticity (ARCH) processes.
Fichier principal
Vignette du fichier
2020_04_15_OlivierSebastian.pdf (304.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02591409 , version 1 (15-05-2020)
hal-02591409 , version 2 (06-10-2021)
hal-02591409 , version 3 (04-01-2022)

Identifiants

Citer

Sebastian Mentemeier, Olivier Wintenberger. Asymptotic Independence ex machina - Extreme Value Theory for the Diagonal Stochastic Recurrence Equation. 2020. ⟨hal-02591409v1⟩
154 Consultations
220 Téléchargements

Altmetric

Partager

More