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Abstract We investigate the convergence of a recently popular class of first-
order primal-dual algorithms for saddle point problems under the presence of
errors in the proximal maps and gradients. We study several types of errors and
show that, provided a sufficient decay of these errors, the same convergence
rates as for the error-free algorithm can be established. More precisely, we
prove the (optimal) O (1/N) convergence to a saddle point in finite dimensions
for the class of non-smooth problems considered in this paper, and prove a
O
(
1/N2

)
or even linear O

(
θN
)

convergence rate if either the primal or dual
objective respectively both are strongly convex. Moreover we show that also
under a slower decay of errors we can establish rates, however slower and
directly depending on the decay of the errors. We demonstrate the performance
and practical use of the algorithms on the example of nested algorithms and
show how they can be used to split the global objective more efficiently.

Keywords first-order primal-dual algorithm · inexact proximal operator ·
nested algorithms · convex optimization

1 Introduction

The numerical solution of nonsmooth optimization problems and the acceler-
ation of their convergence has been regarded a fundamental issue in the past
ten to twenty years. This is mainly due to the development of image recon-
struction and processing, data science and machine learning which require to
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solve large and highly nonlinear minimization problems. Two of the most pop-
ular approaches are forward-backward splittings [42,23,22], in particular the
FISTA method [8,7], and first-order primal-dual methods, first introduced in
[54,32] and further studied in [15,17]. The common thread of all these meth-
ods is that they split the global objective into many elementary bricks which,
individually, may be “easy” to optimize.

In their original version, all the above mentioned approaches require that
the mathematical operations necessary in every step of the respective algo-
rithms can be executed without errors. However, one might stumble over
situations in which these operations can only be performed up to a certain
precision, e.g. due to an erroneous computation of a gradient or due to the
application of a proximal operator lacking a closed-form solution. Examples
where this problem arises are TV-type regularized inverse problems [7,6,33,59,
30] or low-rank minimization and matrix completion [14,44]. To address this
issue, there has been a lot of work investigating the convergence of proximal
point methods [57,39,36,24,58,37], where the latter two also prove rates, and
proximal forward-backward splittings [23] under the presence of errors. The
objectives of these publications reach from general convergence proofs [43,53,
21,64,34] and convergence up to some accuracy level [47,26,27] to convergence
rates in dependence of the errors [60,61,5] also for the accelerated versions in-
cluding the FISTA method. The recent paper [9] follows a similar approach
to [61], however extending also to nonconvex problems using variable metric
strategies and linesearch.

For the recently popular class of first-order primal-dual algorithms men-
tioned above the list remains short: to the best of our knowledge the only work
which considers inaccuracies in the proximal operators for this class of algo-
rithms is the one of Condat [25], who explicitly models errors and proves con-
vergence under mild assumptions on the decay of the errors. However, he does
not show any convergence rates. We must also mention Nemirovski’s approach
in [48] which is an extension of the extragradient method. This saddle-point
optimization algorithm converges with an optimal O(1/N) convergence rate
as soon as a particular inequality is satisfied at each iteration, possibly with a
controlled error term (cf. Prop 2.2 in [48]).

The goal of this paper is twofold: Most importantly, we investigate the
convergence of the primal-dual algorithms presented in [15,17] for problems of
the form

min
x∈X

max
y∈Y

〈Kx, y〉+ f(x) + g(x)− h∗(y),

for convex and lower semicontinuous g and h and convex and Lipschitz dif-
ferentiable f , with errors occurring in the computation of ∇f and the prox-
imal operators for g and h∗. Following the line of the preceding works on
forward-backward splittings, we consider the different notions of inexact prox-
imal points used in [60] and extended in [58,61,5] and, assuming an appro-
priate decay of the errors, establish the convergence rates of [15,17] also for
perturbed algorithms. More precisely, we prove the well-known O (1/N) rate
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for the basic version, a O
(
1/N2

)
rate if either f, g or h∗ are strongly convex,

and a linear convergence rate in case both the primal and dual objective are
strongly convex. Moreover we show that also under a slower decay of errors
we can establish rates, however unsurprisingly slower depending on the errors.

In the spirit of [61] for inexact forward-backward algorithms, the second
goal of this paper is to provide an interesting application for such inexact
primal-dual algorithms. We put the focus on situations where one takes the
path of inexactness deliberately in order to split the global objective more
efficiently. A particular instance are problems of the form

min
x

h(K1x) + g(K2x) = min
x

max
y
〈y,K1x〉+ g(K2x)− h∗(y). (1)

A popular example is the TV-L1 model with some imaging operator K1, where
g and h are chosen to be L1-norms and K2 = ∇ is a gradient. It has e.g been
studied analytically by [2,3,4] and subsequently by [50,51,38,19]. However,
due to the nonlinearity and nondifferentiability of the involved terms, solutions
of the model are numerically hard to compute. One can find a variety of
approaches to solve the TV-L1 model, reaching from (smoothed) gradient
descent [19] over interior point methods [35], primal-dual methods using a
semi-smooth Newton method [28] to augmented Lagrangian methods [31,62].
Interestingly, the inexact framework we propose in this paper provides a very
simple and intuitive algorithmic approach to the solution of the TV-L1 model.
More precisely, applying an inexact primal-dual algorithm to formulation (1),
we obtain a nested algorithm in the spirit of [7,20,6,33,59,61,30],

yn+1 = proxσh∗(yn + σK1(xn+1 + θ(xn+1 − xn))),

xn+1 = proxτ(g◦K2)(x
n − τK∗1yn+1),

where proxσh∗ denotes the proximal map with respect to h∗ and step size σ
(cf. Section 2). It requires to solve the inner subproblem of the proximal step
with respect to g ◦ K2, i.e. a TV-denoising problem, which does not have a
closed-form solution but has to be solved numerically. It has been observed in
[7] that, using this strategy on the primal TV-L2 deblurring problem can cause
the FISTA algorithm to diverge if the inner step is not executed with sufficient
precision. As a remedy, the authors of [61] demonstrated that the theoretical
error bounds they established for inexact FISTA can also serve as a criterion
for the necessary precision of the inner proximal problem and hence make
the nested approach viable. We show that the bounds for inexact primal-dual
algorithms established in this paper can be used to make the nested approach
viable for entirely non-differentiable problems such as the TV-L1 model, while
the results of [61] for partly smooth objectives can also be obtained as a special
case of the accelerated versions.

In the context of inexact and nested algorithms it is worthwhile mentioning
the very recent ‘Catalyst’ framework [41,40], which uses nested inexact proxi-
mal point methods to accelerate a large class of generic optimization problems
in the context of machine learning. The inexactness criterion applied there is
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the same as in [60,5]. Our approach, however, is much closer to [60,61,5], stat-
ing convergence rates for perturbed algorithms, while [41,40] focus entirely on
nested algorithms, which we only consider as a particular instance of perturbed
algorithms in the numerical experiments.

The remainder of the paper is organized as follows: In the next section
we introduce the notions of inexact proxima that we will use throughout the
paper. In the following Section 3 we formulate inexact versions of the primal-
dual algorithms presented in [15] and [17] and prove their convergence includ-
ing rates depending on the decay of the errors. In the numerical Section 4
we apply the above splitting idea for nested algorithms to some well-known
imaging problems and show how inexact primal-dual algorithms can be used
to improve their convergence behavior.

2 Inexact computations of the proximal point

In this section we introduce and discuss the idea of the proximal point and
several ways for its approximation. For a proper, convex and lower semicon-
tinuous function g : X → R̄ mapping from a Hilbert space X to the extended
real line R̄ = R∪ {∞} and y ∈ X the proximal point [46,45,55,57] is given by

proxτg(y) = arg min
x∈X

{
1

2τ
‖x− y‖2 + g(x)

}
. (2)

Since g is proper we directly obtain proxτg(y) ∈ domg. The 1/τ -strongly
convex mapping proxτg : X → X is called proximity operator of τg. Letting

Gτ : X → R̄, x 7→ 1

2τ
‖x− y‖2 + g(x) (3)

be the proximity function, the first-order optimality condition for the proxi-
mum gives different characterizations of the proximal point:

z = proxτg(y) ⇐⇒ 0 ∈ ∂Gτ (z) ⇐⇒ y − z
τ
∈ ∂g(z). (4)

Based on these equivalences we introduce four different types of inexact com-
putations of the proximal point, which are differently restrictive. Most have
already been considered in literature and we give reference next to the defi-
nitions. We like to recommend [58,61] for some illustrations of the different
notions in case of a projection. We start with the first expression in (4).

Definition 1 Let ε ≥ 0. We say that z ∈ X is a type-0 approximation of the
proximal point proxτg(y) with precision ε if

z ≈ε0 proxτg(y)
def⇐⇒ ‖z − proxτg(y)‖ ≤

√
2τε.
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This refers to choosing a proximal point from the
√

2τε-ball around the true
proximum. It is important to notice that a type-0 approximation is not nec-
essarily feasible, i.e. it can occur that z /∈ domg. This can easily be verified
e.g. for g being the indicator function of a convex set, and requires us to treat
this approximation slightly differently from the following ones in Appendix
A.2. Observe that it is easy to check a posteriori the precision of a type-0
approximation provided ∂g is easy to evaluate. Indeed, if e ∈ τ∂g(z) + z − y,
standard estimates show that ‖z − proxτg(y)‖ ≤ ‖e‖ and z ≈ε0 proxτg(y) for
ε = ‖e‖2/(2τ).

In order to relax the second or third expression in (4), we need the notion
of an ε-subdifferential of g : X → R̄ at z ∈ X :

∂εg(z) := {p ∈ X | g(x) ≥ g(z) + 〈p, x− z〉 − ε ∀x ∈ X}.

As a direct consequence of the definition we obtain a notion of ε-optimality

0 ∈ ∂εg(z) ⇐⇒ g(z) ≤ inf g + ε. (5)

Based on this and the second expression in (4), we define a second notion
of an inexact proximum. It has e.g. been considered in [60,5] to prove the
convergence of inexact proximal gradient methods under the presence of errors.

Definition 2 Let ε ≥ 0. We say that z ∈ X is a type-1 approximation of the
proximal point proxτg(y) with precision ε if

z ≈ε1 proxτg(y)
def⇐⇒ 0 ∈ ∂εGτ (z).

Hence, by (5), a type-1 approximation minimizes the energy of the proximity
function (3) up to an error of ε. It turns out that a type-0 approximation is
weaker than a type-1 approximation:

Lemma 1 Let z ≈ε1 proxτg(y). Then z ∈ domg and

‖z − proxτg(y)‖ ≤
√

2τε,

that is z ≈ε0 proxτg(y).

The result is easy to verify and can be found e.g. in [57,36,58]. An even more
restrictive version of an inexact proximum can be obtained by relaxing the
third expression in (4), which has been introduced in [39] and subsequently
been used in [24,58] in the context of inexact proximal point methods.

Definition 3 Let ε ≥ 0. We say that z ∈ X is a type-2 approximation of the
proximal point proxτg(y) with precision ε if

z ≈ε2 proxτg(y)
def⇐⇒ y − z

τ
∈ ∂εg(z).
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Letting φτ (z) = ‖z − y‖2/(2τ), the following characterization from [58] of the
ε-subdifferential of the proximity function Gτ = g + φτ sheds light on the
difference between a type-1 and type-2 approximation:

∂εGτ (z) =
⋃

0≤ε1+ε2≤ε

∂ε1g(z) + ∂ε2φτ (z)

=
⋃

0≤ε1+ε2≤ε

∂ε1g(z) +

{
z − y − e

τ
: ‖e‖ ≤

√
2τε2

}
. (6)

Equation (6) decomposes the error in the ε-subdifferential of Gτ into two parts
related to g respectively φτ . As a consequence, for a type-1 approximation it
is not clear how the error is distributed between g or φτ , while for a type-2
approximation the error occurs solely in g. Hence a type-2 approximation can
be seen as an extreme case of a type-1 approximation with ε2 = 0.

In view of the decomposition (6), we define a fourth notion of an inexact
proximum as the extreme case ε1 = 0, which has been considered in e.g. [57]
and [36].

Definition 4 Let ε ≥ 0. We say that z ∈ X is a type-3 approximation of the
proximal point proxτg(y) with precision ε if

z ≈ε3 proxτg(y)
def⇐⇒ ∃e ∈ X , ‖e‖ ≤

√
2τε : z = proxτg (y + e).

Definition 4 gives the notion of a “correct” output for an incorrect input of the
proximal operator. Being the two extreme cases, type-2 and type-3 proxima
are also proxima of type 1. The decomposition (6) further leads to the following
lemma from [60], which allows to treat the type-1, -2 and -3 approximations
in the same setting.

Lemma 2 If z ∈ X is a type-1 approximation of proxτg(y) with precision ε,

then there exists r ∈ X with ‖r‖ ≤
√

2τε such that

(y − z − r)/τ ∈ ∂εg(z).

Now note that letting r = 0 in Lemma 2 gives a type-2 approximation, replac-
ing the ε-subdifferential by a normal one gives a type-3 approximation. We
mention that there exist further notions of approximations of the proximal
point, e.g. used in [36], and refer to [61, Section 2.2] for a compact discussion.

Even tough we prove our results for different types of approximations,
the most interesting one in terms of practicability is the approximation of
type 2. This is due to the following insights obtained by [61]: Without loss of
generality let g(x) = w(Bx), with proper, convex and l.s.c. w : Z → R̄ and
linear B : X → Z. Then the calculation of the proximum requires to solve

min
x∈X

Gτ (x) = min
x∈X

1

2τ
‖x− y‖2 + w(Bx). (7)
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Now if there exists x0 ∈ X such that g is continuous in Bx0, the Fenchel-
Moreau-Rockafellar duality formula [63, Corollary 2.8.5] states that

min
x∈X

Gτ (x) = −min
z∈Z

τ

2
‖B∗z‖2 − 〈B∗z, y〉+ w∗(z),

where we refer to the right hand side as the “dual” problem Wτ (z). Fur-
thermore we can always recover the primal solution x̂ from the dual solution
ẑ via the relation x̂ = y − B∗ẑ. Most importantly, we obtain that x̂ and
ẑ solve the primal respectively dual problem if and only if the duality gap
G(x, z) := Gτ (x) +Wτ (z) vanishes, i.e.

0 = min
(x,z)∈X×Z

Gτ (x) +Wτ (z) = G(x̂, ẑ).

The following result in [61] states that the duality gap can also be used as a
criterion to assess admissible type-2 approximations of the proximal point:

Proposition 1 Let z ∈ Z. Then

G(y −B∗z, z) ≤ ε⇒ y −B∗z ≈ε2 proxτg(y).

Proposition 1 has an interesting implication: if one can construct a feasible dual
variable z during the solution of (7), it is easy to check the admissibility of the
corresponding primal variable x to be a type-2 approximation by evaluating
the duality gap. We shall make use of that in the numerical experiments in
Section 4.

Of course, since a type-2 approximation automatically is a type-1 and
type-0 approximation, the above argumentation is also valid to find feasible
approximations in these cases, which however is of no use. Since type-1 and
type-0 approximations are technically less restrictive, it stands to find criteria
on how to evaluate when an approximation is of such type without already
being an approximation of type 2. An example of a type-0 approximation may
be found in problems where the desired proximum is the projection onto the
intersection of convex sets. The (inexact) proximum may be computed in a
straightforward fashion using Dykstra’s algorithm [29], which has e.g. been
done in [11] or [1,17, Ex. 7.7] for Mumford-Shah-type segmentation problems.
Depending on the involved sets, one may get an upper bound on the maximal
distance of the current iterate of Dykstra’s algorithm to these sets, obtaining
a bound on how far the current iterate is from the true proximum. These
considerations, however, require to be tested in the respective cases.

3 Inexact primal-dual algorithms

We can now prove the convergence of some primal-dual algorithms under the
presence of the respective error. We start with the type-1, -2 and -3 approx-
imations and outline in Appendix A.2 how to get a grip also on the type-0
approximation. The convergence analysis in this chapter is based on a combi-
nation of techniques derived in previous works on the topic: similar results on
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the convergence of exact primal-dual algorithms can be found e.g. in [15,18]
and [17], the techniques to obtain error bounds for the inexact proximum are
mainly taken from [60] and [5]. We consider the saddle-point problem

min
x∈X

max
y∈Y

L(x, y) = 〈Kx, y〉+ f(x) + g(x)− h∗(y), (8)

where we make the following assumptions:

1. K : X → Y is a linear and bounded operator between Hilbert spaces X
and Y with norm L = ‖K‖,

2. f : X → R̄ is proper, convex, lower semicontinuous and differentiable with
Lf -Lipschitz gradient,

‖∇f(x)−∇f(x′)‖ ≤ Lf‖x− x′‖ for all x, x′ ∈ domf,

3. g, h : X → R̄ are proper, lower semicontinuous and convex functions,
4. problem (8) admits at least one solution (x?, y?) ∈ X × Y.

It is well-known that taking the supremum over y in L(x, y) leads to the
corresponding “primal” formulation of the saddle-point problem (8)

min
x∈X

f(x) + g(x) + h(Kx),

which for a lot of variational problems might be the starting point. Analo-
gously, taking the infimum over x leads to the dual problem. Given an al-
gorithm producing iterates (xN , yN ) for the solution of (8), the goal of this
section is to obtain estimates

L(xN , y)− L(x, yN ) ≤ C(x, y, x0, y0)

Nα
(9)

for α > 0 and (x, y) ∈ X ×Y. If (x, y) = (x?, y?) is a saddle point, the left hand
side vanishes if and only if the pair (xN , yN ) is a saddle point itself, yielding
a convergence rate in terms of the primal-dual objective in O (1/Nα). Under
mild additional assumptions one can then derive estimates e.g. for the error in
the primal objective. If the supremum over y in L(xN , y) is attained at some
ỹ, one easily sees that

f(xN ) + g(xN ) + h(KxN )− [f(x?) + g(x?) + h(Kx?)] (10)

= sup
y∈Y

L(xN , y)− sup
y∈Y

L(x?, y) ≤ L(xN , ỹ)− L(x?, yN ) ≤ C(x?, ỹ, x0, y0)

Nα
,

giving a convergence estimate for the primal objective.
In the original versions of primal-dual algorithms (e.g. [15,18]), the authors

require h∗ and g to have a simple structure such that their proximal operators
(2) can be sufficiently easily evaluated. A particular feature of most of these
operators is that they have a closed-form solution and can hence be evaluated
exactly. We study the situation where the proximal operators for g or h∗ can
only be evaluated up to a certain precision in the sense of Section 2, and as
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well the gradient of f may contain errors. As opposed to the general iteration
of an exact primal-dual algorithm [18]

ŷ = proxσh∗(ȳ + σKx̃),

x̂ = proxτg(x̄− τ(K∗ỹ +∇f(x̄))),
(11)

where (x̄, ȳ) and (x̃, ỹ) are the previous points, and (x̂, ŷ) are the updated exact
points, we introduce the general iteration of an inexact primal-dual algorithm

y̌ ≈δ2 proxσh∗(ȳ + σKx̃),

x̌ ≈εi proxτg(x̄− τ(K∗ỹ +∇f(x̄) + e)).
(12)

Here the updated points (x̌, y̌) denote the inexact proximal point , which
are only computed up to precision ε respectively δ, in the sense of a type-2
approximation from Section 2 for y̌ and a type-i approximation for i ∈ {1, 2, 3}
for x̌. The vector e ∈ X denotes a possible error in the gradient of f . We use two
different pairs of input points (x̄, ȳ) and (x̃, ỹ) in order to include intermediate
overrelaxed input points. It is clear, however, that we require x̃ to depend on
x̌ respectively ỹ on y̌ in order to couple the primal and dual updates.

At first glance it seems counterintuitive that we allow errors of type 1, 2
and 3 in x̌, while only allowing for type-2 errors in y̌. The following general
descent rule for the iteration (12) sheds some more light on this fact and forms
the basis for all the following proofs. It can be derived using simple convexity
results and resembles the classical energy descent rules for forward-backward
splittings. It can then be used to obtain estimates on the decay of the objective
of the form (9). We prove the descent rule for a type-1 approximation of the
primal proximum since we always obtain the result for a type-2 or type-3
approximation as a special case.

Lemma 3 Let τ, σ > 0 and (x̌, y̌) be obtained from (x̄, ȳ) and (x̃, ỹ) and the
updates (12) for i = 1. Then for every (x, y) ∈ X × Y we have

L(x̌, y)− L(x, y̌) ≤ ‖x− x̄‖2

2τ
+
‖y − ȳ‖2

2σ
− ‖x− x̌‖

2

2τ
− 1− τLf

2τ
‖x̄− x̌‖2

− ‖y − y̌‖
2

2σ
− ‖ȳ − y̌‖

2

2σ
+ 〈K(x− x̌), ỹ − y̌〉 − 〈K(x̃− x̌), y − y̌〉

+
(
‖e‖+

√
2ε/τ

)
‖x− x̌‖+ ε+ δ. (13)

Proof For the inexact type-2 proximum y̌ we have by Definition 3 that
(ȳ + σKx̃− y̌)/σ ∈ ∂δh∗(y̌), so by the definition of the subdifferential we find

h∗(y̌) ≤ h∗(y) + 〈 ȳ + σKx̃− y̌
σ

, y̌ − y〉+ δ

= h∗(y) + 〈 ȳ − y̌
σ

, y̌ − y〉+ 〈Kx̃, y̌ − y〉+ δ

≤ h∗(y)− ‖ȳ − y̌‖
2

2σ
− ‖y − y̌‖

2

2σ
+
‖ȳ − y‖2

2σ
+ 〈Kx̃, y̌ − y〉+ δ. (14)
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For the inexact type-1 primal proximum, from Definition 2 and Lemma 2 we
have that there exists a vector r with ‖r‖ ≤

√
2τε such that

(x̄− τ(K∗ỹ +∇f(x̄) + e)− x̌− r)/τ ∈ ∂εg(x̌).

Hence we find that

g(x̌) ≤ g(x) + 〈 x̄− τ(K∗ỹ +∇f(x̄) + e)− x̌− r
τ

, x̌− x〉+ ε

≤ g(x)− ‖x̄− x̌‖
2

2τ
− ‖x− x̌‖

2

2τ
+
‖x̄− x‖2

2τ
+ 〈ỹ, K(x− x̌)〉

− 〈∇f(x̄), x̌− x〉+
(
‖e‖+

√
(2ε/τ

)
‖x− x̌‖+ ε, (15)

where we applied the Cauchy-Schwarz inequality to the error term. Further
by the Lipschitz property and convexity of f we have (cf. [49])

f(x̌) ≤ f(x) + 〈∇f(x̄), x̌− x〉+
Lf
2
‖x̌− x̄‖2. (16)

Now we add the equations (14), (15) and (16), insert

〈Kx̌, y〉 − 〈Kx̌, y〉, 〈Kx, y̌〉 − 〈Kx, y̌〉, 〈Kx̌, y̌〉 − 〈Kx̌, y̌〉,

and rearrange to arrive at the result.

We point out that, as a special case, choosing a type-2 approximation for the
primal proximum in Lemma 3 corresponds to dropping the square root in the
estimate (13), choosing a type-3 approximation corresponds to dropping the
additional ε at the end. Also note that the above descent rule is the same as
the one in [15,18] except for the additional error terms in the last line of (13).

Lemma 3 has an immediate implication: in order to control the errors ‖e‖
and ε in the last line of Lemma 3 it is obvious that we need to find a useful
bound on ‖x− x̌‖. We shall obtain this bound using a linear extrapolation in
the primal variable x [15]. However, if we allow e.g. a type-1 approximation
also in y̌, we obtain an additional error term in (13) involving ‖y − y̌‖ that
we need to bound as well. Even though we shall be able to obtain a bound
in most cases, it will be arbitrarily weak due to the asymmetric nature of the
used primal-dual algorithms, or go along with severe restrictions on the step
sizes. This fact will become more obvious from the proofs in the following.

3.1 The convex case: no acceleration

We start with a proof for a basic version of algorithm (12) using a technical
lemma taken from [60] (see Appendix A.1). The following inexact primal-dual
algorithm corresponds to the choice

(x̌, y̌) = (xn+1, yn+1), (x̄, ȳ) = (xn, yn), (x̃, ỹ) = (2xn − xn−1, yn+1) (17)
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in algorithm (12):

yn+1 ≈δn+1

2 proxσh∗(yn + σK(2xn − xn−1))

xn+1 ≈εn+1

i proxτg(x
n − τ(K∗yn+1 +∇f(xn) + en+1)).

(18)

Theorem 1 Let L = ‖K‖ and choose small β > 0 and τ, σ > 0 such that
τLf + στL2 + τβL < 1, and let the iterates (xn, yn) be defined by Algorithm

(18) for i ∈ {1, 2, 3}. Then for any N ≥ 1 and XN :=
(∑N

n=1 x
n
)
/N , Y N :=(∑N

n=1 y
n
)
/N we have for a saddle point (x?, y?) ∈ X × Y that

L(XN , y?)− L(x?, Y N )

≤ 1

2τN

(
‖x? − x0‖+

√
τ

σ
‖y? − y0‖+ 2AN,i +

√
2BN,i

)2

, (19)

where

AN,1 =

N∑
n=1

τ‖en‖+
√

2τεn, BN,1 =

N∑
n=1

τεn + τδn,

AN,2 =

N∑
n=1

τ‖en‖, BN,2 =

N∑
n=1

τεn + τδn,

AN,3 =

N∑
n=1

τ‖en‖+
√

2τεn, BN,3 =

N∑
n=1

τδn.

Remark 1 The purpose of the parameter β > 0 is only of technical nature
and is needed in order to show convergence of the iterates of algorithm (18).
In practice, however, we did not observe any issues setting it super small
(respectively, to zero). Its role will become obvious in the next Theorem.

Proof Using the choices (17) in Lemma 3 leads us to

L(xn+1, y)− L(x, yn+1) ≤ ‖x− x
n‖2

2τ
− ‖x− x

n+1‖2

2τ

− 1− τLf
2τ

‖xn+1 − xn‖2 +
‖y − yn‖2

2σ
− ‖y − y

n+1‖2

2σ
− ‖y

n+1 − yn‖2

2σ

+ 〈K((xn+1 − xn)− (xn − xn−1)), y − yn+1〉

+
(
‖en+1‖+

√
(2εn+1)/τ

)
‖x− xn+1‖+ εn+1 + δn+1. (20)

The goal of the proof is, as usual, to manipulate this inequality such that
we obtain a recursion where most of the terms cancel when summing the
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inequality. The starting point is an extension of the scalar product on the
right hand side:

〈K((xn+1 − xn)− (xn − xn−1)), y − yn+1〉
= 〈K(xn+1 − xn), y − yn+1〉 − 〈K(xn − xn−1), y − yn〉

+ 〈K(xn − xn−1), yn+1 − yn〉
≤ 〈K(xn+1 − xn), y − yn+1〉 − 〈K(xn − xn−1), y − yn〉

+ (τσL2 + τβL)
‖xn − xn−1‖2

2τ
+

σL

σL+ β

‖yn+1 − yn‖2

2σ
,

where we used (for α > 0) that by Young’s inequality for every x, x′ ∈ X and
y, y′ ∈ Y,

〈K(x− x′), y − y′〉 ≤ L‖x− x′‖‖y − y′‖ ≤ Lατ

2τ
‖x− x′‖2 +

Lσ

2ασ
‖y − y′‖2,

(21)

and α = σL+ β. This gives

L(xn+1, y)− L(x, yn+1) ≤ ‖x− x
n‖2

2τ
− ‖x− x

n+1‖2

2τ

− 1− τLf
2τ

‖xn+1 − xn‖2 +
τσL2 + τβL

2τ
‖xn − xn−1‖2 +

‖y − yn‖2

2σ

− ‖y − y
n+1‖2

2σ
− β

σL+ β

‖yn+1 − yn‖2

2σ

+ 〈K(xn+1 − xn), y − yn+1〉 − 〈K(xn − xn−1), y − yn〉

+
(
‖en+1‖+

√
(2εn+1)/τ

)
‖x− xn+1‖+ εn+1 + δn+1. (22)

Now we let x0 = x−1 and sum (22) from n = 0, . . . , N − 1 to obtain

N∑
n=1

L(xn, y)− L(x, yn) ≤ ‖x− x
0‖2

2τ
+
‖y − y0‖2

2σ
− ‖x− x

N‖2

2τ
− ‖y − y

N‖2

2σ

− 1− τLf
2τ

‖xN − xN−1‖2 − κ
N−1∑
n=1

1

2τ
‖xn − xn−1‖2

− β

σL+ β

N∑
n=1

‖yn − yn−1‖2

2σ
+ 〈K(xN − xN−1, y − yN 〉

+
N∑
n=1

(
‖en‖+

√
(2εn)τ

)
‖x− xn‖+

N∑
n=1

(εn + δn),

where κ = 1−τLf−τσL2−τβL. With Young’s inequality on the inner product

with α =
1−τLf
Lτ such that Lατ = 1−τLf and (Lσ)/α = (τσL2)/(1−τLf ) < 1
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we obtain

N∑
n=1

L(xn, y)− L(x, yn) +
1

2τ
‖x− xN‖2 + (1− τσL2

1− τLf
)
‖y − yN‖2

2σ

≤ 1

2τ
‖x− x0‖2 +

1

2σ
‖y − y0‖2 +

N∑
n=1

(
‖en‖+

√
(2εn)/τ

)
‖x− xn‖ (23)

+

N∑
n=1

(εn + δn)− κ
N−1∑
n=1

1

2τ
‖xn − xn−1‖2 − β

σL+ β

N∑
n=1

1

2σ
‖yn − yn−1‖2.

Note that the introduction of the parameter β > 0 allowed us to “keep” an
additional term involving the difference of the dual iterates on the right hand
side of the inequality. This will be essential in order to prove the convergence
of the iterates later in Theorem 2. The above inequality can now be used
to bound the sum on the left hand side as well as ‖x − xN‖ by only the
initialization (x0, y0) and the errors en, εn and δn. We start with the latter
and let (x, y) = (x?, y?) such that the sum on the left hand side is nonnegative,
hence with ∆0(x, y) := ‖x− x0‖2/(2τ) + ‖y − y0‖2/(2σ) we have

1

2τ
‖x? − xN‖2

≤ ∆0(x?, y?) +

N∑
n=1

(
‖en‖+

√
(2εn)/τ

)
‖x? − xn‖+

N∑
n=1

(εn + δn),

(note that the third and fourth sum on the right hand side are negative). We
multiply the equation by 2τ and continue with a technical result by [60, p.12].

Using Lemma 4 with uN = ‖x?−xN‖, SN = 2τ∆0(x?, y?)+2τ
∑N
n=1(εn+δn)

and λn = 2(τ‖en‖+
√

2τεn) we obtain a bound on ‖x? − xN‖:

‖xN − x?‖ ≤ AN +
√

2τ∆0(x?, y?) + 2BN +A2
N ,

where we set AN :=
∑N
n=1(τ‖en‖+

√
2τεn) and BN :=

∑N
n=1 τ(εn+δn). Since

AN and BN are increasing we find for all n ≤ N :

‖xn − x?‖ ≤ An +
√

2τ∆0(x?, y?) + 2Bn +A2
n

≤ AN +
√

2τ∆0(x?, y?) + 2BN +A2
N

≤ 2AN + ‖x0 − x?‖+

√
τ

σ
‖y0 − y?‖+

√
2BN . (24)
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This finally gives

∆0(x?, y?) +

N∑
n=1

(
‖en‖+

√
(2εn)/τ

)
‖x? − xn‖+

N∑
n=1

(εn + δn)

≤∆0(x?, y?) +
1

τ
BN +

1

τ
AN

(
2AN + ‖x0 − x?‖+

√
τ

σ
‖y0 − y?‖+

√
2BN

)
=

1

2τ

(
‖x0 − x?‖2 +

τ

σ
‖y0 − y?‖2 + 2BN + 4A2

N

+2AN‖x0 − x?‖+ 2AN

√
τ

σ
‖y0 − y?‖+ 2AN

√
2BN

)
≤ 1

2τ

(
‖x0 − x?‖+

√
τ

σ
‖y0 − y?‖+ 2AN +

√
2BN

)2

, (25)

and bounds the error terms. We now obtain from (23) that

N∑
n=1

L(xn, y?)− L(x?, yn)

≤ 1

2τ

(
‖x0 − x?‖+

√
τ

σ
‖y0 − y?‖+ 2AN +

√
2BN

)2

,

which gives the assertion using the convexity of g, f and h∗, the definition of
the ergodic sequences XN and Y N and Jensen’s inequality. It remains to note
that for a type-2 approximation the square root in AN can be dropped and
for a type-3 approximation BN = 0, which gives the different AN,i, BN,i.

We can immediately deduce the following corollary.

Corollary 1 If i ∈ {1, 2, 3}, α > 0 and

‖en‖ = O

(
1

nα+
1
2

)
, δn = O

(
1

n2α

)
, εn =

{
O
(

1
n2α+1

)
, if i ∈ {1, 3}

O
(

1
n2α

)
, if i = 2.

then

L(XN , y?)− L(x?, Y N ) =


O
(
N−1

)
if α > 1/2,

O
(
ln2(N)/N

)
if α = 1/2,

O
(
N−2α

)
if α ∈ (0, 12 ).

Proof Under the assumptions of the corollary, if α > 1/2, the sequences
{‖en‖}, {εn} and {δn} are summable and the error term on the right hand side
of equation (19) is bounded, hence we obtain a convergence rate of O(1/N).
If α = 1/2, all errors behave like O(1/n) (note the square root on εn for
i ∈ {1, 3}), hence AN,i = BN,i = O(ln(N)), which gives the second assertion.
If 0 < α < 1/2, then by Lemma 5 we obtain A2

N,i = BN,i = O(N1−2α), which
gives the third assertion.
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Before we establish a convergence result from Theorem 1, respectively
Corollary 1, let us comment on this result. In many useful situations it can be
quite weak. Exact versions of such primal-dual algorithms [15,18] guarantee in-
equality (19) for all (x, y) ∈ X ×Y, rather than for just a saddle point (x?, y?).
This allows (under some additional assumptions) to both state a rate for the
primal and/or dual energy as well as the primal-dual gap and, for infinite di-
mensional X and Y, that the cluster points of the ergodic averages (XN , Y N )
are saddle points and hence a solution to our initial problem. Theorem 1, how-
ever, due to the necessary bound on the error terms, establishes the desired
inequality only for a saddle point (x?, y?). It only implies a rate in a more
degenerate distance, namely a Bregman distance [12,52]. This is standard and
easily seen rewriting the left hand side of (19), adding 〈Kx?, y?〉−〈x?,K∗y?〉,

L(XN , y?)− L(x?, Y N ) = 〈KXN , y?〉+ f(XN ) + g(XN )− h∗(y?)
− (〈Kx?, Y N 〉+ f(x?) + g(x?)− h∗(Y N ))

= f(XN ) + g(XN )

− (f(x?) + g(x?)− 〈K∗y?, XN − x?〉)
+ h∗(yN )− (h∗(y?) + 〈Kx?, yN − y?〉). (26)

Using

p = −K∗y? ∈ ∂g(x?) +∇f(x?), q = Kx? ∈ ∂h∗(y?),

we obtain that (26) is the sum of two Bregman distances,

L(XN , y?)− L(x?, Y N ) = Dp
f+g(X

N , x?) +Dq
h∗(Y N , y?),

between the (ergodic) iterates (XN , Y N ) and the saddle point (x?, y?). Hence,
Corollary 1 states the rate with respect to this distance.

As shown in, e.g., [13], a vanishing Bregman distance, e.g.,

Dp
f+g(x, x

?) +Dq
h∗(y, y?) = 0, (27)

for some (x, y) ∈ X × Y, in general does not imply that x = x? or y = y?,
neither does it imply that the pair (x, y) is even a saddle point. As a matter
of fact, without any further assumptions on f, g and h∗, the set of zeros of
a Bregman distance can be arbitrarily large and the left-hand side of the
inequality in Corollary 1 could vanish even though we have not found a solution
to our problem.

On the other hand, it is easy to show that (27) yields that (x, y) is a saddle-
point whenever f + g and h∗ are strictly convex (that is, f + g strictly convex
and h C1 in the interior of domh, with ∂h empty elsewhere [56, Thm. 26.3]).
In that case obviously, (27) yields (x, y) = (x?, y?). Other situations might be
tricky. One of the worst cases is a simple matrix game (cf. [17]),

min
x∈∆l

max
y∈∆k

〈Ax, y〉,
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where A ∈ Rk×l and ∆l, ∆k denote the unit simplices in Rl respectively Rk.
Quite obviously, here we have f = 0, g = δ∆l and h∗ = δ∆k , such that
we have to compute the Bregman distances with respect to a characteristic
function, which can only be zero or infinity. Hence, every feasible point causes
the Bregman distance to vanish such that a rate in this distance is of no use.
However, there is a simple workaround in such cases, whenever the primal (or
even the dual) variable are restricted to some bounded set D, such that f
and/or g have bounded domain. Note that this is a standard assumption also
arising in similar works on the topic (e.g. [48]). As can be seen from the proof,
one needs a bound on ‖xn − x?‖ in order to control the errors. In this case
one can estimate ‖xn−x?‖ ≤ diam(D), and following the line of the proof (cf.
inequality (23)) we obtain for all (x, y) ∈ X × Y that

L(XN , y)− L(x, Y N ) ≤ 1

N

(
‖x− x0‖2

2τ
+
‖y − y0‖2

2σ

+
diam(D)

τ
AN,i +

1

τ
BN,i

)
.

Eventually, this again allows deducing a rate for the primal-dual gap (e.g.,
along the lines in [17]).

Remark 2 Even in bad cases there might exist situations where a rate in
a Bregman distance is useful. For instance, the basis pursuit problem aims
primarily at finding the support of the solution, rather than its quantitative
values (which are then recovered easily). As shown in [13] a Bregman distance
with respect to the 1-norm can only vanish if the support of both given argu-
ments agrees. Hence, given a vanishing left-hand side in Corollary 1, we might
not have found a saddle point, however, an element with the same support
such that our problem is solved.

As we have lined out, a rate in a Bregman distance can be difficult to
interpret, and it depends on the particular situation whether it is useful or
not. However, we can at least show the convergence of the iterates in case X
and Y have finite dimension.

Theorem 2 Let X and Y be finite dimensional and let the sequences (xn, yn)
and (XN , Y N ) be defined by Theorem 1. If the partial sums AN,i and BN,i in
Theorem 1 converge, there exists a saddle point (x∗, y∗) ∈ X × Y such that
xn → x∗ and yn → y∗.

Proof Since by assumption AN,i and BN,i are summable, plugging (x?, y?)
into inequality (23) and using (25) establishes the boundedness of the sequence
(xn, yn) for all n ∈ N. Hence there exists a subsequence (xnk , ynk) (strongly)
converging to a cluster point (x∗, y∗). Using (x, y) = (x?, x?) in (23) and the
boundedness of the error terms established in (25) we also find that ‖xn−1 −
xn‖ → 0 and ‖yn−1 − yn‖ → 0 (note that this is precisely the reason for the
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introduction of β and the strict inequality in τLf + τσL2 + τβL < 1). As a
consequence we also have ‖xnk−1 − xnk‖ → 0 and

‖xnk−1 − x∗‖ ≤ ‖xnk−1 − xnk‖+ ‖xnk − x∗‖ → 0, k →∞,

i.e. also xnk−1 → x∗. Let now T denote the primal update of the exact al-
gorithm (11), i.e. x̂n+1 = T (x̂n), and Tεn denote the primal update of the
inexact Algorithm 12, i.e. xn+1 = Tεn(xn). Then, due to the continuity of T ,
we obtain

‖x∗ − T (x∗)‖ = lim
k→∞

‖xnk−1 − T (xnk−1)‖

≤ lim
k→∞

(
‖xnk−1 − Tεnk (xnk−1)‖+ ‖Tεnk (xnk−1)− T (xnk−1)‖

)
≤ lim
k→∞

(
‖xnk−1 − xnk‖+

√
2τεnk

)
= 0.

We apply the same argumentation to yn, which together implies that (x∗, y∗)
is a fixed point of the (exact) iteration 11 and hence a saddle point of our
original problem (8). We now use (x, y) = (x∗, y∗) in inequality (22) and sum
from n = nk, . . . , N − 1 (leaving out negative terms on the right hand side) to
obtain for N > nk

1

2τ
‖x∗ − xN‖2 +

1

2σ
‖y∗ − yN‖2

≤ 〈K(xN − xN−1), y∗ − yN 〉 − 〈K(xnk − xnk−1), y∗ − ynk〉

+
τσL2 + τβL

2τ
‖xnk − xnk−1‖2 +

1

2τ
‖x∗ − xnk‖2 +

1

2σ
‖y∗ − ynk‖2

+

N∑
n=nk+1

(
‖en‖+

√
(2εn)/τ

)
‖x∗ − xn‖+

N∑
n=nk+1

(εn + δn).

It remains to notice that since ‖en‖ → 0, εn → 0, δn → 0 and the above
observations, the right hand side tends to zero for k →∞, which implies that
also xN → x∗ and yN → y∗ for N →∞.

3.2 The convex case: a stronger version

If we restrict ourselves to type-2 approximations, we can state a stronger
version for the reduced problem with f = 0:

min
x∈X

max
y∈Y

L(x, y) = 〈y,Kx〉+ g(x)− h∗(y), (28)

again assuming it has at least one saddle point (x?, y?). We consider the algo-
rithm

yn+1 ≈δn+1

2 proxσh∗(yn + σK(2xn − xn−1)),

xn+1 ≈εn+1

2 proxτg(x
n − τK∗yn+1)),

(29)
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which is the inexact analog of the basic exact primal-dual algorithm presented
in [15]. Simply speaking, the main difference to the previous section is that,
choosing a type-2 approximation and f = 0, there are no errors occurring
in the input of the proximal operators, such that we do not need a bound on
‖x−xn‖, which allows us to obtain a rate for the objective for all (x, y) ∈ X×Y
instead of only for a saddle point (x?, y?) (cf. Theorem 1). Following their
line of proof, we can state the following result:

Theorem 3 Let L = ‖K‖ and τ, σ > 0 such that τσL2 < 1, and let the se-

quence (xn, yn) be defined by algorithm (29). Then for XN :=
(∑N

n=1 x
n
)
/N ,

Y N :=
(∑N

n=1 y
n
)
/N and every (x, y) ∈ X × Y we have

L(XN , y)− L(x, Y N ) ≤ 1

N

(
1

2τ
‖x− x0‖2 +

1

2σ
‖y − y0‖2 +

N∑
n=1

(εn + δn)

)
.

(30)

Furthermore, if εn = O (n−α) and δn = O (n−α), then

L(XN , y)− L(x, Y N ) =


O
(
N−1

)
, if α > 1,

O (ln(N)/N) , if α = 1,

O (N−α) , if α ∈ (0, 1).

Proof The proof can be done exactly along the lines of [15, Theorem 1] (or
along the proof of Theorem 1), so we just give the main steps. Letting f = 0
and choosing a type-2 approximation gives Lf = 0 and lets us drop the term

(‖en+1‖ +
√

(2εn+1)/τ)‖x − xn+1‖ in inequality (20). This is the essential
difference, since we do not have to establish a bound on ‖x−xn+1‖. Choosing
α =

√
σ/τ in Young’s inequality and proceeding as before the gives

N∑
n=1

(L(xn, y)− L(x, yn)) + (1− τσL2)
‖y − yN‖2

2σ
+
‖x− xN‖2

2τ

+ (1−
√
τσL)

N∑
n=1

‖yn − yn−1‖2

2σ
+ (1−

√
τσL)

N−1∑
n=1

‖xn − xn−1‖2

2σ

≤ 1

2σ
‖y − y0‖2 +

1

2τ
‖x− x0‖2 +

N∑
n=1

(εn + δn). (31)

The definition of the ergodic sequences and Jensen’s inequality yield the as-
sertion.

As before we can state convergence of the iterates if the errors {εn} and {δn}
decay fast enough. The proof is the same as for Theorem 2.



Inexact First-Order Primal-Dual Algorithms 19

Theorem 4 Let the sequences (xn, yn) and (XN , Y N ) be defined by (29) re-
spectively. If the sequences {εn} and {δn} in Theorem 3 are summable, then
every weak cluster point (x∗, y∗) of (XN , Y N ) is a saddle point of problem
(28). Moreover, if the dimension of X and Y is finite, there exists a saddle
point (x∗, y∗) ∈ X × Y such that xn → x∗ and yn → y∗.

Proof Since by assumption AN,i and BN,i are summable, plugging (x?, y?) into
equation (31) establishes the boundedness of the sequence xN for all N ∈ N,
which also implies the boundedness of the ergodic average XN . Note that by
the same argumentation as for xN , this also establish a global bound on yN

and Y N . Hence there exists a subsequence (XNk , Y Nk) weakly converging to
a cluster point (x∗, y∗). Then, since f, g and h∗ are l.s.c. (thus also weakly
l.s.c.), we deduce from equation (30) that, for every fixed (x, y) ∈ X × Y,

L(x∗, y)− L(x, y∗) ≤ lim inf
k→∞

L(XNk , y)− L(x, Y Nk)

≤ lim inf
k→∞

1

Nk

(
1

2τ
‖x− x0‖2 +

1

2σ
‖y − y0‖2 +

N∑
n=1

(εn + δn)

)
= 0,

Taking the supremum over (x, y) then implies that (x∗, y∗) is a saddle point it-
self and establishes the first assertion. The rest of the proof follows analogously
to the proof of Theorem 2.

Remark 3 The main difference between Theorem 3 and Theorem 1 is that
inequality (30) bounds the left hand side for all x, y ∈ X × Y and not only
for a saddle point (x?, y?). Following [15, Remark 2] and if {εn}, {δn} are
summable we can state the same O (1/N) convergence of the primal energy,
dual energy or the global primal-dual gap under the additional assumption
that h has full domain, g∗ has full domain or both have full domain. More
precisely, if e.g. h has full domain, then it is classical that h∗ is superlinear
and that the supremum appearing in the conjugate is attained at some ỹN ∈
∂h(KXN ), which is uniformly bounded in N due to (31) (if (x, y) = (x?, y?)
then (XN , Y N ) is globally bounded), such that

max
y∈Y

L(xN , y) = 〈ỹN ,KXN 〉 − h∗(ỹN ) + g(XN ) = h(KXN ) + g(XN ).

Now evoking inequality (30) and proceeding exactly along (10) we can state
that

h(KXN ) + g(XN )− [h(Kx?) + g(x?)]

≤ 1

N

(
1

2τ
‖x? − x0‖2 + C +

N∑
n=1

(εn + δn)

)
,

with a constant C depending on x0, y0, h and ‖K‖. Analogously we can
establish the convergence rates for the dual problem and also the global gap.
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Remark 4 If h∗ has bounded domain, e.g. if h is a norm, we can even state
“mixed” rates for the primal energy if the errors are not summable. Since
in this case ‖y − y0‖ ≤ diam(domh∗) we may take the supremum over all
y ∈ domh∗ and obtain

h(KXN ) + g(XN )− [h(Kx?) + g(x?)]

≤ 1

N

(
‖x? − x0‖2

2τ
+

diam(domh∗)2

2σ
+

N∑
n=1

(εn + δn)

)
= O

(
N−α

)
,

for εn, δn ∈ O (n−α). The above result in particular holds for the aforemen-
tioned TV-L1 model, which we shall consider in the numerical section.

3.3 The strongly convex case: primal acceleration

We now turn our focus on possible accelerations of the scheme and consider
again the full problem (8) with the additional assumption that g is γ-strongly
convex, i.e. for any x ∈ dom∂g

g(x′) ≥ g(x) + 〈p, x′ − x〉+
γ

2
‖x′ − x‖2, ∀p ∈ ∂g(x), ∀x′ ∈ X .

It is a known fact that if g is γ-strongly convex, its conjugate g∗ has 1/γ-
Lipschitz gradient, which guarantees the possibility to accelerate the algo-
rithm. We mention that we obtain the same result if f (or both g and f) are
strongly convex, since it is possible to transfer the strong convexity from f
to g and vice versa [18, Section 5]. Hence for simplicity we focus on the case
where g is strongly convex. Choosing

(x̌, y̌) = (xn+1, yn+1), (x̄, ȳ) = (xn, yn), (x̃, ỹ) = (xn + θn(xn − xn−1), yn+1),
(32)

in algorithm (12) we define an accelerated inexact primal-dual algorithm:

yn+1 ≈δn+1

2 proxσnh∗(yn + σnK(xn + θn(xn − xn−1))

xn+1 ≈εn+1

i proxτng(x
n − τn(K∗yn+1 +∇f(xn) + en+1))

θn+1 = 1/
√

1 + γτn, τn+1 = θn+1τn, σn+1 = σn/θn+1.

(33)

We prove the following theorem in Appendix A.3.

Theorem 5 Let L = ‖K‖ and τn, σn, θn such that

τnLf + τnσnL
2 ≤ 1, θn+1σn+1 = σn, (1 + γτn)τn+1θn+1 ≥ τn.

Let (xn, yn) ∈ X × Y be defined by the above algorithm for i ∈ {1, 2, 3}. Then
for any saddle point (x?, y?) ∈ X × Y of (8) and

TN :=

N∑
n=1

σn−1
σ0

, XN :=
1

TN

N∑
n=1

σn−1
σ0

xn, Y N :=
1

TN

N∑
n=1

σn−1
σ0

yn,
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we have that

TN (L(XN , y?)− L(x?, Y N ))

≤ 1

2σ0

(√
σ0
τ0
‖x? − x0‖+ ‖y? − y0‖+

√
2BN,i + 2

√
τN
σN

AN,i

)2

,

and

σN
2τN
‖x? − xN‖2

≤ 1

2

(√
σ0
τ0
‖x? − x0‖+ ‖y? − y0‖+

√
2BN,i + 2

√
τN
σN

AN,i

)2

,

where

AN,1 =

N∑
n=1

σn−1‖en‖+

√
2σ2

n−1εn

τn−1
, BN,1 = 2

N∑
n=1

σn−1(εn + δn),

AN,2 =

N∑
n=1

σn−1‖en‖, BN,2 = 2

N∑
n=1

σn−1(εn + δn),

AN,3 =

N∑
n=1

σn−1‖en‖+

√
2σ2

n−1εn

τn−1
, BN,3 = 2

N∑
n=1

σn−1δn.

As a direct consequence of Theorem 5 we can state convergence rates of the
accelerated algorithm (33) in dependence on the errors {‖en‖}, {δn} and {εn}.

Corollary 2 Let τ0 = 1/(2Lf ), σ0 = Lf/L
2 and τn, σn and θn be given by

(33). Let α > 0, i ∈ {1, 2, 3} and

‖en‖ = O

(
1

nα

)
, δn = O

(
1

n2α

)
, εn =

{
O
(

1
n1+2α

)
, if i ∈ {1, 3}

O
(

1
n2α

)
, if i = 2.

Then

L(XN , y?)− L(x?, Y N ) =


O
(
N−2

)
if α > 1,

O
(
ln2(N)/N2

)
if α = 1,

O
(
N−2α

)
if α ∈ (0, 1).

Proof In [15] it has been shown that with this choice we have τn ∼ 2/(nγ).
Since the product τnσn = τ0σ0 = 1/(2L2) stays constant over the course
of the iterations, this implies that σn ∼ (nγ)/(4L2), from which we directly
deduce that TN ∼ (γN2)/(8Lf ), hence TN = O

(
N2
)
. Moreover we find that√

τN/σN ∼ (
√

8L)/(γN). Now let i = 1 and α ∈ (0, 1), then we have

AN,1 =

N∑
n=1

σn−1‖en‖+

√
2σ2

n−1εn

τn−1
∼

N∑
n=1

(n− 1)γ

4L2
‖en‖+

√
2γ3((n− 1)3εn)

32L4
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Now by assumption ‖en‖ = O (n−α) and εn = O
(
n−(1+2α)

)
which implies

that AN,1 = O
(
N2−α). By analogous reasoning we find BN,1 = O

(
N2−2α).

Summing up we obtain that

τN
σN

A2
N,1

TN
= O

(
N−2α

)
, and

BN,1
TN

= O
(
N−2α

)
,

yielding the last row of the assertion. For α = 1 we see that
√
τN/σNAN,1 is

finite and BN,1 = O (log(N)), for α > 1 also BN,1 is summable, implying the
other two rates. It remains to notice that the cases i ∈ {2, 3} can be obtained
as special cases.

3.4 The strongly convex case: dual acceleration

This section is devoted to the comparison of inexact primal-dual algorithms
and inexact forward-backward splittings established in [60,61,5], considering
the problem

min
x∈X

h(Kx) + g(x), (34)

with h having a 1/γ-Lipschitz gradient and proximable g. The above mentioned
works establish convergence rates for an inexact forward-backward splitting
on this problem, where both the computation of the proximal operator with
respect to g and the gradient of h might contain errors ([61] only considers
errors in the proximum).

The corresponding primal-dual formulation of problem (34) reads

min
x∈X

max
y∈Y

L(x, y) = 〈Kx, y〉+ g(x)− h∗(y), (35)

where now h∗ is γ-strongly convex. Hence we know that the algorithm can be
accelerated “à la” [15,18] or as in the previous section, and we shall be able to
essentially recover the results on inexact forward-backward splittings/inexact
FISTA obtained by [60,61,5]. Choosing (note f = 0 and e = 0)

(x̌, y̌) = (xn+1, yn+1), (x̄, ȳ) = (xn, yn), (x̃, ỹ) = (xn + θn(xn − xn−1), yn+1),
(36)

in algorithm (12) we define an accelerated inexact primal-dual algorithm:

yn+1 ≈δn+1

2 proxσnh∗(yn + σnK(xn + θn(xn − xn−1))

xn+1 ≈εn+1

i proxτng(x
n − τnK∗yn+1)

θn+1 = 1/
√

1 + 2γσn, σn+1 = θn+1σn, τn+1 = τn/θn+1.

We prove the following theorem in Appendix A.4.
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Theorem 6 Let L = ‖K‖ and τn, σn, θn such that

τnσnθ
2
nL

2 ≤ 1, θn+1τn+1 = τn, (1 + γσn)σn+1θn+1 ≥ σn.

Let (xn, yn) ∈ X × Y be defined by the above algorithm for i ∈ {1, 2, 3}. Then
for a saddle point (x?, y?) ∈ X × Y and

TN :=

N∑
n=1

τn−1
τ0

, XN :=
1

TN

N∑
n=1

τn−1
τ0

xn, Y N :=
1

TN

N∑
n=1

τn−1
τ0

yn,

we have that

TN (L(XN , y?)− L(x?, Y N ))

≤ 1

2τ0

(
‖x? − x0‖+

√
τ0
σ0
‖y? − y0‖+

√
2BN,i + 2AN,i

)2

,

and

CN
τN
σN
‖y? − yN‖2 ≤

(
‖x? − x0‖+

√
τ0
σ0
‖y? − y0‖+

√
2BN,i + 2AN,i

)2

,

where CN = 1− σNτNθ2NL2 and

AN,1 =

N∑
n=1

√
2τn−1εn, BN,1 = 2

N∑
n=1

τn−1(εn + δn),

AN,2 = 0, BN,2 = 2

N∑
n=1

τn−1(εn + δn),

AN,3 =

N∑
n=1

√
2τn−1εn, BN,3 = 2

N∑
n=1

τn−1δn.

We can once more establish convergence rates depending on the decay of the
errors.

Corollary 3 Let τ0, σ0 such that τ0σ0L
2 = 1. Let α > 0, i ∈ {1, 2, 3} and

δn = O

(
1

n2α

)
, εn =

{
O
(

1
n1+2α

)
, if i ∈ {1, 3}

O
(

1
n2α

)
, if i = 2.

Then

L(XN , y?)− L(x?, Y N ) =


O
(
N−2

)
if α > 1,

O
(
ln2(N)/N2

)
if α = 1,

O
(
N−2α

)
if α ∈ (0, 1).
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Proof We refer to [15] for a proof that using the step sizes in Theorem 6, it
can be shown that σn ∼ 1/(nγ) and accordingly τn ∼ (nγ)/L2. This directly
implies that TN ∼ (γN2)/(2L). Now for i = 1 and α ∈ (0, 1) we have that

AN,1 =

N∑
n=1

√
2τn−1εn ∼

N∑
n=1

√
2γ(n− 1)εn

L2
=

√
2γ

L

N∑
n=1

√
(n− 1)εn.

Now by assumption εn = O
(
n−1−2α

)
, which implies that

√
(n− 1)εn =

O (n−α) and we deduce AN,1 = O
(
N1−α) using Lemma 5. By an analogous

argumentation

BN,1 = 2

N∑
n=1

τn−1(εn + δn) ∼ 2γ

L2

N∑
n=1

(n− 1)(εn + δn).

Now since δn = O
(
n−2α

)
we deduce that nδn = O

(
n1−2α

)
and hence BN,1 =

O
(
N2−2α). Using TN = O

(
N2
)
, we find

BN,1
TN

= O
(
N−2α

)
, and

A2
N,1

TN
= O

(
N−2α

)
,

which gives the result for i = 1 and α ∈ (0, 1). Choosing α > 1 will yield con-
vergence for AN,1 and BN,1, which implies the fastest overall convergence rate
O
(
1/N2

)
, the case α = 1 gives AN,1 = O (log(N)) and BN,1 = O (log(N)). It

remains to note that the results for i = 2, 3 can be obtained as special cases.

Corollary 3 essentially recovers the results given in [60,61,5], though the
comparison is not exactly straightforward. For an optimal O

(
N−2

)
conver-

gence in objective with a type-1 approximation the authors of [60] require
εn = O

(
1/n4+κ

)
for any κ > 0, for the error dn in the gradient of h ◦K they

need ‖dn‖ = O
(
1/n4+κ

)
. Since a type-2 approximation of the proximum is

more demanding, the authors of [61] obtain a weaker dependence of the con-
vergence on the error and only require εn = O

(
n3+κ

)
. Note that they only

consider the case dn = 0. The work in [5] essentially refines both results under
the same assumptions on the errors. Corollary 3 now states that for an optimal
O
(
N−2

)
convergence we require εn = O

(
n3+κ

)
in case of a type-1 approxi-

mation and εn = O
(
n2+κ

)
in case of an error of type-2, which seems to be

one order less than the other results. We do not have a precise mathematical
explanation at this point. The main difference appears to be the changing step
sizes τn, σn in the proximal operators for the inexact primal-dual algorithm in
Theorem 6, which behave like n respectively 1/n, while the step sizes remain
fixed for inexact forward-backward. The numerical section, however, indeed
confirms the weaker dependence of the inexact primal-dual algorithm on the
errors.

Remark 5 We want to highlight that, in the spirit of Section 3.2 it is as well
possible to state a stronger version in case the approximations are of type-2
in both the primal and dual proximal point, which then bounds the “gap”
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for all (x, y) ∈ X × Y instead of for a saddle point (x?, y?) in Theorem 6 (cf.
inequality (54)):

L(XN , y)− L(x, Y N )

≤ 1

TN

(
1

2τ0
‖x− x0‖2 +

1

2σ0
‖y − y0‖2 +

N∑
n=1

τn−1
τ0

(εn + δn)

)
.

Under some additional assumptions we can then again derive estimates on the
primal energy for every fixed N ∈ N. If again h has full domain, the supremum
appearing in the conjugate is attained at some ỹN and exactly along (10) we
derive

h(KXN ) + g(XN ) + f(XN )− [h(Kx?) + g(x?) + f(x?)]

≤ 1

TN

(
1

2τ0
‖x? − x0‖2 +

1

2σ0
‖ỹN − y0‖2 +

N∑
n=1

τn−1
τ0

(εn + δn)

)
.

In case the errors are summable we again obtain that also ỹN is globally
bounded (cf. Remark 3) and we obtain convergence in O

(
1/N2

)
. If the errors

are not summable there is no similar argument to obtain the global bounded-
ness of the ỹN , however at least on a heuristic level one can expect a conver-
gence to y∗ at a similar rate as XN . This is indeed confirmed in the numerical
section where we observe the O

(
N−2α

)
decay from Corollary 3 also for the

primal objective for nonsummable errors.

3.5 The smooth case

We finally discuss an accelerated primal-dual algorithm if both g and h∗ are
γ- respectively µ-strongly convex. In this setting the primal objective is both
smooth and strongly convex, and first-order algorithms can be accelerated to
linear convergence. We consider the algorithm

yn+1 ≈δn+1

2 proxσh∗(yn + σK(xn + θ(xn − xn−1))

xn+1 ≈εn+1

i proxτg(x
n − τ(K∗yn+1 +∇f(xn) + en+1)),

1

θ
= 1 + γτ = 1 + µσ, τLf + τσθ2L2 ≤ 1,

(37)

and prove the following result in Appendix A.5

Theorem 7 Let L = ‖K‖ and τ, σ, θ such that

1 + γτ = 1 + µσ =
1

θ
and τLf + τσθ2L2 ≤ 1. (38)

Let (xn, yn) ∈ X × Y be defined by algorithm (37) for i ∈ {1, 2, 3}. Then for
the unique saddle-point (x?, y?) and

TN :=

N∑
n=1

1

θn−1
, XN :=

1

TN

N∑
n=1

1

θn−1
xn, Y N :=

1

TN

N∑
n=1

1

θn−1
yn
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we have

TN (L(XN , y?)− L(x?, Y N ))

≤ 1

2τ

(
‖x? − x0‖+

√
τ

σ
‖y? − y0‖+ 2θ

N
2 AN,i +

√
2BN,i

)2

and

‖x? − xN‖2 ≤ θN
(
‖x? − x0‖+

√
τ

σ
‖y? − y0‖+ 2θ

N
2 AN +

√
2BN

)2

where

AN,1 =

N∑
n=1

1

θn−1
(τ‖en‖+

√
2τεn), BN,1 =

N∑
n=1

τ

θn−1
(εn + δn),

AN,2 =

N∑
n=1

τ‖en‖
θn−1

, BN,2 =

N∑
n=1

τ

θn−1
(εn + δn),

AN,1 =

N∑
n=1

1

θn−1
(τ‖en‖+

√
2τεn), BN,3 =

N∑
n=1

τ

θn−1
δn.

We can now state convergence rates, if the decay of the errors is also linear.

Corollary 4 Let α > 0, i ∈ {1, 2, 3} and for 0 < q < 1

‖en‖ = O
(√
q
n)
, δn = O (qn) , εn = O (qn) .

Then

L(XN , y?)− L(x?, Y N ) +
‖x? − xN‖2

2τ
=


O
(
θN
)
, if θ > q,

O
(
NθN

)
, if θ = q,

O
(
qN
)
, if θ < q.

Proof It is clear that we need to investigate the decay of the term

CN,i := θ2NA2
N,i + θNBN,i

to obtain a convergence rate. In view of the specific form of AN,i and BN,i
and the rate of εn, δn and ‖en‖ we consider

θN
N∑
n=1

qn−1

θn−1
= θN

N−1∑
n=0

(q
θ

)n
= (θN − qN )

θ

θ − q
. (39)

Now if q < θ < 1, Equation (39) implies that θNBN,i = O
(
θN
)
. For AN,i we

note the factor θN is squared, as opposed to the factor of BN,i, which implies
that the decay of ‖en‖ and

√
εn can be less restrictive for AN,i and implies

the square root on the constant q for ‖en‖. We have to distinguish whether
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√
q < θ or

√
q > θ. In the former case we have by Equation (39), now with

√
q

instead of q, that

θ2NA2
N,i = (θNAN,i)

2 = O
(

(θN −√qN )2
)

= O
(
θ2N

)
= O

(
θN
)
,

while in the latter we obtain θ2NA2
N,i = O

(
qN
)

= O
(
θN
)
, which in sum gives

CN,i = O
(
θN
)
. If θ < q < 1, we have by analogous argumentation and (39)

that θNBN,i = O
(
qN
)

and since θ < q <
√
q < 1 also θ2NA2

N,i = O
(
qN
)
,

which implies CN,i = O
(
qN
)
. For the case θ = q it is sufficient to notice that

(39) is in O
(
NθN

)
.

It remains to give some explicit formulation of the step sizes that fulfill the
conditions (38). Solving (38) for τ, σ and θ gives [18]

τ =
1 +

√
1 + 4L2/(γµ) + L2

f/γ
2 + 2Lf/γ − Lf/γ

2Lf + 2L2/µ
,

σ =
1 +

√
1 + 4L2/(γµ) + L2

f/γ
2 + 2Lf/γ − Lf/γ

2Lfµ/γ + 2L2/γ
,

θ = 1−

√
1 + 4L2/(γµ) + L2

f/γ
2 + 2Lf/γ − Lf/γ − 1

2L2/(γµ)
.

4 Numerical experiments

There exists a large variety of interesting optimization problems, e.g. in imag-
ing, that could be investigated in the context of inexact primal-dual algorithms,
and even creating numerical examples for all the discussed notions of inexact
proxima and different versions of algorithms clearly goes beyond the scope of
this paper. Instead, we want to discuss two different questions on two classical
imaging problems and leave further studies to the interested reader. The main
goal of this section is to confirm numerically, that the convergence rates we
proved above are “sharp” in some sense, meaning that if the errors are close
to the upper bounds we obtain the convergence rates predicted by the theory.
The second point we want to adress is whether one can actually benefit from
the theory and employ different splitting strategies in order to obtain nested
algorithms, which can then only be solved in an inexact fashion (cf. [61]).

We investigate both questions using problems of the form

min
x∈X

h(K1x) + g(K2x) = min
x∈X

max
y∈Y

〈y,K1x〉+ g(K2x)− h∗(y), (40)

K1 : X → Y , K2 : X → Z, where we assume that the proximal operators of
both g and h∗ (or g∗ and h by Moreau’s decomposition) have an exact closed
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form solution. The right hand side of (40) leads to a nested inexact primal-dual
algorithm

yn+1 = proxσh∗(yn + σK1(xn+1 + θ(xn+1 − xn))),

xn+1 ≈εn+1

2 proxτ(g◦K2)(x
n − τK∗1yn+1). (41)

Hence the dual proximal operator can be evaluated exactly (i.e. δn = 0), while
the inner subproblem has to be computed in an inner loop up to the necessary
precision εn. We choose the type-2 approximation since in this case, according
to Proposition 1, the precision of the proximum can be assessed by means of
the duality gap. In order to be able to evaluate the gap, we solve the 1/τ -
strongly convex dual problem

min
z∈Z

τ

2
‖K∗2z‖2 − 〈K∗2z, yn+1〉+ g∗(z),

using FISTA [8]. To distinguish between outer and inner problems for the
splittings we denote the iteration number for the outer problem by n, while
the iteration number of the inner problem is k. In order to achieve the necessary
precision, we iterate the proximal problem until the primal-dual gap (cf. also
Section 2) satisfies

G(yn+1 − τB∗zk, zk) ≤ Cεn, (42)

where εn = O (1/nα), respectively εn = O (θn) for the last experiment. We
vary the parameter α in order to show the effect of the error decay rate on
the algorithm (cf. Remark 4). While for the asymptotic results we proved in
the precious section the constant C of the rate does not matter, it indeed does
in practice. In order to use Proposition 1 as a criterion, C should correspond
to the “natural” size of the duality gap of (41). In order not to choose the
constraint too restrictive but still active we follow [61] and choose C = G(y0−
τB∗y0, 0), which is the duality gap of the first proximal subproblem for n = 1
evaluated at z = 0.

For the sake of brevity we discuss only three problems: we start with the
non-differentiable TV-L1 model for deblurring, a problem which cannot be ac-
celerated, and continue with “standard” TV-L2 deblurring, which also serves
as a prototype for a manifold of applications with a general operator instead of
a blurring kernel (cf. e.g. [59,30]). Since in this case the objective is Lipschitz-
differentiable, the convex conjugate is strongly convex, which allows to accel-
erate the algorithm. The third problem we investigate is a “smoothed” version
of the TV-L2 model, which can be accelerated to linear convergence.

We investigate two different setups: as already announced above, we want
to confirm the convergence rates predicted by the theory numerically. We
hence require the inexact proximal problem (41) to be solved with an error
close to the accuracy level εn. To achieve this we, where it is necessary, de-
liberately solve the inner problem suboptimally, meaning that we use a cold
start (random initialization of the algorithm) and reduced step sizes for the
inner problem, ensuring that the inner problem is not solved “accidentially”
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Fig. 1 Inexact primal-dual on the TV-L1 problem. (a) and (b) loglog plots of the
relative objective error vs. the outer iteration number for different decay rates α of the
errors. (a) cold start, error close to the bound O (1/nα), (b) warm start. (c) and (d) number
of inner iterations respectively sum of inner iterations vs. number of outer iterations for
different decay rates α. One can observe in (a) that the predicted rates in the worst case
are attained, while in practice the problem also converges for very few inner iterations (b),
(c) and (d).

at a higher precision. We shall see that this is indeed necessary for the slow
TV-L1 problem. In a second setup we investigate whether the obtained error
bounds can also be used as a criterion to ensure (optimal) convergence of the
nested algorithm (41). As observed in e.g. [7] for the TV-L2 model and the
FISTA algorithm, insufficient precision of the inner proximum can cause the
algorithm to diverge. Instead of performing a fixed high number of inner it-
erations as a remedy, we solve the inner problem only up to precision εn in
every step, which by the theory ensures that the algorithm converges with
the same rate as the decay of the errors. We now use the best possible step
sizes and a warm start strategy (initialization by the previous solution) in or-
der to minimize the computational costs of the inner loop and it has already
been stated in [61], that this strategy significantly speeds up the process. We
use a standard primal-dual reconstruction (PDHG) after 105 iterations as a
numerical “ground truth” u∗ to compute the optimal energy F ∗ = F (u∗).

4.1 Nondifferentiable deblurring with the TV-L1 model

In this section we study the numerical solution of the TV-L1 model

u∗ ∈ arg min
u∈X

F (u) = ‖Au− f‖1 + λ‖∇u‖1, (43)
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with a discrete blurring operator A : X → X. As already lined out in the
introduction, there exist a variety of methods to solve the problem (e.g. [19,
35,28,62]), where most of them make use of the fact that the operator A can
be written as a convolution. We use an easy strategy which does not rely on
the structure of the operator and is hence also applicable to operators different
from convolutions. Due to the nondifferentiability of both the data term and
regularizer, a very simple approach is to dualize both terms (similar to ADMM
[10] or ’PD-Split’ in [17]):

min
u∈X

max
y1∈X,y2∈Y

〈y1, Au− f〉+ 〈y2,∇u〉 − δP1
(y1)− δPλ(y2),

where Pλ denotes the convex set Pλ = {x ∈ X | ‖x‖∞ ≤ λ}. One can then
employ a standard primal-dual method (PDHG [15]) which reads

yn+1
1 = projP1

(yn1 + σA(2un+1 − un)),

yn+1
2 = projPλ(yn2 + σ∇(2un+1 − un)),

un+1 = un − τ(A∗yn+1
1 − div(yn+1

2 )).

Unfortunately one can observe that whenever there is no primal term in the
formulation of the problem, the energy tends to oscillate and convergence
can be quite slow (even though of course in O (1/N), cf. Figure 1(b)). As
an alternative we propose to split the problem differently and operate on the
following primal-dual formulation:

min
u∈X

max
y∈Y

〈y,Au− f〉 − δP1
(y) + λ‖∇u‖1.

We employ algorithm (29), i.e. the non-accelerated basic inexact primal-dual
algorithm (iPD) with type-2 errors and obtain

yn+1 = projP1
(yn + σA(2un+1 − un)),

un+1 ≈εn+1

2 arg min
u∈X

1

2τ
‖u− (un − τA∗yn+1)‖2 + λ‖∇u‖1.

(44)

Note that the dual proximum in this case can be evaluated error-free.
As a numerical study we perform deblurring on MATLAB’s Lily image in

[0, 1] with resolution 256× 192, which has been corrupted by a Gaussian blur
of approximately 12 pixels full width at half maximum (where we assume a
pixel size of 1) and 50 percent salt-and-pepper noise, i.e. 50 percent of the
pixels have been randomly set to either 0 or 1. Furthermore, we performed
power iterations to determine the operator norm of (A,∇) as L ≈

√
8 and set

σ = τ = 0.99/
√

8 for (PDHG). For (iPD) L can be determined analytically as
L = ‖A‖ = 1, hence τ = σ = 0.99 for (iPD).

At first, we want to confirm the convergence rates predicted by the theory
numerically. One can easily observe that the decay of the relative objective
is almost exactly as predicted: with higher α it approaches O

(
N−1

)
, in fact

for summable errors it even seems a little better. In the second setup we in-
vestigate whether the obtained error bounds can also be used as a criterion
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to ensure (optimal) convergence of the nested algorithm (44), and results for
varying parameter α can be found in Figure 1(b). Interestingly for this prob-
lem, the error bounds from the theory are indeed too pessimistic or, vice versa,
the TV-L1 problem is “easier” than expected. As can be observed in Figure
1(b), the convergence rate for all choices of α tends towards O (1/N), with
slight advantages for higher α, while the number of required inner iterations
k (Figure 1(c) and (d)) to reach the necessary precision is remarkably low.
In fact, performing just a single inner iteration in every step of the algorithm
resulted in a O (1/N) convergence rate (cf. also Figure 1(d)). The required
number of inner iterations even decreases over the course of the outer itera-
tions which suggests that the dual variable of the inner problem “converges”
as well. Note that this does not contradict the theoretical findings of this pa-
per, but the contrary: while the first study clearly confirms that in the worst
case the proved worst-case estimates are reached, the second implies that in
practice one might as well perform by far better.

4.2 Differentiable deblurring with the TV-L2 model

The second problem we investigate is the TV-L2 model for image deblurring

u∗ ∈ arg min
u∈X

1

2
‖Au− f‖22 + λ‖∇u‖1. (45)

Again, the easiest approach to solve (45) is to write down a primal-dual for-
mulation

min
u∈X

max
y1∈X,y2∈Y

〈y1, Au− f〉+ 〈y2,∇u〉 −
1

2
‖y1‖2 − δPλ(y2).

Since the above problem is not strongly convex in y2 it cannot be accelerated,
so a basic primal-dual algorithm [15] (PDHG) for the solution reads

yn+1
1 =

yn1 + σ(A(2un+1 − un)− f)

1 + σ
,

yn+1
2 = projPλ(yn2 + σ∇(2un+1 − un)),

un+1 = un − τ(A∗yn+1
1 − div(yn+1

2 )).

We remark that, due to the special relation between the Fourier transform
and a convolution, the same problem can be solved without dualizing the data
term, since the primal proximal operator admits a closed form solution [15].
The problem however stays non-strongly convex, and in order to keep this a
general prototype for L2-type problems, we do not use this formulation.

The inexact approach instead operates on a different primal-dual formula-
tion given by

min
u∈X

max
y∈X

〈y,Au− f〉 − 1

2
‖y‖2 + λ‖∇u‖1,
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which is now 1-strongly convex in y and can be accelerated. Using the inexact
primal-dual algorithm from Section 3.4 leads to

yn+1 = (yn + σn(A(un+1 + θn(un+1 − un))− f))/(1 + σn),

un+1 ≈εn+1

2 arg min
u∈X

1

2τn
‖u− (un − τnA∗yn+1)‖2 + ‖∇u‖1,

with τn, σn, θn as given in Theorem 6. We again perform deblurring on MAT-
LAB’s Lily image in [0, 1] with resolution 256 × 192, which has been cor-
rupted by a Gaussian blur of approximately 12 pixels full width at half max-
imum (where we assume a pixel size of 1), and in this case Gaussian noise
with standard deviation s = 0.01 and zero mean. We allow errors of the size
εn = C/n−2α for α ∈ (0, 1), which by Corollary 3 should result in a O

(
N−2α

)
rate respectively O

(
N−2

)
for α > 1. The results can be found in Figure 2.

In contrast to the TV-L1 problem, in this experiment it was not necessary to
employ a cold start strategy and reduced step sizes for the inner problem in
order to obtain the worst case rates. Instead also for a warm start and best
possible step sizes for the inner problem the bounds for the gap (42) were
active for all choices of α. Figure 2 shows the error in relative objective for the
ergodic sequence UN (a) and the iterates un (b) for increasing α. It can be
observed that the rate is almost exactly the one predicted, while the iterates
themselves even decay a little faster than the ergodic sequence. The amount
of inner iterations necessary to obtain the required precision of the proximum
is unsurprisingly higher than in the non-accelerated case, though they stay
reasonable for rather low outer iteration numbers.

4.3 Smooth deblurring with the TV-L2 model

The last problem we consider is a smoothed version of the TV-L2 model from
the previous experiments:

u∗ ∈ arg min
u∈X

1

2
‖Au− f‖22 + λ‖∇u‖1 +

γ

2
‖u‖2, (46)

for small γ, with primal-dual formulation

min
u∈X

max
y1∈X,y2∈Y

〈y1, Au− f〉+ 〈y2,∇u〉 −
1

2
‖y1‖2 − δPλ(y2) +

γ

2
‖u‖2. (47)

Since the above problem is γ-strongly convex in u (note that it is also Lf = γ-
Lipschitz differentiable in the primal variable), a possible accelerated primal-
dual algorithm [18] (PDHGacc) for the solution reads

yn+1
1 =

yn1 + σn(A(un+1 + θn(un+1 − un))− f)

1 + σn
,

yn+1
2 = projPλ(yn2 + σn∇(un+1 + θn(un+1 − un))),

un+1 = (1− τnγ)un − τn(A∗yn+1
1 − div(yn+1

2 )),
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Fig. 2 Inexact primal-dual on the TV-L2 problem. (a) and (b) loglog plots of the
relative objective error vs. the outer iteration number for different precisions C/n−2α of the
errors. (a) ergodic sequence, (b) iterates. (c) and (d) number of inner iterations respectively
sum of inner iterations vs. number of outer iterations for different decay rates α. One can
observe that the predicted rate of O

(
N−2α

)
is attained both for the ergodic sequence and

the single iterates, exactly reflecting the influence of the errors/imprecision.

with τn, σn, θn given by Theorem 5 (see also [18]). We choose τ0 = 0.99/L,
σ0 = (1 − τ0Lf )/τ0L

2 such that τ0Lf + τ0σ0L
2 = 1 as required, with L =

‖(A,∇)‖ ≈
√

8 (see also the previous section). We remark that the primal
term involving γ could also be handled implicitly, leading to a linear proximal
step instead of the explicit evaluation of the gradient which, however, did not
substantially affect the results. In the spirit of the previous experiments we
employ a different splitting on this problem:

min
u∈X

max
y∈Y

〈y,Au− f〉 − 1

2
‖y‖2 + λ‖∇u‖1 +

γ

2
‖u‖2. (48)

The benefit is that even for small γ this problem is γ-strongly convex in the
primal and 1-strongly convex in the dual variable and hence can be accelerated
to linear convergence, which provides a huge boost in performance. Note that
the same is not possible in formulation (47), since the problem is not strongly
convex in y2. We can handle the smooth primal term in (48) explicitly such
that the associated inexact primal-dual algorithm (iPD) from Section 3.5 reads

yn+1 = (yn + σ(A(un+1 + θ(un+1 − un))− f))/(1 + σ),

un+1 ≈εn+1

2 arg min
u∈X

1

2τ
‖u− [(1− τγ)un − τA∗yn+1]‖2 + ‖∇u‖1.
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Fig. 3 Inexact primal-dual on the smoothed TV-L2 problem. (a) and (b) loglog
plots of the relative objective error respectively relative error in norm vs. the outer iteration
numbers for accelerated primal-dual (PDHGacc) and inexact primal-dual (iPD) for q = 0.9,
(c) loglog plot of the inner iteration number vs. outer iteration number for q = 0.9. One can
observe that the predicted convergence rate of O

(
θN
)

is exactly attained, while for lower
outer iteration numbers the necessary amount of inner iterations stays reasonably low.

with τ, σ, θ defined at the end of Section 3.5. In this case we have γ = Lf , such
that the formulas simplify to

τ =

√
4 + 4L2/(γµ)

2γ + 2L2/µ
, σ =

√
4 + 4L2/(γµ)

2µ+ 2L2/γ
, θ = 1−

√
4 + 4L2/(γµ)− 2

2L2/(γµ)
.

We revisit the experimental setting from Section 4.3, such that L = ‖A‖ = 1,
λ = 0.01 and choose γ = 1e − 3. With this size of γ the results were barely
distinguishable from the results of the non-smoothed model from Section 4.2.
This leads to θ ≈ 0.96 for the constant of the linear convergence. Figure
3 shows the results for (PDHGacc) and (iPD) using an error decay rate of
q = 0.9, i.e. according to Corollary 4 we expect a linear convergence with con-
stant θ > q, which is indeed the case. One can observe that already after 250
iterations (iPD) reaches a relative objective error of 1e−10, while the accel-
erated PD version has barely reached 1e−2. It should however be mentioned
that also (PDHGacc) reaches the O

(
N−2

)
rate soon after these 250 iterations.

Figure 3(c) shows the price we pay for the inner loop, i.e. the number of inner
iterations which is necessary over the course of the 250 outer iterations. As
one expects for linear convergence, the number of inner iterations explodes for
high outer iteration numbers, which substantially slows down the algorithm.
However, the algorithm reaches an error of 1e−6 in relative objective already
after approximately 100 iterations, in which case the number of inner itera-
tions is still remarkably low (around 10-20), which makes the approach viable
in practice. This is in particular interesting for problems with a very costly
operator A, where the tradeoff between outer and inner iterations is high.

5 Conclusion and Outlook

In this paper we investigated the convergence of the class of primal-dual algo-
rithms developed in [54,15,18] under the presence of errors occurring in the
computation of the proximal points and/or gradients. Following [60,61,5] we
studied several types of errors and showed that under a sufficiently fast decay
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of these errors we can establish the same convergence rates as for the error-
free algorithms. More precisely we proved the (optimal) O (1/N) convergence
to a saddle-point in finite dimensions for the class of non-smooth problems
considered in this paper, and proved a O

(
1/N2

)
or even linear O

(
θN
)

con-
vergence rate for partly smooth respectively entirely smooth problems. We
demonstrated both the performance and the practical use of the approach
on the example of nested algorithms, which can be used to split the global
objective more efficiently in many situations. A particular example is the non-
differentiable TV-L1 model which can be very easily solved by our approach.
A few questions remain open for the future: A very practical one is whether
one can use the idea of nested algorithms to (heuristically) speed up the con-
vergence of real life problems which are not possible to accelerate, such as
TV-type methods in medical imaging. As demonstrated in the numerical sec-
tion, using an inexact primal-dual algorithm one can often “introduce” strong
convexity by splitting the problem differently and hence obtain the possibility
to accelerate. This can in particular be interesting for problems with operators
of very different costs, where the trade-off between inner and outer iterations
is high and hence a lot of inner iterations are still feasible. Following the same
line, it would furthermore be interesting to combine the convergence results for
inexact algorithms with stochastic approaches as done in [16], which are also
designed to speed up the convergence for this particular situation, which could
provide an additional boost. Another point to investigate is whether one can
combine the inexact approach with linesearch and variable metric strategies
similar to [9].

A Appendix

In the Appendix we provide two technical results and the proofs for all the accelerated
versions of the algorithm, since they basically follow the same line as the basic proof.

A.1 Two technical lemmas

The following lemma is taken from [60].

Lemma 4 ([60]) Assume that the sequence {uN} is nonnegative and satisfies the recursion

u2N ≤ SN +

N∑
n=1

λnun

for all N ≥ 1, where {SN} is an increasing sequence, S0 ≥ u20, and λn ≥ 0 for all n ≥ 0.
Then for all N ≥ 1

uN ≤
1

2

N∑
n=1

λn +

SN +

(
1

2

N∑
n=1

λn

)2
 1

2

.

Lemma 5 For α > −1 let sN :=
∑N
n=1 n

α. Then

sN = O
(
N1+α

)
.
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Proof Let α ∈ (−1, 0) and n ≥ 1. Then by the monotonicity of x 7→ xα we have for all
n − 1 ≤ x ≤ n that xα ≥ nα. Integrating both sides of the inequality from n − 1 to n and
summing from n = 1, . . . , N we obtain

sN ≤
∫ N

0
xαdx.

We proceed analogously for n ≤ x ≤ n+ 1 to obtain∫ N+1

1
xαdx ≤ sN .

By computing both integrals we hence find

1

1 + α

[
(N + 1)1+α − 1

]
=

∫ N+1

1
xαdx ≤ sN ≤

∫ N

0
xαdx =

1

1 + α
N1+α,

which implies sN = O(N1+α). The proof for α > 0 follows the same idea. Now for every
n− 1 ≤ x ≤ n we have that (n− 1)α ≤ xα ≤ nα. Integrating the inequality from n− 1 to
n and summing from n = 1, . . . , N we obtain

sN−1 =

N−1∑
n=1

nα ≤
∫ N

0
xαdx =

1

1 + α
N1+α ≤

N∑
n=1

nα = sN .

Furthermore sN−1 = sN −Nα, so for every N ≥ 1

1

1 + α
N1+α ≤ sN ≤

1

1 + α
N1+α +Nα,

from which we deduce that sN = O(N1+α).

A.2 Type-0 approximations

It is interesting to consider the notion of a type-0 approximation (cf. Definition 2) as well,
since it seems to be the most intuitive one (the authors of [5] mention it but do not explicitly
handle the situation). The problem however is that neither the inexact proximal point needs
to be feasible, nor do we have an equivalent definition of a type-0 approximation in terms of
an (ε-) subdifferential. For simplicity we briefly outline a possible strategy on the reduced
problem

min
x∈X

max
y∈Y

〈y,Kx〉+ g(x)− h∗(y)

and condsider the algorithm

x̌ ≈ε0 proxτg(x̄− τK∗ỹ)),

ŷ ≈δ2 proxσh∗ (ȳ + σKx̃),
(49)

where again (x̌, y̌) are the erroneus proximal points and (x̃, ỹ) and (x̄, ȳ) are the previous
points. A possible way to deal with the type-0 approximation is to “transfer” the error in
the primal proximum to the dual proximum. Note that, following the same line as before, by
interchanging the order of iterates (starting with the primal variable x) we can now perform
the overrelaxation in the dual variable instead of the primal in order to get a bound on y.

So let x̂ be the true primal proximum and choose x̃ = x̌. Then by the definition of the
type-0 approximation there exists s ∈ X with ‖s‖ ≤

√
2τε such that x̌ = x̂+s, which implies

that

y̌ ≈2 proxσh∗ (ȳ + σKx̃) = proxσh∗ (ȳ + σKx̌) = proxσh∗ (ȳ + σ(Kx̂+Ks)).
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Hence with d = Ks we can rewrite (49) as

x̂ = proxτg(x̄− τK∗ỹ),

x̌ = x̂+ s

y̌ ≈δ2 proxσh∗ (ȳ + σ(Kx̂+ d)).

(50)

Now

‖d‖ = ‖Ks‖ = ‖K(x̂− x̌)‖ ≤ ‖K‖
√

2τε =
√

2σκ

with κ := (τε‖K‖2)/σ. This reveals that a type-0 approximation of x̂ with precision ε can
essentially be interpreted as a type-3 approximation y̌ of ŷ, which in sum with the type-2
approximation gives an overall approximation of type 1 for y̌, now however with “mixed”
precision κ and δ. Using the choices

(x̂, y̌) = (x̂n+1, yn+1), (x̄, ȳ) = (xn, yn), ỹ = 2yn − yn−1,

we formally obtain the following algorithm:

x̂n+1 = proxτg(xn − τK∗(2yn − yn−1)),

y̌n+1 ≈δn+1,κn+1
1 proxσh∗ (yn + σKx̂n+1).

(51)

This situation can then be treated similarly to the above analysis (cf. Theorem 2) and is
summarized in Corollary 5. The main difference here is now that we get an estimate on the
true proximum x̂n+1 while computing xn+1 in practice.

Corollary 5 Let L = ‖K‖ and choose β > 0 and τ, σ > 0 such that στL2 + σβL < 1

and let (x̂n, y̌n) be defined by Algorithm (51). Then for X̂N :=
(∑N

n=1 x̂
n
)
/N and Y N :=(∑N

n=1 y
n
)
/N we have for any saddle point (x?, y?) ∈ X × Y that

L(X̂N , y?)− L(x?, Y N ) ≤
1

2σN

(√
σ

τ
‖x? − x0‖+ ‖y? − y0‖+ 2AN +

√
2BN

)2

,

with AN =
∑N
n=1

√
2σκn and BN =

∑N
n=1 σδn.

Proof We can easily verify the assertion by dropping f and simply interchanging the roles
of x and y (and thus τ and σ) in Theorem 1.

As for Theorem 1 we can now state a rate for (X̂N , Y N ) if the partial sums AN and
√
BN

are in o(
√
N). Since the result still relies on the unknown true proxima x̂n, it then remains

to note that for X̌N := (
∑N
i=1 x̌

n)/N we have

‖X̂N − X̌N‖ ≤
1

N

N∑
i=1

‖x̂n − x̌n‖ ≤
1

N

N∑
i=1

√
2σκn =

1

N
AN ,

which implies strong convergence of X̌N to X̂N with the same rate.
Hence we can essentially handle the situation of a type-0 approximation by the same

means as before. The major difference is still that none of the x̌n need to be feasible, which
could impose problems in practice. Since type-0 approximations are the weakest among
the introduced notions, they should technically impose the least restrictive error criteria.
It however is an open question how to check ‖x̂ − x̌‖ ≤

√
2τε effectively. It is easy to see

that the duality gap bounds this quantity, in which situation Proposition 1 “unfortunately”
states that x̌ is already a stronger type-2 approximation. Hence it remains to find a different
criterion for the precision of a type-0 approximation to make this approach feasible in
practice.
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A.3 Proof of Theorem 5

Proof Using Lemma 3, we proceed exactly as in the proof of Theorem 1 (now only including
the γ-strong convexity of g as well as τ = τn, σ = σn and introducing θn), to arrive at the
basic inequality

L(xn+1, y)− L(x, yn+1) ≤ ∆n(x, y)−
1 + γτn

2τn
‖x− xn+1‖2 −

‖y − yn+1‖2

2σn

+ 〈K(xn+1 − xn), yn+1 − y〉 − θn〈K(xn − xn−1), yn+1 − y〉 −
1− τnLf

2τn
‖xn − xn+1‖2

−
‖yn − yn+1‖2

2σn
+
(
‖en+1‖+

√
(2εn+1)/τn

)
‖x− xn+1‖+ εn+1 + δn+1,

where we let ∆n(x, y) := ‖x−xn‖2/(2τn)+‖y−yn‖2/(2σn) for the sake of clarity. The goal
of the proof is, again, to manipulate this inequality such that we obtain a recursion where
most of the terms cancel when summing the inequality. In order to get a useful recursion in
the first line it is clear that we require

σn = θn+1σn+1, (1 + γτn)τn+1θn+1 ≥ τn, (52)

such that we obtain the estimate

−
1 + γτn

2τn
‖x− xn+1‖2 −

‖y − yn+1‖2

2σn

= −
(1 + γτn)τn+1

τn

‖x− xn+1‖2

2τn+1
−
σn+1

σn

‖y − yn+1‖2

2σn+1
≤ −

1

θn+1
∆n+1(x, y).

For a useful recursion for the second line we expand

− θn〈K(xn − xn−1), yn+1 − y〉

=− θn〈K(xn − xn−1), yn+1 − yn〉 − θn〈K(xn − xn−1), yn − y〉,

and compute (cf. Equation (21) with now α = σnθnL)

−θn〈K(xn − xn−1), yn+1 − yn〉 ≤
σn−1θnL2

2
‖xn−1 − xn‖2 +

‖yn+1 − yn‖2

2σn
,

where we used (52) such that σnθn = σn−1. We note that since τnLf + τnσnL2 ≤ 1 we
furthermore have

−
1− τnLf

2τn
‖xn − xn+1‖2 ≤ −

σnL2

2
‖xn − xn+1‖2.

Putting everything together and rearranging we arrive at (note that the terms ‖yn+1−
yn‖2/(2σn) cancel and σn+1/σn = 1/θn+1)

L(xn+1, y)− L(x, yn+1)

≤ ∆n(x, y)− θn〈K(xn − xn−1), yn − y〉+
σn−1θnL2

2
‖xn−1 − xn‖2

−
σn+1

σn

(
∆n+1(x, y)− θn+1〈K(xn+1 − xn, yn+1 − y〉+

σnθn+1L2

2
‖xn+1 − xn‖2

)
+
(
‖en+1‖+

√
(2εn+1)/τn

)
‖x− xn+1‖+ εn+1 + δn+1.
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We multiply the inequality by σn/σ0 to reveal the recursion and sum from n = 0, . . . , N−1:

N∑
n=1

σn−1

σ0
(L(xn, y)− L(x, yn)) ≤ ∆0(x, y)

−
σN

σ0

(
∆N (x, y)− θN 〈K(xN − xN−1), yN − y〉+

σN−1θNL
2

2
‖xN − xN−1‖2

)

+
1

σ0

N∑
n=1

(
σn−1‖en‖+

√
(2σ2

n−1εn)τn−1

)
‖x− xn‖+

1

σ0

N∑
n=1

σn−1(εn + δn).

Now, as above, we use that

θN 〈K(xN − xN−1, yN − y〉 ≤
σN−1θNL

2

2
‖xN − xN−1‖2 +

‖y − yN‖2

2σN
,

which gives

N∑
n=1

σn−1

σ0
(L(xn, y)− L(x, yn)) +

σN

σ0

1

2τN
‖x− xN‖2 ≤ ∆0(x, y)

+
1

σ0

N∑
n=1

(
σn−1‖en‖+

√
(2σ2

n−1εn)/τn−1

)
‖x− xn‖+

1

σ0

N∑
n=1

σn−1(εn + δn). (53)

This equation can now be use as before to bound all terms on the left hand side. Again for
a saddle point (x?, y?) ∈ X × Y the sum is nonnegative, hence we obtain the inequality:

‖x? − xN‖2 ≤
τN

σN

σ0

τ0
‖x? − x0‖2 +

τN

σN
‖y? − y0‖2

+ 2
τN

σN

N∑
n=1

(
σn−1‖en‖+

√
(2σ2

n−1εn)/τn−1

)
‖x− xn‖+ 2

τN

σN

N∑
n=1

σn−1(εn + δn).

For the sake of readability let us denote

ηN =
τN

σN
, AN =

N∑
n=1

(
σn−1‖en‖+

√
(2σ2

n−1εn)/τn−1

)
, BN =

N∑
n=1

σn−1(εn + δn).

Then as before with Lemma 4 we find,

‖x? − xN‖ ≤ ηNAN +

(
ηN

σ0

τ0
‖x? − x0‖2 + ηN‖y? − y0‖2 + 2ηNBN + η2NA

2
N

) 1
2

.

Since AN and BN are increasing we have for all n ≤ N

‖x? − xn‖ ≤ ηnAn +

(
ηn
σ0

τ0
‖x? − x0‖2 + ηn‖y? − y0‖2 + 2ηnBn + η2nA

2
n

) 1
2

≤ ηNAN +

(
ηN

σ0

τ0
‖x? − x0‖2 + ηN‖y? − y0‖2 + 2ηNBN + η2NA

2
N

) 1
2

≤ 2ηNAN +
√
ηN

√
σ0

τ0
‖x? − x0‖+

√
ηN‖y? − y0‖+

√
ηN
√

2BN .
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Now evoking equation (53) we obtain

N∑
n=1

σn−1

σ0
(L(xn, y)− L(x, yn))

≤
1

2τ0
‖x? − x0‖2 +

1

2σ0
‖y? − y0‖2 +

1

σ0
BN

+
1

σ0
AN

(
2ηNAN +

√
ηN

√
σ0

τ0
‖x? − x0‖+

√
ηN‖y? − y0‖+

√
ηN
√

2BN

)
≤

1

2σ0

(
σ0

τ0
‖x? − x0‖2 + ‖y? − y0‖2 +BN + 4ηNA

2
N

+ 2
√
ηNAN

√
σ0

τ0
‖x? − x0‖+ 2AN

√
ηN‖y? − y0‖+ 2AN

√
ηN
√

2BN

)
≤

1

2σ0

(√
σ0

τ0
‖x? − x0‖+ ‖y? − y0‖+ 2

√
ηNAN +

√
2BN

)2

The convexity of (ξ, ζ) 7→ L(ξ, y?)−L(x?, ζ) and the definition of the ergodic averages yields
the assertion (cf. the proof of Theorem 6). The estimate on ‖x?−xN‖2 follows analogously.
It remains to note that for a type-2 approximation the square root in AN can be dropped
and for a type-3 approximation BN = 0, which gives the different AN,i, BN,i.

A.4 Proof of Theorem 6

Proof We proceed exactly as in the proof of Theorem 5 with interchanged roles of x, y, τn
and σn to arrive at the basic inequality

L(xn+1, y)− L(x, yn+1) ≤ ∆n(x, y)−
1

2τn
‖x− xn+1‖2 −

1 + γσn

2σn
‖y − yn+1‖2

+ 〈K(xn+1 − xn), yn+1 − y〉 − θn〈K(xn − xn−1), yn+1 − y〉 −
1

2τn
‖xn − xn+1‖2

−
1

2σn
‖yn − yn+1‖2 +

(
‖en+1‖+

√
2εn+1

τn

)
‖x− xn+1‖+ εn+1 + δn+1,

where we again let ∆n(x, y) := ‖x−xn‖2/(2τn) + ‖y− yn‖2/(2σn). In order to get a useful
recursion for the first two lines it is clear that we need to require

τn = θn+1τn+1,

(1 + γσn)σn+1θn+1 ≥ σn,

such that the second line becomes

−
1

2τn
‖x− xn+1‖2 −

1 + γσn

2σn
‖y − yn+1‖2

=−
τn+1

τn

‖x− xn+1‖2

2τn+1
−

(1 + γσn)σn+1

σn

‖y − yn+1‖2

2σn+1

≤−
1

θn+1
∆n+1(x, y).

For a useful recursion for the third line we expand

− θn〈K(xn − xn−1), yn+1 − y〉

=− θn〈K(xn − xn−1), yn+1 − yn〉 − θn〈K(xn − xn−1), yn − y〉,
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and compute with Young’s inequality (cf. Equation (21) with α = 1/(τnθnL))

−θn〈K(xn − xn−1), yn+1 − yn〉 ≤
1

2τn
‖xn−1 − xn‖2 + (τnσnθ

2
nL

2)
‖yn+1 − yn‖2

2σn
.

In order to obtain a recursion for the first term on the right hand side we note that

−
1

2τn
‖xn − xn+1‖2 = −

τn+1

τn

1

2τn+1
‖xn − xn+1‖2

in the fourth line. Putting everything together and rearranging we arrive at

L(xn+1, y)− L(x, yn+1) ≤ ∆n(x, y)− θn〈K(xn − xn−1), yn − y〉+
1

2τn
‖xn − xn−1‖2

−
τn+1

τn

(
∆n+1(x, y)− θn+1〈K(xn+1 − xn), yn+1 − y〉+

1

2τn+1
‖xn+1 − xn‖2

)

− (1− τnσnθ2nL2)
‖yn+1 − yn‖2

2σn
+

√
2εn+1

τn
‖x− xn+1‖+ εn+1 + δn+1.

Requiring that τnσnθ2nL
2 ≤ 1 we can discard the related term and multiply the inequality

by τn/τ0 to reveal the recursion:

τn

τ0
L(xn+1, y)− L(x, yn+1)

≤
τn

τ0

(
∆n(x, y)− θn〈K(xn − xn−1), yn − y〉+

1

2τn
‖xn − xn−1‖2

)
−
τn+1

τ0

(
∆n+1(x, y)− θn+1〈K(xn+1 − xn), yn+1 − y〉+

1

2τn+1
‖xn+1 − xn‖2

)
+

1

τ0

√
2τnεn+1‖x− xn+1‖+

τn

τ0
(εn+1 + δn+1).

We now sum the above inequality from n = 0, . . . , N − 1:

N∑
n=1

τn−1

τ0
(L(xn, y)− L(x, yn))

≤ ∆0(x, y)−
τN

τ0

(
∆N (x, y)− θN 〈K(xN − xN−1), yN − y〉+

1

2τN
‖xN − xN−1‖2

)

+
1

τ0

N∑
n=1

√
2τn−1εn‖x− xn‖+

1

τ0

N∑
n=1

τn−1(εn + δn).

Now, as above, we use that

θN 〈K(xN − xN−1, yN − y〉 ≤
1

2τN
‖xN − xN−1‖2 + (σN τNθ

2
NL

2)
‖y − yN‖2

2σN
,

which gives the first intermediate result:

N∑
n=1

τn−1

τ0
(L(xn, y)− L(x, yn)) +

1

2τ0
‖x− xN‖2 +

τN

τ0
(1− σN τNθ2NL

2)
‖y − yN‖2

2σN

≤ ∆0(x, y) +
1

τ0

N∑
n=1

√
2τn−1εn‖x− xn‖+

1

τ0

N∑
n=1

τn−1(εn + δn).

(54)
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This equation can now be use as before to bound all terms on the left hand side and hence
gives the necessary bound on ‖x − xN‖ appearing in the error term. For a saddle point
(x?, y?) ∈ X × Y the sum on the left hand side is nonnegative and:

‖x? − xN‖2 ≤ 2τ0∆0(x, y) + 2

N∑
n=1

√
2τn−1εn‖x? − xn‖+ 2

N∑
n=1

τn−1(εn + δn).

Hence, again with Lemma 4,

‖x? − xN‖ ≤
N∑
n=1

√
2τn−1εn +

(
‖x? − x0‖2 +

τ0

σ0
‖y? − y0‖2

+ 2

N∑
n=1

τn−1(εn + δn) +

(
N∑
n=1

√
2τn−1εn

)2
 1

2

= AN +

(
‖x? − x0‖2 +

τ0

σ0
‖y? − y0‖2 + 2BN +A2

N

) 1
2

,

where we denote AN =
∑N
n=1

√
2τn−1εn and BN =

∑N
n=1 τn−1(εn + δn). Since AN and

BN are increasing we have for all n ≤ N

‖x? − xn‖ ≤ An +

(
‖x? − x0‖2 +

τ0

σ0
‖y? − y0‖2 + 2Bn +A2

n

) 1
2

≤ AN +

(
‖x? − x0‖2 +

τ0

σ0
‖y? − y0‖2 + 2BN +A2

N

) 1
2

≤ 2AN + ‖x? − x0‖+

√
τ0

σ0
‖y? − y0‖+

√
2BN .

Then we find (again by equation (54))

N∑
n=1

τn−1

τ0
(L(xn, y?)− L(x?, yn))

≤ ∆0(x?, y?) +
1

τ0
BN +

1

τ0
AN

(
2AN + ‖x? − x0‖+

τ0

σ0
‖y? − y0‖+

√
2BN

)
=

1

2τ0

(
‖x? − x0‖2 +

τ0

σ0
‖y? − y0‖2 + 2BN + 4A2

N

+2AN‖x? − x0‖+ 2AN

√
τ0

σ0
‖y? − y0‖+ 2AN

√
2BN )

)
≤

1

2τ0

(
‖x? − x0‖+

√
τ0

σ0
‖y? − y0‖+ 2AN +

√
2BN

)2

.

Using the convexity of (ξ, ζ) 7→ L(ξ, y?) − L(x?, ζ) and Jensen’s inequality as well as the
definition of the ergodic averages (XN , Y N ) yields the first assertion. The estimate on
‖x? − xN‖2 and ‖y? − yN‖2 then follows analogously from inequality (54). It remains to
note that for a type-2 approximation the square root in AN can be dropped and for a type-3
approximation BN = 0, which gives the different AN,i, BN,i.
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A.5 Proof of Theorem 7

Proof We again start with the general descent rule in Lemma 3:

L(xn+1, y)− L(x, yn+1) ≤
1

2τ
‖x− xn‖2 +

1

2σ
‖y − yn‖2 −

1 + γτ

2τ
‖x− xn+1‖2

−
1 + µσ

2σ
‖y − yn+1‖2 + 〈K(xn+1 − xn), yn+1 − y〉 − θ〈K(xn − xn−1), yn+1 − y〉

−
1− τLf

2τ
‖xn − xn+1‖2 −

1

2σ
‖yn − yn+1‖2

+
(
‖en+1‖+

√
(2εn+1)/τ

)
‖x− xn+1‖+ εn+1 + δn+1.

Now we expand and apply Young’s inequality

− θ〈K(xn − xn−1), yn+1 − y〉

=− θ〈K(xn − xn−1), yn+1 − yn〉 − θ〈K(xn − xn−1), yn − y〉

≤
σθ2L2

2
‖xn−1 − xn‖2 +

‖yn+1 − yn‖2

2σ
− θ〈K(xn − xn−1), yn − y〉,

which gives

L(xn+1, y)− L(x, yn+1) ≤
1

2τ
‖x− xn‖2 +

1

2σ
‖y − yn‖2 −

1 + γτ

2τ
‖x− xn+1‖2

−
1 + µσ

2σ
‖y − yn+1‖2 + 〈K(xn+1 − xn), yn+1 − y〉 − θ〈K(xn − xn−1), yn − y〉

−
1− τLf

2τ
‖xn − xn+1‖2 +

σθ2L2

2
‖xn−1 − xn‖2

+

(
‖en+1‖+

√
2εn+1

τ

)
‖x− xn+1‖+ εn+1 + δn+1.

Ensuring that 1 + γτ = 1 + µσ = 1/θ and (1− τLf )/τ ≥ σθ2L2 we derive

L(xn+1, y)− L(x, yn+1) ≤ ∆n(x, y)− θ〈K(xn − xn−1), yn − y〉

−
1

θ

(
∆n+1(x, y)− θ〈K(xn+1 − xn), yn+1 − y〉

)
+
σθ2L2

2
‖xn−1 − xn‖2 −

1− τLf
2τ

‖xn − xn+1‖2

+

(
‖en+1‖+

√
2εn+1

τ

)
‖x− xn+1‖+ εn+1 + δn+1.

We now multiply by θ−n and sum from n = 0, . . . , N − 1:

N∑
n=1

1

θn−1

(
L(xn, y)− L(x, yn)

)
≤∆0(x, y)−

1

θN

(
∆N (x, y)− θ〈K(xN − xN−1), yN − y〉

)
−

N∑
n=1

1− τLf − τσθ2L2

2τθn−1
‖xn−1 − xn‖2 +

1− τLf
2τθN−1

‖xN − xN−1‖2

+

N∑
n=1

1

θn−1

[(
‖en‖+

√
2εn

τ

)
‖x− xn‖+ εn + δn

]
,
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which again by Young’s inequality implies

N∑
n=1

1

θn−1

(
L(xn, y)− L(x, yn)

)
+

1

2τθN
‖x− xN‖2

≤ ∆0(x, y) +

N∑
n=1

1

θn−1

[(
‖en‖+

√
2εn

τ

)
‖x− xn‖+ εn + δn

]
. (55)

For a saddle point (x?, y?), the sum on the left hand side is positive, hence we obtain

‖x− xN‖2 ≤ θN‖x? − x0‖2 + θN
τ

σ
‖y? − y0‖2

+ 2θN
N∑
n=1

1

θn−1
(τ‖en‖+

√
2τεn)‖x? − xn‖+ 2θN

N∑
n=1

τ

θn−1
(εn + δn).

Evoking Lemma 4 and denoting

AN :=
N∑
n=1

1

θn−1
(τ‖en‖+

√
2τεn), BN :=

N∑
n=1

τ

θn−1
(εn + δn),

we obtain

‖x? − xN‖ ≤ θNAN +
[
θN‖x? − x0‖2 + θN

τ

σ
‖y? − y0‖2 + 2θNBN + θ2NA2

N

] 1
2
.

By monotonicity we have the same bound for all n ≤ N :

‖x? − xn‖ ≤ θNAN +
[
θN‖x? − x0‖2 + θN

τ

σ
‖y? − y0‖2 + 2θNBN + θ2NA2

N

] 1
2

≤ 2θNAN + θ
N
2 ‖x? − x0‖+ θ

N
2

√
τ

σ
‖y? − y0‖+ θ

N
2

√
BN .

We now again use inequality (55) to obtain a bound for the sum:

N∑
n=1

1

θn−1
(L(xn, y?)− L(x?, yn)) ≤

1

2τ

[
‖x? − x0‖2 +

τ

σ
‖y? − y0‖2 + 2BN

+2AN

(
2θNAN + θ

N
2 ‖x? − x0‖+ θ

N
2

√
τ

σ
‖y? − y0‖+ θ

N
2

√
2BN

)]
≤

1

2τ

(
‖x? − x0‖+

√
τ

σ
‖y? − y0‖+ 2θ

N
2 AN +

√
2BN

)2

.

Eventually we let

TN :=

N∑
n=1

1

θn−1
=
θN − 1

θ − 1

1

θN−1
, XN :=

1

TN

N∑
n=1

1

θn−1
xn, Y N :=

1

TN

N∑
n=1

1

θn−1
yn

to deduce the assertion by convexity and Jensen’s inequality. By the same argumentation
as above we can also use inequality (55) to obtain the convergence of the iterates:

‖x? − x0‖2

2τ
≤
θN

2τ

(
‖x? − x0‖+

√
τ

σ
‖y? − y0‖+ 2θ

N
2 AN +

√
2BN

)2
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