Nonparametric Estimation for I.I.D. Paths of Fractional SDE - Archive ouverte HAL
Article Dans Une Revue Statistical Inference for Stochastic Processes Année : 2021

Nonparametric Estimation for I.I.D. Paths of Fractional SDE

Fabienne Comte
Nicolas Marie

Résumé

This paper deals with nonparametric estimators of the drift function $b$ computed from independent continuous observations, on a compact time interval, of the solution of a stochastic differential equation driven by the fractional Brownian motion (fSDE). First, a risk bound is established on a Skorokhod's integral based least squares oracle $\widehat b$ of $b$. Thanks to the relationship between the solution of the fSDE and its derivative with respect to the initial condition, a risk bound is deduced on a calculable approximation of $\widehat b$. Another bound is directly established on an estimator of $b'$ for comparison. The consistency and rates of convergence are established for these estimators in the case of the compactly supported trigonometric basis or the $\mathbb R$-supported Hermite basis.
Fichier principal
Vignette du fichier
Nonparametric_Estimation_for_IID_Paths_of_Fractional_SDE.pdf (597.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02532339 , version 1 (04-04-2020)
hal-02532339 , version 2 (31-05-2021)

Identifiants

Citer

Fabienne Comte, Nicolas Marie. Nonparametric Estimation for I.I.D. Paths of Fractional SDE. Statistical Inference for Stochastic Processes, 2021, 24 (3), pp.669-705. ⟨10.1007/s11203-021-09246-4⟩. ⟨hal-02532339v2⟩
277 Consultations
207 Téléchargements

Altmetric

Partager

More