Nonparametric Estimation for I.I.D. Paths of Fractional SDE - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Nonparametric Estimation for I.I.D. Paths of Fractional SDE

Résumé

This paper deals with nonparametric projection estimators of the drift function computed from independent continuous observations, on a compact time interval, of the solution of a stochastic differential equation driven by the fractional Brownian motion. A projection least-squares estimator is defined and a $\mathbb L^2$-type risk bound is proved for it. The consistency and rate of convergence are established for these estimators in the case of the compactly supported trigonometric basis or the $\mathbb R$-supported Hermite basis.
Fichier principal
Vignette du fichier
Nonparametric_Estimation_for_IID_Paths_of_Fractional_SDE.pdf (561.53 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02532339 , version 1 (04-04-2020)
hal-02532339 , version 2 (31-05-2021)

Identifiants

  • HAL Id : hal-02532339 , version 1

Citer

Fabienne Comte, Nicolas Marie. Nonparametric Estimation for I.I.D. Paths of Fractional SDE. 2020. ⟨hal-02532339v1⟩
279 Consultations
214 Téléchargements

Partager

More