Hölder-logarithmic stability in Fourier synthesis - Archive ouverte HAL
Article Dans Une Revue Inverse Problems Année : 2020

Hölder-logarithmic stability in Fourier synthesis

Résumé

We prove a Hölder-logarithmic stability estimate for the problem of finding a sufficiently regular compactly supported function v on R^d from its Fourier transform Fv given on [−r, r]^d. This estimate relies on a Hölder stable continuation of Fv from [−r, r]^d to a larger domain. The related reconstruction procedures are based on truncated series of Chebyshev polynomials. We also give an explicit example showing optimality of our stability estimates.
Fichier principal
Vignette du fichier
HL_Fourier_HAL_Final.pdf (343.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02562474 , version 1 (04-05-2020)
hal-02562474 , version 2 (11-11-2020)

Identifiants

Citer

Mikhail Isaev, Roman G Novikov. Hölder-logarithmic stability in Fourier synthesis. Inverse Problems, 2020, 36 (12), 125003(17 pp.). ⟨10.1088/1361-6420/abb5df⟩. ⟨hal-02562474v2⟩
162 Consultations
146 Téléchargements

Altmetric

Partager

More