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Asymptotic Independence ex machina - Extreme Value Theory

for the Diagonal Stochastic Recurrence Equation

Sebastian Mentemeier∗, Olivier Wintenberger†

May 18, 2020

Abstract

We consider multivariate stationary processes (Xt) satisfying a stochastic recurrence equa-
tion of the form

Xt = mMtXt−1 +Qt,

where (Mt) and (Qt) are iid random variables and random vectors, respectively, and m =
diag(m1, . . . ,md) is a deterministic diagonal matrix. We obtain a full characterization of the
multivariate regular variation properties of (Xt), proving that coordinates Xt,i and Xt,j are
asymptotically independent if and only if mi 6= mj ; even though all coordinates rely on the
same random input (Mt). We describe extremal properties of (Xt) in the framework of vector
scaling regular variation. Our results are applied to multivariate autoregressive conditional
heteroskedasticity (ARCH) processes.

AMS 2010 subject classifications: 60G70, 60G10

Keywords: Stochastic recurrence equations, multivariate ARCH,
multivariate regular variation, non-standard regular variation

1 Introduction

We consider multivariate stationary processes (Xt), satisfying a diagonal Stochastic Recurrence
Equation (SRE) of the form

X t = Diag(m1, . . . ,md)MtX t−1 +Qt, t ∈ Z, (1.1)

where (Mt) is an iid sequence of real-valued random variables and (Qt) is an iid sequence of
R
d random vectors with marginals Qt,i, 1 ≤ i ≤ d, independent of (Mt). Stationary solutions

of SRE have attracted a lot of research in the past few years, see Buraczewski et al. (2016b)
and references therein. However, in the present setting of diagonal matrices, only marginal tail
behavior has been investigated so far using the result of the seminal paper of Goldie (1991).

Due to the diagonal multiplicative term in (1.1), the marginals of Xt = (Xt,1, . . . ,Xt,d)
⊤ are

satisfying the marginal SREs Xt,i = miMtXt−1,i + Qt,i, t ∈ Z for 1 ≤ i ≤ d. We work under
the following set of assumptions that implies the ones of Goldie (1991) on the marginal SREs.
Denoting by (M,Q) a generic copy of (Mt,Qt), we assume for all 1 ≤ i ≤ d,

E
[
log
(
mi|M |

)]
< 0. (A1)

This guarantees that the Markov chain (Xt) has a unique stationary distribution. It is given by
the law of the random variable

X =




X1
...
Xd


 :=

∞∑

k=1




mk−1
1 · · · 0

0
. . . 0

0 . . . mk−1
d


M1 · · ·Mk−1Qk. (1.2)
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We further assume that there exist positive constants α1, . . . , αd such that for 1 ≤ i ≤ d

E
[(
mi|M |)αi

]
= 1. (A2)

Given these α1, . . . , αd, we assume for 1 ≤ i ≤ d

E
[
|M |αi+ǫ

]
< ∞, E

[
‖Q‖αi+ǫ

]
< ∞ for some ǫ > 0. (A3)

Of course, it suffices to check this condition for the maximal αi. Note that (A1) follows from
(A2)-(A3) as shown by (Goldie, 1991, Lemma 2.2). We also need the technical assumption that

the law of log |M | is non-arithmetic, i.e. not supported on λZ, λ > 0. (A4)

Finally, to avoid degeneracy, we require for 1 ≤ i ≤ d that

P(miMx+Qi = x) < 1 for all x ∈ R , (A5)

where Qi, 1 ≤ i ≤ d denote the marginals of Q. For all pairs 1 ≤ i, j ≤ d such that αi > αj , we
will require that

lim
u→∞

log(u)P
( |Qj|

|Qi|
> uε

)
= 0 for all ǫ > 0. (A6)

With no loss of generality, we assume throughout the paper that P(M < 0) > 0, the case of
positive multiplicative factors Mt following from simpler arguments.

For the specific case (Mt) are iid N (0, 1) and (Qt) are iid N (0,C) and independent of (Mt),
the diagonal SRE coincides with the BEKK-ARCH(1) model as in Pedersen and Wintenberger
(2018)

Xt = H
1/2
t Zt, t ∈ Z, (1.3)

H t = C +Diag(m1, . . . ,md)X t−1X
⊤
t−1Diag(m1, . . . ,md) , (1.4)

where (Zt) is an iid sequence of Gaussian random vectors Nd(0, I). The model depends on
few parameters, the ones in the symmetric positive semi-definite matrix C and the diagonal
coefficients mi > 0 for 1 ≤ i ≤ d. The Diagonal BEKK-ARCH(1) model is very interesting as
it generates different tail index marginals. This freedom is not offered by other BEKK-ARCH
model specification which marginals have the same tail index, see Pedersen and Wintenberger
(2018). This feature is important for modeling: Heavy tailed data, such as in finance, may
exhibit different tail indices indicating different responses during financial crisis. Under the
top-Lyapunov condition

m2
i < 2eγ , 1 ≤ i ≤ d, (1.5)

where γ ≈ 0.5772 is the Euler constant, it exists a stationary solution (Xt) of the system
(1.3)-(1.4); see e.g. Nelson (1990). Moreover the Diagonal BEKK-ARCH(1) model satisfies the
assumptions (A2) – (A5) (and thus (A1)) as soon as (1.5) holds; see Pedersen and Wintenberger
(2018) for details. Condition (A6) is checked in Corollary 5.2 below.

Back to the diagonal SRE (1.1), under (A1) – (A6) the marginal stationary distributions are
regularly varying with possibly different tail indices; following Goldie (1991) we have that

P(X0,i > x) ∼ P(X0,i ≤ −x) ∼
ci
2
x−αi , x → ∞, (1.6)

where ci > 0 and αi > 0 is the unique solution of the equation E[|miM |αi ] = 1. Here and

below, f(x) ∼ g(x) means that limx→∞
f(x)
g(x) = 1. As αi is a decreasing function of mi, the tail

indices are distinct when the diagonal terms are distinct. Moreover, serial extremal dependence
of the marginal sequences (Xt,i)t∈Z for any 1 ≤ i ≤ d is well known since the pioneer work of
De Haan et al. (1989).
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The main goal of this paper is to understand the joint extremal behaviour, i.e., multivari-
ate regular variation of (X t) and the interplay between marginals that have distinct tail indices.
As an example, consider the case of a couple (X0,i,X0,j) of marginals such that mi 6= mj and
then αi 6= αj . Our first main result in Section 3 states that X0,i and X0,j are asymptotically
independent in the sense that

lim
x→∞

P(X0,i > x1/αi |X0,j > x1/αj ) = lim
x→∞

P(X0,j > x1/αj |X0,i > x1/αi) = 0. (1.7)

This result remains true also when Qi = Qj . Thus, even though X0,i and X0,j are perfectly
dependent in the sense that all their randomness comes from the same random variables, extremes
never occur simultaneously in these marginals. This result also allows us to derive that the
random vector (X0,i,X0,j) is non-standard regularly varying in the sense of Resnick (2007). This
result extends easily to d ≥ 2 and we will show the following.

Theorem 1.1. Suppose (A1) – (A6), and that mi 6= mj for i 6= j. Then all components of X0

are asymptotically independent, i.e., (1.7) holds.

This theorem is a particular case of the more general Theorem 5.1, proved in Section 5.
Section 4 concerns the case where the diagonal termsmi are identically equal tom and hence

the tail indices of the marginals X0,i are the same. Applying Theorem 1.6 of Buraczewski et al.
(2009) on the SRE equation (1.3)-(1.4) with multiplicative similarity matrixmM0Id Pedersen and Wintenberger
(2018) derived multivariate regular variation of the process (Xt). We refined this result by char-
acterizing the angular properties of the tail measure.

To study the general diagonal SRE where some diagonal elements are identical and others
are distinct, we use and extend the framework of Vector Scaling Regular Variation (VSRV),
introduced in Pedersen and Wintenberger (2018). It is defined in full generality in Section 2.
It describes the joint extremal behaviour via a spectral tail process (Θ̃t)t≥0, satisfying

Θ̃t = Diag(m1, . . . ,md)MtΘ̃t−1, t ≥ 1

from some initial value Θ̃0. In Section 5, we derive the characterization of Θ̃0, proving asymp-
totic independence between blocks with different tail indices, and asymptotic dependence within
blocks.

In Section 6, we extend our results by studying second order properties, i.e., we show -
under more restrictive assumptions - that there exist two rates ∆ > δ > 0, depending on the
coefficients mi and mj, so that

lim
x→∞

x1+δ
P(X0,i > x1/αi ,X0,j > x1/αj ) = 0 (1.8)

lim inf
x→∞

x1+∆
P(X0,i > x1/αi ,X0,j > x1/αj ) > 0. (1.9)

Notation

There and in the rest of the paper we will denote by
law
= the equality in distribution (between

random variables on both sides), ‖ · ‖ will denote the infinity norm on R
d and ‖ · ‖2 the euclidean

norm. For vectors, we use bold notation x = (x1, . . . , xd). Operations between vectors or scalar
and vector are interpreted coordinate wise, e.g., x−1/α = (x−1/α1 , . . . , x−1/αd) for positive x and
ab = (aibi)1≤i≤d. A notation that will be used frequently is vector scaling of a sequence of
R
d-valued random variables, e.g.

x−1/α(X0, . . . ,Xt) =
(
x−1/αX0, . . . , x

−1/αXt

)

=
((
x−1/αiX0,i

)
1≤i≤d

, . . . ,
(
x−1/αiXt,i

)
1≤i≤d

)
. (1.10)
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For some potentially distinct α1, . . . , αd we define the following notion of a radial distance:

‖x‖α = max
1≤i≤d

|xi|
αi = ‖xα‖, x = (xi)1≤i≤d ∈ R

d. (1.11)

Here xα denotes the vector (sign(xi)|xi|
αi)1≤i≤d in R

d. We want to stress that ‖x‖α is neither
homogeneous nor does it satisfy the triangle inequality for general values of α1, . . . , αd. Thus, it
is not a (pseudo-)norm but it will provide a meaningful scaling function. Note that x 7→ ‖x‖α
is a continuous function and is 1/α-homogeneous in the following sense:

‖λ1/αX0‖α = max
1≤i≤d

∣∣∣λ1/αiX0,i

∣∣∣
αi

= λ‖X0‖α (1.12)

The components of the vector

‖X0‖
−1/α
α X t =

(
‖X0‖

−1/αi
α Xt,i

)
1≤i≤d

(1.13)

have ‖ · ‖α and max-norm equal to one when t = 0 thus belongs to Sd−1
∞ = {x ∈ R

d; ‖x‖α = 1}
the max-norm-unit sphere.

2 Vector Scaling Regular Variation (VSRV) Markov chains

2.1 Vector Scaling Regular Variation

2.1.1 Regular variation and the tail process

Let (X t) ∈ R
d be a stationary time series. Its regular variation properties are defined in different

ways. The most usual way is to define the tail process as in Basrak and Segers (2009).

Definition 2.1. The stationary time series (X t) is regularly varying if and only if ‖X0‖ is
regularly varying and there exist weak limits

lim
x→∞

P

(
‖X0‖

−1(X0, . . . ,X t) ∈ ·
∣∣∣ ‖X0‖ > x

)
= P

(
(Θ0, . . . ,Θt) ∈ ·

)
, t ≥ 0 .

By stationarity and using Kolmogorov consistency theorem one can extend the trajectories
(Θ0, . . . ,Θt) into a process (Θt) called the spectral tail process. To be stationary regularly
varying time series does not depend on the choice of the norm. We work with the max-norm in
the following for convenience.

2.1.2 Non-standard Regular Variation

If there exists 1 ≤ i ≤ d such that

P(|X0,i| > x) = o
(
P(‖X0‖ > x)

)
, x → ∞ ,

then the marginals of X0 are not tail equivalent. In this case, the notion introduced above is not
suitable, since then the corresponding coordinate of the spectral tail process is degenerated, i.e.,
Θ0,i = 0 a.s. Hence, information about extremes in this coordinate is lost.

To circumvent this issue, the notion of non-standard regular variation was introduced (see
Resnick (2007) and reference therein). It is based on a standardization of the coordinates which
holds as follows. Assume that marginals are positive and (one-dimensional) regularly varying
with possibly different tail indices αi and cdf Fi, 1 ≤ i ≤ d. Then non-standard regular variation
holds if and only if

lim
x→∞

x · P
(
x−1X̃0 ∈ ·

)
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exists in the vague sense, where the standardized vector X̃0 is defined as

X̃0 = (1/(1 − Fi(X0,i)))1≤i≤d . (2.1)

Following (de Haan and Resnick, 1977, Theorem 4), we note that X̃0 is regularly varying in

the classical sense, i.e. ‖X̃0‖ is regularly varying with tail index 1 and there exists an angular
measure which is the weak limit of

lim
x→∞

P

(
‖X̃0‖

−1X̃0 ∈ ·
∣∣∣ ‖X̃0‖ > x

)
.

Note that the standardization is made so that all coordinates X̃0 of are tail equivalent

P
(
X̃0,i > x

)
∼ x−1 , x → ∞ , 1 ≤ i ≤ d .

2.1.3 Vector Scaling Regular Variation

When dealing with time series such as diagonal SRE, temporal dependencies between extremes
are of particular interest. As it turns out, neither of the notions discussed above is fully adequate
for the investigation of these. Indeed, the SRE representation (1.1) of the diagonal BEKK-
ARCH(1) model appeals for an analysis of the serial extremal dependence directly on (X t)
rather than on a standardized version. For SRE Markov chains such as (1.1), it has been shown
by Janssen and Segers (2014) that the spectral tail process satisfies the simple recursion

Θt = Diag(a1, . . . , ad)Θt−1, t ≥ 1.

This multiplicative property has nice consequences and allows to translate the properties of
multiplicative random walks to the extremes of multivariate time series. However, the degeneracy
of the coordinates with lower tails discussed in Section 2.1.2 propagates through time; If Θ0,i = 0
a.s. then Θt,i = 0 a.s. as well for any t ≥ 1. On the other hand, the standardized version does not
satisfy an SRE and its serial extremal dependence is less explicit; see Perfekt (1997) for details.

In order to treat the temporal dependence of the stationary solution (Xt), we will use the
notion of Vector Scaling Regular Variation (VSRV) introduced in Pedersen and Wintenberger
(2018). We slightly extend the original notion of Pedersen and Wintenberger (2018), suppressing
the requirement that the marginal tails are equivalent to power functions. This wider definition
of VSRV writes in a simpler form as follows:

Definition 2.2 (VSRV). A stationary time series (X t) is VSRV of order α = (α1, . . . , αd) if
‖X0‖α is regularly varying and there exists weak limits

lim
x→∞

P

(
‖X0‖

−1/α
α (X0, . . . ,X t) ∈ ·

∣∣∣ ‖X0‖α > x
)
= P

(
(Θ̃0, . . . , Θ̃t) ∈ ·

)
, (2.2)

for any t ≥ 0.

A few remarks are in order. A nonnegative VSRV time series (X t) with indices α1, . . . , αd

is VSRV if and only if (Xα
t ) is regularly varying. Moreover, (X t) is also VSRV with indices

βα1, . . . , βαd for any β > 0. Note that a times series is VSRV with indices α1 = . . . = αd if and
only if it is standard regularly varying. For general indices, the marginals X0,i have distributions
Fi with different tail indices.

The next proposition show that indeed any VSRV random vector X0 ∈ R
d (i.e. ‖X0‖α is

regularly varying and (2.2) holds for t = 0) is also non-standard regularly varying.

Proposition 2.3. Let X0 be a positive VSRV random vector of order α = (α1, . . . , αd). Then
X0 has regularly varying marginals satisfying

P(X0,i > x) ∼ ci P(‖X0‖α > xαi) , x → ∞ , (2.3)
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Moreover it is non-standard regularly varying if and only if P(Θ̃0,i = 0) < 1 for all 1 ≤ i ≤ d and
the angular measure is given by

E
[∥∥c−1Θ̃

βα

0

∥∥ 1
(∥∥c−1Θ̃

βα

0

∥∥−1
c−1Θ̃

βα

0 ∈ ·
)]

E
[∥∥c−1Θ̃

βα

0

∥∥]
,

where c = (c1, . . . , cd),

ci = E
[
Θ̃

βαi

0,i

]
, 1 ≤ i ≤ d ,

with β > 0 the index of regular variation of ‖X0‖α.

We remark that the angular measure of X0 is completely determined by the spectral tail
process (Θ̃t). However its expression is intricate because of the standardization whereas we will
derive explicit expressions of (Θ̃t) for many Markov chains in Section 2.2. We emphasize that
this simplicity is the main motivation for introducing the notion of VSRV rather than using the
more general notion of non-standard regular variation.

Proof. Fix 1 ≤ i ≤ d. Denoting y = xαi , using (1.12) and the definition of the weak convergence
as {x ∈ R

d; xi > 1} is a continuity set by homogeneity of the limiting measure, we obtain

P(X0,i > y1/αi)

P(‖X0‖α > y)
=

P
(
y−1/αiX0,i > 1, ‖X0‖α > y

)

P(‖X0‖α > y)

= P

(
y−1/αiX0,i > 1

∣∣∣ ‖X0‖α > y
)

= P

(
(‖X0‖α/y)

1/αi‖X0‖
−1/αi
α X0,i > 1

∣∣∣ ‖X0‖α > y
)

→ P(Y 1/αiΘ̃0,i > 1) , y → ∞ ,

where P(‖X0‖α/y ∈ ·|‖X0‖α > y) → P(Y ∈ ·) with Y Pareto β distributed. We compute

P(Y 1/αiΘ̃0,i > 1) =

∫ ∞

1
P(Θ̃

βαi

0,i > y)d(−y−1) = E
[
Θ̃

βαi

0,i

]

as Θ̃
βαi

0,i ≤ ‖Θ̃‖α = 1 a.s. by definition and the first assertion follows.

Denoting Fα(x) the cdf of ‖X0‖α and F̄α = 1− Fα, we get

F̄i(y) ∼ F̄α

(
c
−1/β
i yαi

)
, y → ∞, (2.4)

using the regular variation properties of order β > 0 of F̄α. The standardized vector

X̃0 =

(
1

F̄α

(
c
−1/β
i Xαi

0,i

)
)

1≤i≤d

has marginal tails equivalent to the standard Pareto marginally distributed vector
(
1/(1 −

Fi(X0,i))
)
1≤i≤d

by (2.4). Thus, X + 0 is regularly varying if the vague convergence holds

P
(
x−1X̃0 ∈ ·

∣∣∣ ‖X̃0‖ > x
)
→ ν∗ , x → ∞,

with ν∗ the standardized tail measure. It is implied by

P

(
y−1c−1/βXα

0 ∈ ·
∣∣∣ ‖c−1/βXα

0 ‖ > y
)
→ ν , x → ∞ ,

with ν the tail measure of Xα
0 which is standard regularly varying of order β > 0. From (Resnick,

2007, (6.46) p. 205) we notice that ν∗ exists and is such that ν([0,x1/β]c) = ν∗([0,x]
c). Then

the relation between Θ̃
α

0 , the spectral component of the tail measure µ, and the angular measure
of the standardized tail measure ν∗ follows from standard calculations.
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2.2 VSRV Markov chains

We adapt the work of Janssen and Segers (2014) to our framework. We consider a Markov chain
(Xt)t≥0 with values in R

d satisfying the recursive equation

Xt = Φ(X t−1, Zt), t ≥ 0 , (2.5)

where Φ : Rd × E 7→ R
d is measurable and (Zt) is an iid sequence taking values in a Polish

space E . We work under the following assumption, which is the vector scaling adaptation of
(Janssen and Segers, 2014, Condition 2.2). As above, we fix in advance the positive indices
α1, . . . , αd.

VS Condition for Markov chains: There exists a measurable function φ : Sd−1
∞ ×E 7→ R

d

such that, for all e ∈ E,
lim
x→∞

x−1/αΦ(x1/αs(x), e) → φ(s, e) ,

whenever s(x) → s in Sd−1
∞ . Moreover, if P(φ(s, Z0) = 0) > 0 for some s ∈ Sd−1

∞ then Z0 ∈ W
a.s. for a subset W ⊂ E such that, for all e ∈ W,

sup
‖y‖α≤x

‖Φ(y, e)‖α = O(x) x → ∞ .

We extend φ over Rd × E thanks to the relation

φ(v, e) =

{
‖v‖

1/α
α φ

(
‖v‖−1/α

α v, e
)

if v 6= 0,

0 if v = 0 .

We have the following result which extends Theorem 2.1 of Janssen and Segers (2014)

Theorem 2.4. If the Markov chain (X t) satisfies the recursion (2.5) with Φ satisfying the VS
condition and if the vector X0 is VSRV with positive indices α1, . . . , αd then (X t)t≥0 is a VSRV
process and its spectral tail process satisfies the relation

Θ̃t = φ(Θ̃t−1, Zt) , t ≥ 0 . (2.6)

started from Θ̃0, the spectral component of X0.

Proof. The result follows by an application of Theorem 2.1 in Janssen and Segers (2014) to the
Markov chain (Y t)t≥0 = (Xα

t )t≥0. We have Y 0 regularly varying since Xα
0 is VSRV. Moreover

Y t = Φ̃(Y t−1, Zt) , t ≥ 0 ,

with Φ̃(x, z) = (Φ(x1/α, z))α. As the VS condition for Markov chain is the vector scaling version
of the condition 2.2. of Janssen and Segers (2014) on Φ̃ associated to the limit φ̃((x, z)) =
φ((x1/α, z))α, i.e.

lim
x→∞

x−1Φ̃(xs(x), e) → φ̃(s, e)

whenever s(x) → s in Sd−1
∞ . We obtain that the spectral tail process of (Y t)t≥0 satisfies the

recursion
ΘY

t = φ̃(ΘY
t−1, Zt) , t ≥ 1 .

The desired result follows as φ̃((x, z)) = φ̃((x1/α, z))α and Θ̃
α

t = ΘY
t , t ≥ 0.

We are specially interested in Stochastic Recurrence Equations (SRE) corresponding to the
Markov chains

Xt = Φ(Xt−1, (M ,Q)t) = M tXt−1 +Qt , t ≥ 0 .

In this setting (M t) are iid random d× d matrices and (Qt) iid random vectors in R
d. We have
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Proposition 2.5. The SRE Markov chain (X t)t≥0 satisfies Condition VS for positive indices
α1, . . . , αd if and only if Mij = 0 a.s. for any (i, j) so that αi > αj. Then

φ
(
s, (M ,Q)

)
=
( d∑

j=1

Mij1αi=αj
sj

)
1≤i≤d

.

Proof. As x → ∞ and s(x) → s, we have

lim
x→∞

x−1/αΦ
(
(x1/α)s(x), (M ,Q)

)
= lim

x→∞
x−1/α

(
M(x1/αs(x)) +Q

)

= lim
x→∞

( d∑

j=1

Mijs(x)jx
1/αj−1/αi

)
1≤i≤d

.

Each coordinate converges to
∑d

j=1Mij1αi=αj
sj for any s ∈ Sd−1

∞ if and only if Mij = 0 a.s. for
any (i, j) so that αi > αj .

Remark 2.6. In case of distinct αi’s, it means that the dynamic tail process depends only on
the diagonal elements of M . In general, specifying M t to be diagonal, we ensure that if X0 is
VSRV then the SRE process is VSRV with

Θ̃t = M tΘ̃t−1, t ≥ 1 ,

whatever are the positive indices α1, . . . , αd.

3 The diagonal SRE with distinct coefficients

In this section we will show that the marginals of the diagonal SRE with distinct coefficients are
asymptotically independent. A standard argument reduces the discussion to the bivariate case.

More precisely, we consider the bivariate random recursive process Xt = M tXt−1 + Qt,
defined by X0 = 0 and

(
Xt,1

Xt,2

)
=

(
m1 0
0 m2

)
Mt

(
Xt−1,1

Xt−1,2

)
+Qt, (3.1)

where (Mt)t∈N are iid real-valued random variables, (Qt)t∈N are iid random vectors independent
of (Mt) while

0 < m1 < m2

are positive constants. We assume assumptions (A1) – (A6) to hold for i = 1, 2, which gives that

α1 > α2.

We are going to study partial sums converging to the random variables X1, X2 given by (1.2),
namely

Xn,i :=

n∑

k=1

mk−1
i M1 · · ·Mk−1Qk,i, i = 1, 2.

Note the distinction between the Markov chain (Xt,i) (the forward process) and the almost
surely convergent series (Xn,i) defined above (the backward process); see Letac (1986). Within
this section, we will always consider the backward process (Xn,i).

Under our assumptions, by the Kesten-Goldie-Theorem of Goldie (1991); Kesten (1973) ap-
plied to multiplicative factors with P(miM < 0) > 0, i = 1, 2, we have

lim
u→∞

uα1P(±X1 > u) = C1, lim
u→∞

uα2P(±X2 > u) = C2 (3.2)

for positive constants C1, C2. Note that C1 and C2 are the same for the left and right tails.
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3.1 Preliminaries

The asymptotic independence is proved studying the generation of extreme values in the marginal
SREs that are exponential random walks with negative drifts. Extremal values of an exponential
random walk occur after a change of measure, turning the negative drift into a positive one,
applied during a certain period of time. The proof is based on the fact that the periods of time
necessary for the exponential random walks to exhibit extremes are different on each marginals.
Thus the extremes among marginals are asynchronous. Using the explicit formulation of the
backward process we show that this asynchrony is responsible of the asymptotic independence
among marginals.

Let us define the cumulant generating function Λ(α) = log(E|M1|
α) for α > 0. Under

Assumption (A5), the distribution of log |M1| is non degenerate and Λ is a strictly convex function
on its domain of definition. On this domain one can define m(α) as the unique solution α > 0 of
the equation E[(m|M1|)

α] = 1, i.e. satisfying the relation

α log(m(α)) + Λ(α) = 0. (3.3)

The following quantity
µ(α) = E[log(m(α)|M1|)(m(α)|M1|)

α] ,

will play an important role in the proof of the asymptotic independence. It corresponds to the
positive drift under the change of measure. We have the relation

Lemma 3.1. The relation

α2

(
1 +

log(m(α2))− log(m(α1))

µ(α1)

)
< α1. (3.4)

is always satisfied for α2 < α1 in the domain of definition of Λ.

Proof. We rewrite the condition (3.4) as follows:

α2

(
1 +

log(m(α2))− log(m(α1))

µ(α1)

)
< α1

⇔ α2
log(m(α2))− log(m(α1))

α1 − α2
< µ(α1)

⇔
α1 log(m(α1))− α2 log(m(α2))

α2 − α1
+ log(m(α1)) < µ(α1)

⇔
Λ(α2)− Λ(α1)

α2 − α1
< µ(α1)− log(m(α1)) , (3.5)

identifying α1 log(m(α1)) = −Λ(α) using the identity (3.3). As Λ is infinitely differentiable on
its domain of definition we can replace the difference quotient by Λ′(ξ) for some ξ ∈ (α2, α1) due
to the intermediate value theorem. We further identify µ1− log(m1) as Λ

′(α1) and (3.5) becomes

Λ′(ξ) < Λ′(α1) with α1 > ξ.

Hence, the assertion follows as Λ is strictly convex.

3.2 Proof of the asymptotic independence

The asymptotic independence of (X1,X2) is proved assuming m2 > m1, which implies α1 > α2.
We denote µi = µ(αi) for i = 1, 2.

Theorem 3.2. Assume (A1)–(A6) for i = 1, 2. Then we have

lim
u→∞

P

(
|X2| > u1/α2

∣∣∣ |X1| > u1/α1

)
= 0,

i.e., |X1| and |X2| are asymptotically independent.
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Remark 3.3. In particular, ±X1 and ±X2 are asymptotically independent. Indeed, from (3.2)
we have

P

(
±Xi > u1/αi

)
∼

1

2
P

(
|Xi| > u1/αi

)
, i = 1, 2 ,

so that immediately we obtain as well

lim
u→∞

P

(
±X2 > u1/α2

∣∣∣ ±X1 > u1/α1

)
= 0 .

Proof. Thanks to the Kesten-Goldie theorem (see Eq. (3.2)) it is enough to prove

lim
u→∞

uP
(
|X2| > u1/α2 , |X1| > u1/α1

)
= 0. (3.6)

Step 1. We reduce to the study of a dominating sequence with nonnegative coefficients:

|Xn,i| ≤ X∗
n,i :=

n∑

k=1

mk−1
i |M1 · · ·Mk−1||Qk,i|, i = 1, 2.

We notice that X∗
i := limn→∞X∗

n,i satisfies the fixed point equation, in distribution,

X∗
i

law
= mi|M |X∗

i + |Qi| , i = 1, 2 .

In particular, thanks to (A1)–(A4), the Kesten-Goldie theorem, now used in the case of positive
coefficients, applies and yields

lim
u→∞

uP
(
X∗

2 > u1/α2

)
= C∗

2 > 0 lim
u→∞

uP
(
X∗

1 > u1/α1

)
= C∗

1 > 0. (3.7)

Note that the tail indices α1, α2 remain unchanged thanks to their definition in (A2). Since
|Xi| ≤ X∗

i , i = 1, 2, the result will follow from the relation

lim
u→∞

uP
(
X∗

2 > u1/α2 , X∗
1 > u1/α1

)
= 0.

Step 2. We gain additional control by introducing the first exit time for (X∗
n,1),

Tu := inf
{
n ∈ N : X∗

n,1 > u1/α1

}
.

As X∗
1 = supn≥0X

∗
n,1 we have {X∗

i > u1/α1} = {Tu < ∞}. By (3.7) we have

lim
u→∞

u · P(Tu < ∞) > 0. (3.8)

Thus, the desired result will follow from the relation

lim
u→∞

P

(
X∗

2 > u1/α2

∣∣∣ Tu < ∞
)

= 0. (3.9)

Introducing the following notation for partial sums,

X∗
j:m,i :=

m∑

k=j+1

m
k−(j+1)
i |Mj+1| · · · |Mk−1||Qk,i|, i = 1, 2, (3.10)

we have on the set {Tu < ∞},

X∗
2 = X∗

Tu,2 +m2
Tu |M1 · · ·MTu |X

∗
Tu:∞,2. (3.11)

The simple inclusion

{X∗
2 > s} ⊂

{
X∗

Tu,2 > s/2
}
∪
{
m2

Tu |M1 · · ·MTu |X
∗
Tu:∞,2 > s/2

}
=: I ∪ II

allows us to consider the contributions in (3.11) separately. The following lemma, to be proved
subsequently, is the crucial ingredient for evaluating the contributions of I and II.
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Lemma 3.4. For any ǫ > 0, define the set Cu(ǫ) as the intersection

{
Tu ≤ Lu

}
∩
{
X∗

Tu,1 ≤ u
1+ǫ
α1

}
∩
{

max
1≤k≤Lu

|Qk,2|

|Qk,1|
≤ uε/α1

}
∩
{
m2|MTu | ≤ uǫ

}

where Lu := log(u)/(µ1α1) + Cf(u), f(u) :=
√

log(u) · log(log(u)) and C is a (suitably large)
constant that can be chosen independent of ǫ.
Then it holds that

lim
u→∞

P

({
X∗

2 > u1/α2

}
∩ Cu(ǫ)

∣∣∣∣Tu < ∞
)
= lim

u→∞
P

(
X∗

2 > u1/α2

∣∣∣Tu < ∞
)

if one of the limit exists.

Step 3. Considering I, we have, using m2 > m1 and the controls provided by Cu(ε), that

X∗
Tu,2 ≤

(m2

m1

)Tu

max
1≤k≤Tu

|Qk,2|

|Qk,1|
X∗

Tu,1

≤
(m2

m1

)Lu

u(1+2ǫ)/α1

= exp
{(

log(m2)− log(m1)
)
Lu

}
u(1+2ǫ)/α1

≤ u
1
α1

(
1+

log(m2)−log(m1)
µ1

+3ǫ
)
. (3.12)

Here we have used that √
log(u) · log(log(u)) ≤ ε log u

for any fixed ε > 0, as soon as u is large enough. Abbreviate

η :=
1

α1

(
1 +

log(m2)− log(m1)

µ1
+ 4ǫ

)
.

From an application of Lemma 3.1, (3.4) ensures that η < 1/α2 (choose ǫ sufficiently small)
so that by (3.12),

{X∗
Tu,2 >

u1/α2

2
} ∩ Cu(ǫ) ⊂

{
uη ≥ X∗

Tu,2 >
u1/α2

2

}
= ∅

for u sufficiently large. It follows that the first term I in (3.11) does not contribute.

Step 4. Turning to II, we note that the multiplicative factor is almost the last summand in
X∗

Tu,2
, so we use the previous result to estimate on Cu(ǫ)

mTu

2 |M1 · · ·MTu | ≤

((m2

m1

)Tu−1
max

1≤k≤Tu−1

|Qk,2|

|Qk,1|
X∗

Tu,1

)
m2|MTu | ≤ uη ,

for u sufficiently large. Hence

P

({
mTu

2 |M1 · · ·MTu |X
∗
Tu:∞,2 >

1

2
u1/α2

}
∩ Cu(ǫ)

∣∣∣ Tu < ∞
)

≤ P

(
X∗

Tu:∞,2 >
1

2
u1/α2−η

∣∣∣Tu
∗ < ∞

)
= P

(
X∗

2 >
1

2
u1/α2−η

)
.

since X∗
Tu:∞,2 is independent of {Tu < ∞}. But as long as 1/α2 > η, which is ensured by (3.4),

the probability II tends to zero.
We conclude that

lim
u→∞

P

(
X∗

2 > u1/α2

∣∣∣Tu < ∞
)
= 0

as soon as (3.4) holds and the desired result follows.

11



3.3 Proof of Lemma 3.4

Fix ǫ > 0 and write Cu = Cu(ǫ).
Step 1. It is enough to show that limu→∞ P(Cc

u |Tu < ∞) = 0. Indeed, we can sandwich the
conditional probabilities as follows

P

(
X∗

2 > u1/α2

∣∣∣∣Tu < ∞
)

≥ P

({
X∗

2 > u1/α2

}
∩ Cu

∣∣∣∣Tu < ∞
)

= P

(
X∗

2 > u1/α2

∣∣∣Tu < ∞
)
− P

({
X∗

2 > u1/α2

}
∩ Cc

u

∣∣∣Tu < ∞
)

≥ P

(
X∗

2 > u1/α2

∣∣∣Tu < ∞
)
− P

(
Cc
u

∣∣∣Tu < ∞
)
.

Then the desired result follows by letting u → ∞. We will consider each of the four contributions
to Cc

u separately:

Cc
u =

{
Tu > Lu

}
∪
{
X∗

Tu,1 > u(1+ǫ)/α1

}

∪
{

max
1≤k≤Lu

|Qk,2|

|Qk,1|
> uε/α1

}
∪
{
m2|MTu | > uǫ

}

=A ∪B ∪D ∪ E.

By (3.8), the required assertion limu→∞ P (B|Tu < ∞) = 0 will as well follow from

lim
u→∞

u · P (B ∩ {Tu < ∞}) ≤ lim
u→∞

u · P (B) = 0.

Step 2. The negligibility of A is a direct consequence of (Buraczewski et al., 2016a, Lemma
4.3)) which provides that for a sufficiently large constant C,

lim
u→∞

P

(∣∣∣Tu −
log u

µ1α1

∣∣∣ ≥ Cf(u),

∣∣∣∣Tu < ∞

)
= 0 (3.13)

where f(u) =
√

log(u) · log(log(u)).
Turning toB, we have by (3.7) that limu→∞ uP(X∗

1 > u(1+ǫ)/α1) = 0 implying that limu→∞ uP(X∗
Tu,1

>

u(1+ǫ)/α1) = 0, since X∗
1 = supnX

∗
n,1.

D will be considered below; the neglibility of E is ensured by the independece of MTu and
Tu,

lim
u→∞

P
(
m2|MTu | > uǫ

∣∣Tu < ∞
)

= lim
u→∞

P (m2|M | > uǫ) = 0 (3.14)

Step 3. Now we turn to D. A union bound yields

P

(
max

1≤k≤Lu

|Qk,2|

|Qk,1|
> uε/α1 , Tu < ∞

)
≤

Lu∑

k=1

P

(
uε/α1 |Qk,1| < |Qk,2|, Tu < ∞

)
.

We decompose for any k ≥ 0

P(uε/α1 |Qk,1| < |Qk,2|, Tu < ∞) ≤ P(uε/α1 |Qk,1| < |Qk,2|,X
∗
1 > u1/α1)

≤ P

(
uε/α1 |Qk,1| < |Qk,2|,
∑

j 6=k

mj−1
1 |M1 · · ·Mj−1||Qj,1|+mk−1

1 |M1 · · ·Mk−1||Qk,1| > u1/α1

)
.

We bound this probability by the sum of two terms

P

(
uε/α1 |Qk,1| < |Qk,2|,

∑

j 6=k

mj−1
1 |M1 · · ·Mj−1||Qj,1| >

1

2
u1/α1

)

+P

(
uε/α1 |Qk,1| < |Qk,2|m

k−1
1 |M1 · · ·Mk−1||Qk,1| >

1

2
u1/α1

)
, (3.15)
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and have to show that both contributions, when summed over k = 0, . . . , Lu, are of order o(u
−1).

By independence, the first term in (3.15) is equal to

P(uε/α1 |Q1| < |Q2|) · P
(∑

j 6=k

mj−1
1 |M1 · · ·Mj−1||Qj,1| >

1

2
u1/α1

)

≤ P(uε/α1 |Q1| < |Q2|) · P
(
X∗

1 >
1

2
u1/α1/2

)
= o
(
(log(u)u)−1

)

thanks to the regular variation properties of X∗
1 and the assumption on |Q2|/|Q1|, see (3.7)

and (A6), respectively. Since Lu = O(log(u)), we may sum over k = 0, . . . , Lu and obtain a
contribution of order o(u−1), as required.

We estimate the second term in (3.15) thanks to Markov’s inequality of order α1/(1 + ε) <
κ < α1:

P

(
uε/α1 |Qk,1| < |Qk,2|, m

k−1
1 |M1 · · ·Mk−1||Qk,1| >

1

2
u1/α1

)

≤ P

(
mk−1

1 |M1 · · ·Mk−1||Qk,2| >
1

2
u(1+ε)/α1

)

≤
2κ
(
mκ

1E[|M |κ]
)k

E‖Q‖κ

uκ((1+ε)/α1)
.

As α1/(1 + εα1) < κ < α1 we have that mκ
1E[|M |κ] < 1 and conclude

∞∑

k=0

P

(
uε/α1 |Q1

k| < |Q2
k|,m

k−1
1 |M1 · · ·Mk−1||Q

1
k| > u1/α1/2

)

≤
∞∑

k=0

2k(mκ
1E[|M1|

κ])k E‖Q‖κ

uκ((1+ε)/α1)
= o(u−1) .

4 The diagonal SRE with coefficients that are equal

In this section we focus on the case where mi = m > 0 for any 1 ≤ i ≤ d so that

Xt = mMtXt−1 +Qt, t ∈ Z.

We can interprete the multiplicative factor mMt as multiplication with the random similarity
matrix mMtDiag(1, . . . , 1), thus we are in the framework of Buraczewski et al. (2009). From
there, we obtain the following result:

Theorem 4.1. Assume (A1)–(A5) for all 1 ≤ i ≤ d. Let X0 have the stationary distribution.
Then X0 is VSRV and (X t)t≥0 is a VSRV process of order α = (α, . . . , α), and its spectral tail
process satisfies the relation

Θ̃t = mMtΘ̃t−1, t ≥ 1.

Proof. By (Buraczewski et al., 2009, Theorem 1.6), there is a non-null Radon measure µ on
[−∞,∞]d \ {0} such that

xαP(x−1X0 ∈ ·)
v
→ µ, x → ∞.

[See (Buraczewski et al., 2016b, Theorem 4.4.21) for a reformulation of the quoted result which
is more consistent with our notation.] Hence, X0 is (standard) regularly varying and also VSRV
of order α = (α, . . . , α) since Θ0 and Θ̃0 coincide then.

The remaining assertions follow from a direct application of Proposition 2.5.
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In order to determine whether the components of X0 are asymptotically independent or
dependent, we are interested in information about the support of P(Θ̃0 ∈ ·). We write supp(Q)
for the support of the law of Q and span(E) for the linear space spanned by set E ⊂ R

d. Let
Sd−1
∞ denote the unit sphere in R

d with respect to ‖·‖α which coincides with the unit sphere for
the max-norm whatever is α.

Corollary 4.2. Under the assumptions of Theorem 4.1,

supp(Θ̃0) ⊂ span
(
supp(Q)

)
∩ Sd−1

∞ . (4.1)

If there is a group G of matrices, such that gQ
law
= Q for all g ∈ G, i.e., the law of Q is invariant

under the action of G, then supp(Θ̃0) is invariant under the action of G.
In particular, if the law of Q is rotationally invariant, then supp(Θ̃0) = Sd−1

∞ .

Proof. The first assertion follows immediately from the series representation of X0:

X0 =

∞∑

k=0

mk−1M1 · · ·Mk−1Qk,

where the right hand side is a sum of vectors in span
(
supp(Q)

)
.

If gQ
law
= Q, then

gX
law
= g

(
mMX +Q) = mMgX + gQ

law
= mM(gX) +Q,

i.e., the law of X satisfies the same equation as the law of gX. But the solution to X
law
=

mMX +Q is unique in law, hence gX
law
= X. Thus, the law of X is invariant under the action

of G, which implies the same invariance for its tail spectral measure P(Θ̃0 ∈ ·).

Finally, we provide sufficient conditions in order to have equality in (4.1).

Lemma 4.3. Assume (A1)–(A5). Then the following implications hold:

(a) If supp(M) is dense in R, then supp(Θ̃0) = span
(
supp(Q)

)
∩ Sd−1

∞ .

(b) If supp(Q) is dense in R
d, then supp(Θ̃0) = Sd−1

∞ .

Proof of Lemma 4.3. The proof consists of deriving a represention of supp(Θ0), from which both
implications can be read off. It is based on (Buraczewski et al., 2009, Remark 1.9), which gives
that the support of the spectral measure σ∞ with respect to the Euclidean norm is given by the
directions (subsets of the unit sphere Sd−1) in which the support of X0 is unbounded. More
precisely, consider the measures

σt(A) := P

(
‖X0‖2 > t,

X0

‖X0‖2
∈ A

)

Then supp(σ∞) =
⋂

t>0 supp(σt). The surprising part of this result is that all directions, in
which the support of X0 is unbounded, do matter. One does not need a lower bound on the
decay of mass at infinity. But if we know that the support of the spectral measure w.r.t. the
Euclidean norm is the intersection of a particular subspace with the unit sphere, we immediately
deduce the same for the spectral measure w.r.t the max-norm, i.e., for P(Θ0 ∈ ·).

Thus, to proceed, we have to study the support of X0. For simplicity, we work with m = 1,
which is equivalent to replacing M by mM . This allows us to write, for the remainder of the
proof, (m, q) for a realization of the random variables (M,Q). We identify a pair (m, q) with
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the affine mapping h(x) = mx + q, we say that h ∈ supp
(
(M,Q)

)
if (m, q) ∈ supp

(
(M,Q)

)
.

We consider the semigroup generated by mappings in supp
(
(M,Q)

)
,

G :=
{
h1 · · · hn : hi ∈ supp

(
(M,Q)

)
, 1 ≤ i ≤ n, n ≥ 1

}
.

Then, by (Buraczewski et al., 2009, Lemma 2.7)

supp
(
X0

)
= closure of

{
1

1−mq : (m, q) ∈ G, |m| < 1
}
.

[Again, see (Buraczewski et al., 2016b, Proposition 4.3.1) for a reformulation of the quoted result
which is more consistent with our notation.]

Since M and Q are independent, supp
(
(M,Q)

)
= supp(M)× supp(Q) and a general element

in G is of the form

h(x) = m1 · · ·mnx+
(
q1 +

n∑

k=2

m1 · · ·mk−1qk

)

with mi ∈ supp(M), qi ∈ supp(Q). Thus, a generic point in supp(X0) is of the form

1

1−m1 · · ·mn

(
q1 +

n∑

k=2

m1 · · ·mk−1qk

)
, (4.2)

with
mi ∈ supp(M), qi ∈ supp(Q), |m1 · · ·mn| < 1.

The prefactor in (4.2) is scalar, while the bracket term represents a linear combination of qk ∈
supp(Q). Now we can prove the two implications.

Concerning (a), if supp(M) is dense in R, then the bracket term in (4.2) can be chosen such
that its direction approximates any direction of y ∈ span

(
supp(Q)

)
. Then, given t > 0, mn can

be chosen arbitrarily small, such that |m1 . . . mn| < 1 and moreover, the norm of (4.2) exceeds
t. It follows that supp(σt) = span

(
supp(Q)

)
∩ Sd−1 for all t, which yields the assertion since

supp(σ∞) =
⋂

t>0 supp(σt).
Concering (b), if supp(Q) is dense in R

d, then the bracket term can be chosen such that it
approximates an arbitrary element of Rd and its modulus is larger than t, while (A1) entails that
there are mi ∈ supp(M) such that |m1 . . . mn| < 1.

5 The diagonal SRE - the general case

In this section we study the vector scaling regular variation properties of the diagonal SRE in
full generality. We suppose that coordinates are chosen in such a way that mi are increasing
(hence, αi decreasing) with i. We partition {1, . . . , d} = I1 ∪ I2 ∪ · · · ∪ Ir such that mi = mj if
and only if i, j ∈ Iℓ for some 1 ≤ ℓ ≤ r. We further denote by

R
|Iℓ| = {x ∈ R

d; xi = 0 for i /∈ Iℓ}

the (embedded) subspace corresponding with coordinates indexed by Iℓ and by

S|Iℓ|−1
∞ = {x ∈ R

d;max
i∈Iℓ

|xi| = 1 and xi = 0 for i /∈ Iℓ}

its max-norm-unit sphere. Note that if Iℓ = {i} is a singleton, then S
|Iℓ|−1
∞ = {ei,−ei}.

Theorem 5.1. Let (Xt) a stationary process satisfying the diagonal SRE (1.1) and assume that
(A1)–(A6) hold. Then (Xt) is a VSRV process satisfying

Supp(Θ̃0) ⊂ ∪1≤ℓ≤rS
|Iℓ|−1
∞ (5.1)

and
Θ̃t = MtDiag(m1, . . . ,md)Θ̃t−1 , t ≥ 1 . (5.2)
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Proof. We start by proving that (Xt) is a VSRV process. According to Proposition 2.5 and
Remark 2.6, it suffices to prove that X0 is VSRV, then (5.2) and the VSRV of (Xt) follow.

We use the following short-hand notation: For x ∈ R
d, let xℓ = (xi)i∈Iℓ , ‖x‖ℓ := maxi∈Iℓ |xi|

and α(ℓ) is the common tail index of all coordinates in Iℓ.
Let ǫ > 0, ℓ 6= k. By Eq. (3.6) of Theorem 3.2, it holds that

lim
x→∞

x · P
(
‖X0‖ℓ > ǫ ‖X0‖

1/α(ℓ)
α , ‖X0‖k > ǫ ‖X0‖

1/α(k)
α , ‖X0‖α > x

)

≤ lim
x→∞

x · P
(
‖X0‖ℓ > ǫx1/α(ℓ), ‖X0‖k > ǫx1/α(k)

)

≤
∑

i∈Iℓ, j∈Ik

lim
x→∞

x · P
(
|X0,i| > ǫx1/αi , |X0,j | > ǫx1/αj

)
= 0 (5.3)

We note from the results of Section 4 that there are positive constants cℓ and probability measures
ξℓ on the |Iℓ|-dimensional unit sphere (w.r.t. the max-norm), such that for all 1 ≤ ℓ ≤ r

lim
x→∞

x · P
(
‖X0‖ℓ > x1/α(ℓ), ‖X0‖

−1
ℓ X0,ℓ ∈ ·

)
= cℓ ξℓ(·). (5.4)

Applying the inclusion-exclusion principle, we have

lim
x→∞

x · P
(
‖X0‖α > x

)
= lim

x→∞
x · P

( ∨

1≤ℓ≤r

‖X0‖ℓ > x1/α(ℓ)
)

=
∑

1≤ℓ≤r

lim
x→∞

x · P
(
‖X0‖ℓ > x1/α(ℓ)

)
(5.5)

−
∑

1≤ℓ<k≤r

lim
x→∞

x · P
(
‖X0‖ℓ > x1/α(ℓ), ‖X0‖k > x1/α(k)

)
+ . . .

= c1 + · · ·+ cr =: c, (5.6)

since all intersection terms vanish asymptotically due to Eq. 5.3 (with ǫ = 1).
Thus we have shown that ‖X0‖α is regularly varying. We claim that

lim
x→∞

P

(
‖X0‖

−1/α
α X0 ∈ ·

∣∣∣ ‖X0‖α > x
)

=
1

c

∑

1≤ℓ≤r

cℓ ξ̃ℓ(·), (5.7)

where
ξ̃ℓ = δ01 ⊗ · · · ⊗ δ0ℓ−1

⊗ ξℓ ⊗ δ0ℓ+1
⊗ · · · ⊗ δ0r

is the extension of ξℓ to a measure on the unit sphere Sd−1
∞ in R

d by putting unit mass in the

origin of the additional coordinates. Hence, its support is contained in S
|Iℓ|−1
∞ . In particular,

(5.1) follows once this claim is proved.
By the Portmanteau lemma, it suffices to study closed sets. Note that for any closed set

B ⊂ Sd−1
∞ , it holds that

Bℓ,ǫ := {xℓ : x ∈ B, |xj | < ǫ for j /∈ Iℓ} → {xℓ : x ∈ B ∩ S|Iℓ|−1} =: Bℓ
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as ǫ → 0. Using (5.3) and the inclusion-exclusion principle, we obtain

lim sup
x→∞

x · P
(
‖X0‖

−1/α
α X0 ∈ B, ‖X0‖α > x

)

= lim sup
x→∞

x · P
(
‖X0‖

−1/α
α X0 ∈ B,

∨

1≤k≤r

‖X0‖k > x1/α(k)
)

=
∑

1≤ℓ≤r

lim sup
x→∞

x · P
(
‖X0‖

−1/α
α X0 ∈ B, ‖X0‖ℓ > x1/α(ℓ),

∧

k 6=ℓ

‖X0‖k ≤ ǫ ‖X0‖
1/α(k)
α

)

≤
∑

1≤ℓ≤r

lim
x→∞

x · P
(
‖X0‖

−1
ℓ X0,ℓ ∈ Bℓ,ǫ, ‖X0‖ℓ > x1/α(ℓ),

∧

k 6=ℓ

‖X0‖k ≤ ǫx1/α(k)
)

=
∑

1≤ℓ≤r

lim
x→∞

x · P
(
‖X0‖

−1
ℓ X0,ℓ ∈ Bℓ,ǫ, ‖X0‖ℓ > x1/α(ℓ)

)
=

∑

1≤ℓ≤r

cl ξℓ(Bℓ, ǫ)

This holds for all ǫ > 0. Since the sequence Bℓ,ǫ is decreasing, we conclude by the continuity of
ξℓ that

lim sup
x→∞

x · P
(
‖X0‖

−1/α
α X0 ∈ B, ‖X0‖α > x

)
≤

∑

1≤ℓ≤r

cℓ ξℓ(Bℓ)

=
∑

1≤ℓ≤r

cℓξ̃ℓ(B).

Combined with (5.6), this proves the weak convergence by an application of the Portmanteau
lemma.

Corollary 5.2. If the stationarity assumption (1.5) is satisfied, then the stationary solution
(Xt) of the diagonal BEKK-ARCH(1) model is a VSRV process satisfying

Supp(Θ̃0) = ∪1≤ℓ≤rS
|Iℓ|−1
∞

and
Θ̃t = MtDiag(m1, . . . ,md)Θ̃t−1 , t ≥ 1 . (5.8)

Proof. We have to check the assumptions of the previous theorem. This is readily done for (A1)-
(A5), see Pedersen and Wintenberger (2018) for details. Considering (A6), let σ2

i = Var(Qi) and
ρij be the correlation coefficient of Qi and Qj; EQi = EQj = 0. Then the ratio Qi/Qj has a

Cauchy distribution with location parameter a = ρij
σi

σj
and scale parameter b = σi

σj

√
1− ρ2ij ; see

e.g. (Curtiss, 1941, Eq. (3.3)). The Cauchy distributions are 1-stable, hence

P

( |Qi|

|Qj |
> u

)
= O(u)

and (A6) follows if I, J are singletons. To compare Q∗
I = maxi∈I |Qi| with Q∗

J = maxj∈J |Qj| we
use the simple bound (fix any j ∈ J)

{Q∗
I

Q∗
J

> u
}

⊂
⋃

i∈I

{ |Qi|

|Qk|
> u

}

to conclude that the probability of this event still decays as O(u). Thus (A6) also holds in this
case.

It remains to show that supp
(
Θ̃0

)
is equal to ∪1≤ℓ≤rS

|Iℓ|−1. Therefore, we can focus on a
particular block I and show that the spectral measure of the restriction (X0,i)i∈I has full support
S|I|−1.
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If I is a singleton, then this means nothing but that left and right tails are regularly varying
with the same index; which already follows from the Goldie-Kesten theorem, see (3.2). If |I| > 1
then we are in the setting of Section 4. The result follows from the first assertion of Lemma 4.3,
since M and (Qi)i∈I are independent Gaussians, and span

(
supp((Qi)i∈I)

)
= R

|I| since C, the
variance of Q, has full rank.

The multivariate regular variation properties of the BEKK-ARCH(1) process is quite simple
as the support is preserved by the multiplicative form of the tail process: The tail process is a
mixture of multiplicative random walks with distinct supports. Each support corresponds to the
span of the diagonal coefficients of the multiplicative matrix that are equal. From a risk analysis
point of view, it means that the extremal risks are dependent and of similar intensity only in
the directions of equal diagonal coefficients. Our multivariate analysis appeals for an extreme
financial risk analysis based on the estimation of the diagonal coefficients of the BEKK-ARCH(1)
process accompanied with a test of their equality.

The asymptotic independence between directions with distinct diagonal coefficients may be
seen as artificially due to the diagonal restriction imposed on the multiplicative matrices. How-
ever we suspect it is the case in any situation of VSRV Markov chains as in Proposition 2.5.
More precisely, we conjecture in the upper triangular matrices case:

Remark 5.3. Damek et al. (2019) study bivariate stochastic recurrence equations with upper
triangular matrices, including the following model:

(
Xt,1

Xt,2

)
=

(
m1 m12

0 m2

)
Mt

(
Xt−1,1

Xt−1,2

)
+Qt,

here (Mt) and (Qt) are iid, taking values in [0,∞) and [0,∞)2, respectively. Defining αi as before
by the condition E

(
miM1

)αi = 1 and assuming (A1)–(A5), they study the marginal tail behavior
under the assumption that m12 6= 0.

Let X0 have the stationary distribution. Since (Xt,2) satisfies a one-dimensional SRE, it
holds P (X0,2 > x) ∼ c2x

−α2 by the Kesten-Goldie theorem. Since all random variables are
nonnegative, it is clear that Xt,1 ≥ (m1MtXt−1,1 +Qt,1) ∨ (m12MtXt−1,2 + Qt,1); in particular,
the tails of X0,1 have to be at least as heavy as t−α1 which would be the case if we had m12 = 0
but also as heavy as t−α2 as m12 6= 0. In fact, it is proved in Damek et al. (2019) that

P (X0,1 > x) ∼

{
c1x

−α1 if α1 < α2 (case 1)

c̃1x
−α2 if α1 > α2 (case 2)

with positive constants c1, c̃1. In Case 2, X0,1 and X0,2 are obviously dependent (also asymp-
totically), while we conjecture that our methods will carry over to prove asymptotic indepen-
dence in Case 1. We expect similar results to hold in the higher-dimensional setup studied in
Matsui and Swiatkowski (2018).

6 Second order results

In this section, we work in the setup of Section 3, i.e., in the two-dimensional stationary distri-
bution with generic element (X1,X2) with distinct coefficients m1 < m2. As the marginals are
asymptotically independent, we need a second measure quantifying the extremal dependence.
The coefficient of tail dependence, 1/2 ≤ η ≤ 1, was introduced by Ledford and Tawn (1996)
assuming there exists a slowly varying function L so that

P(X1 > u1/α1 , X2 > u1/α2) ∼ u1/ηL(u) , u → ∞ .
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We were not able to prove such a result but rather two second-order results of the following form.
We prove that there are 0 < δ < ∆ such that

lim
u→∞

u1+δ
P(X1 > u1/α1 , X2 > u1/α2) = 0 , (6.1)

lim inf
u→∞

u1+∆
P(X1 > u1/α1 , X2 > u1/α2) > 0 . (6.2)

One gets the range 1/(1 + δ) < η ≤ 1/(1 + ∆) if the coefficient of tail dependence existed.
We decided not to treat the most general case here, but rather consider these two results as
illustration of the possible second-order behavior. The reason is that both proofs use as a crucial
ingredient deep results on the exceedance times of the a.s. convergent series Xn,1 and Xn,2. Such
estimates are not available in full generality, see Buraczewski et al. (2018, 2016a) for a discussion
and counterexamples. This is why we refrained from striving for optimal assumptions here.

6.1 Asymptotic independence

Our first result considers “second-order-independence”, i.e., (6.1). We start with a simple, but
useful observation.

Lemma 6.1. Consider a sequence of events Au, Bu, Du such that there is δ ≥ 0 with

lim
u→∞

u · P(Du) ∈ (0,∞), lim
u→∞

u1+δ · P(Bc
u) = 0. (6.3)

Then uδ · P
(
Au

∣∣Du

)
converges if and only if uδ · P

(
Au ∩Bu

∣∣Du

)
converges (as u → ∞) and if

either of the limits exists, it holds

lim
u→∞

uδ · P
(
Au

∣∣Du

)
= lim

u→∞
uδ · P

(
Au ∩Bu

∣∣Du

)
.

Proof. Using the elementary definition of conditional probabilities (the denominators are positive
by Assumption (6.3) as soon as u is large enough),

∣∣∣uδP
(
Au

∣∣Du

)
− uδP

(
Au ∩Bu

∣∣Du

)∣∣∣

=
∣∣∣
u1+δ

P
(
Au ∩Du

)

uP(Du)
−

u1+δ
P
(
Au ∩Bu ∩Du

)

uP(Du)

∣∣∣ ≤
u1+δ

P
(
Bc

u

)

uP(Du)
,

and the last expression tends to 0 by Assumption (6.3).

The proof of the subsequent result proceeds by exploiting further the estimates used in the
proof of Theorem 3.2. As a main ingredient, we need upper large deviation bounds for the
exceedence time Tu, which are only available under additional regularity assumptions on Q and
M .

Theorem 6.2. In addition to (A1), (A2), (A4), (A5), assume that Q = (1, 1)t and that the law
of M has compact support and is absolutely continuous with a bounded density. Then there exists
δ > 0 such that

lim
u→∞

uδ · P
(
X2 > u1/α2

∣∣∣X1 > u1/α1

)
= 0.

Proof. We will proceed along the same lines as in the proof of Theorem 3.2. Therefore, we will
abbreviate some arguments and focus on the new ingredients. Without loss of generality, we
may assume that M is nonnegative by studying dominating sequences (see Step 1 in the proof
of Theorem 3.2). Let

Tu = inf{n ∈ N : Xn,1 > u1/α1}
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Step 1. We introduce sets Bu satisfying

lim
u→∞

uδ · P
(
X2 > u1/α2

∣∣∣X1 > u1/α1

)

= lim
u→∞

uδ · P

({
X2 > u1/α2

}
∩Bu

∣∣∣∣Tu < ∞
)
, (6.4)

(given that one out of the two limits exists), chosen in such a way that they provide further
control over Tu and XTu,1.

In order to define Bu, consider the function Λ1(s) := logE
[
(m1M)s

]
, with Fenchel-Legendre

transform Λ∗
1(x) := sups∈R

(
sx−Λ1(s)

)
. For any 0 < µ < µ1 there is α such that µ = Λ′

1(α). For
such corresponding α and µ, it holds by a standard calculation in large deviation theory that

I(µ) :=
Λ∗
1(µ)

µ
= α−

Λ1(α)

Λ′
1(α)

> α1.

Choose 0 < µ∗ < µ1 and ǫ > 0 such that the following restrictions are satisfied:

α2

(
1 +

log(m2)− log(m1)

µ∗
+ ǫ
)
< α1, (6.5)

lim
u→∞

uI(µ∗)/α1P
(
X1 > u

1
α1

(1+ǫ))
= 0. (6.6)

This is possible by Lemma 3.1 and the fact that µ∗ and I(µ∗) deviate continuously from µ
and α1, respectively. The additional conditions of Theorem 6.2 ensure that the assumptions of
(Buraczewski et al., 2016a, Theorem 2.4) are satisfied, which yields

lim
u→∞

uI(µ∗)/α1P

(
Tu ≥

log u

α1µ∗

)
= 0. (6.7)

Note that Λ1 is a convex function with Λ′
1(0) < 0, hence µ∗ = Λ′

1(α∗) > 0 implies that there
is β < min{1, α∗} with Λ1(β) < Λ1(α∗). Thus, Condition (2.26) of (Buraczewski et al., 2016a,
Theorem 2.4) is satisfied.

Set

δ :=
I(µ∗)

α1
− 1 > 0, Bu :=

{
Tu <

log u

α1µ∗

}
∩
{
XTu,1 ≤ u

1
α1

(1+ǫ)
}
.

By Eq.s (6.6), (6.7) and the fact that XTu,1 ≤ X1, we have

lim
u→∞

u1+δ
P(Bc

u) = 0.

Thus (6.4) follows by an application of Lemma 6.1.

Step 2. Decomposing as in (3.11), we estimate

lim sup
u→∞

uδ · P

({
X2 > u1/α2

}
∩Bu

∣∣∣∣Tu < ∞
)

≤ lim sup
u→∞

uδ · P

({
XTu,2 >

1

2
u1/α2

}
∩Bu

∣∣∣∣Tu < ∞
)

(6.8)

+ lim sup
u→∞

uδ · P

({
mTu

2 M1 · · ·MTuXTu:∞,2 >
1

2
u1/α2

}
∩Bu

∣∣∣∣Tu < ∞
)
. (6.9)

On the set Bu,

XTu,2 ≤
(m2

m1

)Tu

XTu,1 ≤
(m2

m1

) log u
α1µ∗ u

1
α1

(1+ǫ)
= uη (6.10)
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with

η =
1

α1

(
1 +

log(m2)− log(m1)

µ∗
+ ǫ
)

<
1

α2
,

see Eq. (6.5). Hence the term in (6.8) vanishes.
Turning to (6.9), we have on Bu

mTu

2 M1 · · ·MTuXTu:∞,2 ≤ XTu,2 · (m2MTu) ·XTu:∞,2 ≤ uη ·XTu:∞,2

(recall that M and thus MTu have bounded support). Using the independence of XTu:∞,2 and
Tu, we find that the term in (6.9) is bounded by

lim sup
u→∞

uδ · P

(
XTu:∞,2 > u1/α2−η

∣∣∣∣Tu < ∞
)

= lim sup
u→∞

uδP

(
X2 > u1/α2−η

)
.

Since 1/α2 > η, we can choose 0 < δ∗ ≤ δ such that

δ∗ < 1− α2η or, equivalently,
α2

δ∗

( 1

α2
− η
)
> 1.

But then

lim
u→∞

uδ
∗

P

(
X2 > u1/α2−η

)
= 0.

We conclude [note that the previous estimates also hold with δ replaced by δ∗, since δ∗ ≤ δ] that

lim
u→∞

uδ
∗

· P
(
X2 > u1/α2

∣∣∣X1 > u
1
α1

)
= 0.

Remark 6.3. Considering the estimates (6.10) and (3.12), it would be possible to weaken the
assumptions on Q, in particular, allowing for random Q. However, we would have to require
that Q2/Q1 has very light tails in order to deduce that

lim
u→∞

uδP
(

max
1≤k≤Tu

|Q2,k|

|Q1,k|
> uǫ/α1

)
= 0.

The regularity assumptions on M are a requirement of the quoted result (Buraczewski et al.,
2016a, Theorem 2.4) and cannot be weakened without reproving that (very technical) result.

6.2 Asympotic Dependence

Finally, we consider the possibility of “second-order-dependence”, i.e., we study (6.2). Since we
will use bounds from below, we cannot work with dominating sequences here, so we have to
assume that M is positive. The requirement that Q is constant could be weakened by assuming
some lower bounds on the ratio of Q1/Q2.

Theorem 6.4. Assume (A1), (A2), (A4), (A5), that Q = (1, 1) and P(M > 0) = 1 and satisfies

EM s < ∞ for all s > 0. (6.11)

Then there is ∆ > 0 such that

lim inf
u→∞

u1+∆ · P
(
X2 > u1/α2 , X1 > u1/α1

)
> 0. (6.12)
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Proof. In contrast to the previous proofs, we now study the exceedence time of Xn,2,

Nu := inf{n : Xn,2 > u1/α2}

in order to bound XNu,1 from below by comparing it to XNu,2 on the set {Nu < ∞}.
Step 1. Once again, we want to control Nu and introduce the events

Bu :=
{
Nu ≤

log u

µ∗α2

}
,

where µ∗ is a parameter to be chosen below in Step 2, where we are going to show the existence
of ∆ > 0 with

lim inf
u→∞

u1+∆ · P(Bu) > 0. (6.13)

Using X1 ≥ XNu,1, it holds that

lim inf
u→∞

u1+∆ · P
(
X2 > u1/α2 , X1 > u1/α1

)

≥ lim inf
u→∞

u1+∆ · P
(
Bu ∩ { XNu,1 > u1/α1}

)

The result will follow from (6.13) if we can show that Bu implies XNu,1 > u1/α1 . Namely, on Bu

we have the following estimate

XNu,1 ≥
(m1

m2

)Nu

XNu,2

> exp
((

log(m1)− log(m2)
) log u
µ∗α2

)
· u1/α2 = uℵ

with

ℵ =
1

α2

(
1 +

log(m1)− log(m2)

µ∗

)

The proof concludes by
Step 2. We can choose µ∗ > 0 and ∆ > 0 satisfying (6.13) and such that ℵ ≥ 1

α1
.

The condition ℵ ≥ 1
α1

is equivalent to

µ∗ ≥
α2 log(m2)− α1 log(m1)

α1 − α2
+ log(m2). (6.14)

We choose µ∗ such that we have equality in (6.14). It follows from the calculations in the proof
of Lemma 3.1 that (for some ξ ∈ (α2, α1))

µ∗ =
α2 log(m2)− α1 log(m1)

α1 − α2
+ log(m2) = Λ′(ξ) + log(m2)

> Λ′(α2) + log(m2) = µ2.

Defining Λ2(s) = logE
[(
m2M)s

]
, this function is finite for all s > 0 due to (6.11) and moreover,

it is strictly convex; Λ′
2(α2) = µ2. Hence there is α∗ > α2 with Λ′

2(α
∗) = µ∗. In this case,

(Buraczewski et al., 2016a, Theorem 2.1, (2.14)) yields that

lim inf
u→∞

u
J(α∗)
α2 · P

(
Nu ≤

log u

µ∗α2

)
> 0 (6.15)

where

J(α∗) = α∗ −
Λ2(α

∗)

Λ′
2(α

∗)

and J(α∗) > α2 as soon as Λ′
2(α

∗) > 0, which is satisfied here. Thus, (6.13) holds with ∆ :=
J(α∗)/α2 − 1, and the assertion follows.
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