Connected algebraic groups acting on three-dimensional Mori fibrations
Résumé
We study the connected algebraic groups acting on Mori fibrations $X \to Y$ with $X$ a rational threefold and $\mathrm{dim}(Y) \geq 1$. More precisely, for these fibre spaces we consider the neutral component of their automorphism groups and study their equivariant birational geometry. This is done using, inter alia, minimal model program and Sarkisov program and allows us to determine the maximal connected algebraic subgroups of $\mathrm{Bir}(\mathbb{P}^3)$, recovering most of the classification results of Hiroshi Umemura in the complex case.
Domaines
Géométrie algébrique [math.AG]
Fichier principal
Connected_algebraic_groups_acting_on_3-dimensional Mori_fibrations.pdf (906.81 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|