Hölder-logarithmic stability in the Fourier analysis
Résumé
We prove a Hölder-logarithmic stability estimate for the problem of finding a sufficiently regular compactly supported function v on R^d from its Fourier transform Fv given on [−r, r]^d. This estimate relies on a Hölder stable continuation of Fv from [−r, r]^d to a larger domain. The related reconstruction procedures are based on truncated series of Chebyshev polynomials. We also give an explicit example showing optimality of our stability estimates.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...