Hölder-logarithmic stability in the Fourier analysis - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Hölder-logarithmic stability in the Fourier analysis

Résumé

We prove a Hölder-logarithmic stability estimate for the problem of finding a sufficiently regular compactly supported function v on R^d from its Fourier transform Fv given on [−r, r]^d. This estimate relies on a Hölder stable continuation of Fv from [−r, r]^d to a larger domain. The related reconstruction procedures are based on truncated series of Chebyshev polynomials. We also give an explicit example showing optimality of our stability estimates.
Fichier principal
Vignette du fichier
HLS_Fourier.pdf (326.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02562474 , version 1 (04-05-2020)
hal-02562474 , version 2 (11-11-2020)

Identifiants

  • HAL Id : hal-02562474 , version 1

Citer

Mikhail Isaev, Roman Novikov. Hölder-logarithmic stability in the Fourier analysis. 2020. ⟨hal-02562474v1⟩
162 Consultations
146 Téléchargements

Partager

More