Asymptotic Independence ex machina - Extreme Value Theory for the Diagonal SRE Model - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Asymptotic Independence ex machina - Extreme Value Theory for the Diagonal SRE Model

Résumé

We consider multivariate stationary processes $(\boldsymbol{X}_t)$ satisfying a stochastic recurrence equation of the form $$ \boldsymbol{X}_t= \mathbb{ M}_t \boldsymbol{X}_{t-1} + \boldsymbol{Q}_t,$$ where $(\boldsymbol{Q}_t)$ are iid random vectors and $$ \mathbb{M}_t=\mathrm{Diag}(b_1+c_1 M_t, \dots, b_d+c_d M_t) $$ are iid diagonal matrices and $(M_t)$ are iid random variables. % It is known that under suitable assumptions the marginals $X_{t,i}$ of $\boldsymbol{X}_t$ are regularly varying. We obtain a full characterization of the Vector Scaling Regular Variation properties of $(\boldsymbol{X}_t)$, proving that some coordinates $X_{t,i}$ and $X_{t,j}$ are asymptotically independent even though all coordinates rely on the same random input $(M_t)$. We prove the asynchrony of extreme clusters among marginals with different tail indices. Our results are applied to some multivariate autoregressive conditional heteroskedastic (BEKK-ARCH and CCC-GARCH) processes and to log-returns. Angular measure inference shows evidences of asymptotic independence among marginals of diagonal SRE with different tail indices.
Fichier principal
Vignette du fichier
Asynchrony.pdf (511.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02591409 , version 1 (15-05-2020)
hal-02591409 , version 2 (06-10-2021)
hal-02591409 , version 3 (04-01-2022)

Identifiants

Citer

Sebastian Mentemeier, Olivier Wintenberger. Asymptotic Independence ex machina - Extreme Value Theory for the Diagonal SRE Model. 2021. ⟨hal-02591409v2⟩
150 Consultations
215 Téléchargements

Altmetric

Partager

More