Bar codes of persistent cohomology and Arrhenius law for p-forms - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Bar codes of persistent cohomology and Arrhenius law for p-forms

Résumé

This article shows that counting or computing the small eigenvalues of the Witten Laplacian in the semi-classical limit can be done without assuming that the potential is a Morse function as the authors did in [LNV]. In connection with persistent cohomology, we prove that the rescaled logarithms of these small eigenvalues are asymptotically determined by the lengths of the bar code of the function f. In particular, this proves that these quantities are stable in the C^0 topology on the space of functions. Additionally, our analysis provides a general method for computing the subexponential corrections in a large number of cases.
Fichier principal
Vignette du fichier
persist15.pdf (1.67 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02471644 , version 1 (14-02-2020)

Identifiants

Citer

Dorian Le Peutrec, Francis Nier, Claude Viterbo. Bar codes of persistent cohomology and Arrhenius law for p-forms. 2020. ⟨hal-02471644⟩
209 Consultations
66 Téléchargements

Altmetric

Partager

More