Inexact First-Order Primal-Dual Algorithms - Archive ouverte HAL
Article Dans Une Revue Computational Optimization and Applications Année : 2020

Inexact First-Order Primal-Dual Algorithms

Résumé

We investigate the convergence of a recently popular class of first-order primal-dual algorithms for saddle point problems under the presence of errors in the proximal maps and gradients. We study several types of errors and show that, provided a sufficient decay of these errors, the same convergence rates as for the error-free algorithm can be established. More precisely, we prove the (optimal) O(1/N) convergence to a saddle point in finite dimensions for the class of non-smooth problems considered in this paper, and prove a O(1/N^2) or even linear O(θ^N) convergence rate if either the primal or dual objective respectively both are strongly convex. Moreover we show that also under a slower decay of errors we can establish rates, however slower and directly depending on the decay of the errors. We demonstrate the performance and practical use of the algorithms on the example of nested algorithms and show how they can be used to split the global objective more efficiently.
Fichier principal
Vignette du fichier
inex_pd.pdf (788.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02489330 , version 1 (24-02-2020)

Identifiants

Citer

Julian Rasch, Antonin Chambolle. Inexact First-Order Primal-Dual Algorithms. Computational Optimization and Applications, 2020, 76, pp.381--430. ⟨10.1007/s10589-020-00186-y⟩. ⟨hal-02489330⟩
132 Consultations
173 Téléchargements

Altmetric

Partager

More