Nonparametric Estimation for I.I.D. Paths of Fractional SDE
Résumé
This paper deals with nonparametric projection estimators of the drift function computed from independent continuous observations, on a compact time interval, of the solution of a stochastic differential equation driven by the fractional Brownian motion. A projection least-squares estimator is defined and a $\mathbb L^2$-type risk bound is proved for it. The consistency and rate of convergence are established for these estimators in the case of the compactly supported trigonometric basis or the $\mathbb R$-supported Hermite basis.
Fichier principal
Nonparametric_Estimation_for_IID_Paths_of_Fractional_SDE.pdf (561.53 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...