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Abstract

This article shows that counting or computing the small eigenvalues of the Witten Laplacian
in the semi-classical limit can be done without assuming that the potential is a Morse function as
the authors did in [LNV]. In connection with persistent cohomology, we prove that the rescaled
logarithms of these small eigenvalues are asymptotically determined by the lengths of the bar
code of the function f . In particular, this proves that these quantities are stable in the C0

topology on the space of functions. Additionally, our analysis provides a general method for
computing the subexponential corrections in a large number of cases.

MSC2010: 57N65, 58J32,58J37,81Q10,81Q20
Keywords: Exponentially small eigenvalues, Witten Laplacians, Arrhenius Law, Persistence.

Contents

1 Introduction 3
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 General assumptions and notations . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Simple results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Strategy and outline of the article . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Boundary Witten Laplacians 12
2.1 Tangential and normal traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Smooth case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Lipschitz domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Witten’s deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Agmon’s type estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Weighted integration by parts formulas . . . . . . . . . . . . . . . . . . . 18
2.3.2 Exponential decay estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Adjusting boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.4 Resolvent estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
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1 Introduction

1.1 Motivations

Since its discovery in the late nineteenth century, Arrhenius law (see [Arr]) is one of the most
robust laws of chemistry or physics. Actually, its range of applications has increased over decades
and is now also commonly used in biology or social sciences as an empirical law whose parameters
be can figured out rather easily, even when the microscopic or individual mechanisms are not
well understood. Its early interpretations were done within the thermodynamical or statistical
physics framework. They are now formulated in the modern and general language of stochastic
processes, more specifically of the Brownian motion of a particle evolving in a gradient field.
At low temperature h > 0 in some dimensionless scaling, the lifetime τα,h of the state α is
exponentially large with

log τα,h ∼
ℓα
h
, (1)

where ℓα is the energy variation between a local minimum and the lowest saddle point that we
need to cross to reach a state of lower energy. Practically and as an illustration of the robustness
of Arrhenius law, it is neither necessary to know the energy landscape nor the configuration space:
in the end only the ℓα’s are important and they are determined experimentally, e.g. in chemistry
kinetics. A general justification of (1) was proposed by Freidlin and Wentzell in [VeFr1, VeFr2]
relying on large deviation arguments (see also [FrWe] and [Ber] for a wider overview).
In an energy landscape described by the function 2f : M → R , those lifetimes are generically

the inverses of eigenvalues of the operator −h∆+ 2∇f · ∇ in L2(M, e−
2f
h dx) , where e−

2f
h dx

is the associated invariant measure (it exists e.g. when M is a compact Riemannian manifold

without boundary). After a conjugation by e
f
h and a multiplication by h (corresponding to a

change of time scale), it becomes the operator

∆
(0)
f,h = −h2∆+ |∇f(x)|2 − h(∆f)(x) = d∗f,hdf,h acting in L2(M,dx) ,

where df,h = e−
f
h (hd)e

f
h is the Witten differential and d∗f,h its adjoint. This operator acts on

general differential forms as the Witten Laplacian, a deformation of the Hodge Laplacian:

∆f,h = (df,h + d∗f,h)
2 =

dimM
⊕
p=0

∆
(p)
f,h ,

where the direct sum separates the degrees. When f is a Morse function, Witten in [Wit] (see
also [CFKS]) proved that as h goes to zero, the eigenvalues of ∆f,h are divided into two groups,
given in our scaling as one bounded from below by Cfh for some Cf > 0 , and one being of

the order o(h) . The small (here o(h)) eigenvalues of ∆
(p)
f,h correspond to critical points of index

p: this is intuitively to be expected, since the eigenfunctions should concentrate in the region
where |∇f | is small, that is near the critical points of f . This argument provided an analytical
proof of Morse inequalities, in the line of several results relating topological quantities and
spectral analysis, one of the earliest being the Atiyah-Patodi-Singer proof of the index theorem
(see [APS]).

In [HeSj4] , Helffer and Sjöstrand gave a rigorous proof of Witten’s claims and proved that
those small eigenvalues were actually exponentially small, without specifying their size. This was
later extended to Morse-Bott functions by Bismut and Helffer-Sjöstrand (see [Bis] and [HeSj6]).
After this, many applications of Witten Laplacians or more general Witten deformations were
used to study various global topological invariants of manifolds or fibre bundles by counting the
small eigenvalues of such operators (see e.g. [BiZh, Zha, ChLi]).
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When f is a Morse function, the Arrhenius law in degree 0 says that the o(h) eigenvalues of

∆
(0)
f,h satisfy

logλ
(0)
α,h ∼ −2

f(yα)− f(xα)
h

as h→ 0+ , (2)

where xα is a local minimum and yα is an associated saddle point. Already around 1935, Eyring
and Kramers (see [Eyr, Kra]), motivated by the theory of the activated complex in chemistry,
proposed a more accurate version which reads here

λ
(0)
α,h ∼

h

π
Cαe

−2 f(yα)−f(xα)
h as h→ 0+ , (3)

where the constant Cα depends on the Hessians at the non degenerate critical points xα and yα ,
xα is a local minimum (here a critical point of index 0), and yα a saddle point (here a critical
point of index 1) .
The first mathematical proof of the Eyring-Kramers formula was performed in degree 0 in
[BEGK, BGK] by using potential theoretic and capacity arguments, and in [HKN] by improving

Helffer-Sjöstrand’s semiclassical analysis for ∆
(0)
f,h (see also e.g. the prior works [HKS, Micl] for

results less precise than (3) but more precise than (2)). These results were proved under the
assumption that f is a Morse function with simple local minima and simple saddle points (a
Morse function has simple critical values or critical points if every critical value is the image of a
single critical point), and with distinct lengths : the real numbers ℓα = 2(f(yα)− f(xα)) are all
distinct. The pairing between local minima xα and saddle points yα (critical points with index
1) was done by extending the intuitive picture of basins of attraction, more precisely by consid-
ering the connected components of sublevel sets of f . Note that this differs from the instantonic
picture, associated with curves which are intersections of stable and unstable manifolds of −∇f ,
which is in some sense local and would lead to a complicated analysis of cancellations while

computing precisely the λ
(0)
α,h’s. This pairing relies on global topological considerations which

are robust with respect to the C0 perturbations of the energy profile 2f . By making use of the
min-max principle, it is actually not difficult to start from the analysis done in [HKN] for Morse
functions and to recover (2) and the results of [VeFr1, VeFr2, HKS, Micl] in cases where the local
minima are degenerate.
The situation is completely different for general differential forms of degree p . In [LNV], we
proved an Eyring-Kramers law (and therefore an Arrhenius law) by assuming again that the
function f was a generic Morse function with simple critical values and such that the difference
between critical values were all distinct. Here the problem is to understand which critical values
f(xα) and f(yα) are paired in order to compute the exponential factors. This pairing is obtained
topologically by using a refinement of Barannikov’s presentation of Morse theory. This can be
restated in modern terms with the bar code of f , denoted Bf = ([a∗α, b

∗+1
α [)α∈A∗ , associated

with the Morse function f on M , with the notation a
(p)
α = f(xα) and b

(p+1)
α = f(yα) , where

the critical point xα has index p and yα has index p+ 1 . Later, it was noticed in [UsZh, PoSh]
that those bar codes were nothing but the bar codes of persistent homology, developed since the
beginning of the 21st century (see [EdHa] for a historical review). An important feature of the
Barannikov complex, and hence of persistent homology, is the stability result which says in the
latter framework

dbot(Bf ,Bg) ≤ ‖f − g‖C0 ,

where the bottleneck distance dbot estimates the variations of the lengths of the bars.

But the bar code of a function is defined for any continuous function, except the bars are
now infinitely many, with the property that for any ε0 > 0 , only finitely many are greater than
ε0 . It is then natural to state the following conjecture.
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Main Conjecture : Consider a C∞ (or even Lipschitz) function f on a compact manifold

M with bar code Bf . We denote by A(p)(ℓ) the set of bars in Bf of the type [a
(p)
α , b

(p+1)
α [ with

b
(p+1)
α − a

(p)
α > ℓ , and A

(p−1)
c (ℓ) the set of bars in Bf of the type [a

(p−1)
α , b

(p)
α [ with b

(p+1)
α −

a
(p)
α > ℓ and b

(p)
α < +∞ . Then, there exists ε0 > 0 such that, for every ε ∈]0, ε0] , ∆

(p)
f,h

admits ♯
(
A(p)(ℓ) ∪ A(p−1)

c (ℓ)
)
eigenvalues λ

(p)
α,h smaller than e−2 ℓ+εh (with multiplicity), where

α ∈ A(p)(ℓ) ∪ A(p−1)
c (ℓ) . They can moreover be labelled such that

∀α ∈ A(p)(ℓ) ∪ A(p−1)
c (ℓ) , logλ

(p)
α,h ∼ −2

b
(p+1)
α − a(p)α

h
as h→ 0+ .

The goal of this paper is to prove this conjecture under the assumption that f has a finite
number of critical values.

Note that we do not assume in the Main Conjecture (as well as in our theorems) that f is
Morse. One important consequence of the Main Conjecture (and hence of our main theorems)
is that the decay rate of the eigenvalues is continuous in f for the C0 topology. This is not the
case for subexponential factors, since they usually depend on the eigenvalues of the Hessian of
f at the critical points.

In the case p = 0 of functions, the Eyring-Kramers law (3) has been extended in the form

λ
(0)
α,h ∼ Cα(f)hνα(f)e−2 f(yα)−f(xα)

h when f is not a Morse function or when f is a Morse function
with multiple critical values (i.e. the preimage of a critical value may contain several critical
points), the latter appearing in practical situations with natural symmetries. We refer for exam-
ple to [BeGe, BeDu, Mic, DLLN2, LeNe1, LeNe2], whence it appears that the exponent να(f) , or
the constant Cα(f) in the subexponential factor, may be discontinuous when a general function f
is approximated by a sequence of generic Morse functions. On the other hand, it will follow from
our results that the ℓα = 2(f(yα)−f(xα)) are stable. Understanding how the eigenvalues λα,h(f)
or the lifetimes τα,h(f) depend on f is also important for applications to acceleration of stochastic
algorithms (see [LeNi, DLLN1, DLLN2, LeNe1, LeNe2] and references therein). This leads to the

Main Question : Is there a way to analyze how the subexponential factor of Eyring-Kramers
law for p-forms varies when f is changed ? In particular, does it explain the observed disconti-
nuities ?

Again, the answer is yes. Our presentation of Arrhenius law for p-forms provides a very
general result. The method actually completely separates the determination of the exponential

scales e−
ℓα
h , related with global algebraic topological objects, from the determination of the

subexponential factors, which rely on some local analysis. Many applications with various dis-
continuous effects will be presented at the end of this text. Actually, the discontinuities w.r.t.
the energy landscape f of the leading term for the subexponential factor Cα(f)h

να(f) are easily
understood on the simple example of the Laplace integrals

I(δ, h) =
∫
R
e−

x4/4−δx2/2+1
R+

(δ)δ2/4

h dx ,

which satisfy I(δ, h)
h→0∼ Cδh

1/2 when δ 6= 0 ,

and I(δ, h)
h→0∼ Ch1/4 when δ = 0 .

1.2 General assumptions and notations

The manifold M : The Riemannian manifold (M, g) is assumed compact without boundary
with dimRM = d and non necessarily oriented. Some non compact manifold will be considered
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in Subsection 8.2. In the non-orientable case, the Hodge star operator, ⋆ , sends ΛT ∗M =
⊕dp=0 Λ

pT ∗M to ΛT ∗M ⊗M orM , where orM is the orientation (line) bundle, which is of course
locally trivial. When N ⊂ M is a regular hypersurface admitting a global unit normal (or
conormal) vector the orientation twist orN is the restriction of orM .
In local coordinates the metric will be written g = gij(x)dx

idxj with g−1 = gij(x) ∂
∂xi

∂
∂xj and

the musical isomorphisms ♯ : T ∗M → TM and ♭ : TM → T ∗M are given by

(ωidx
i)♯ = gijωj

∂

∂xi
and (X i ∂

∂xi
)♭ = gijX

jdxi .

The differential d acts on C∞(M ; ΛT ∗M ⊗M C) or D′(M ; ΛT ∗M ⊗M C) and augments the
degree of forms by 1 . The codifferential d∗ = (−1)deg ⋆−1 d⋆ acts on C∞(M ; ΛT ∗M ⊗M C) and
D′(M ; ΛT ∗M⊗M C) and decreases the degree by 1 . In the sequel and unless otherwise specified,
we always consider complex valued differential forms and the tensorization by C will be omitted
in the notation. The duality bracket 〈 , 〉 between D′(M ; ΛpT ∗M⊗orM ) and C∞(M ; Λd−pT ∗M)
(where D′ and C∞ can be interchanged) is assumed C-antilinear on the left-hand side and C-
linear on the right-hand side. Stokes’s formula then implies that d∗ is the formal adjoint of d
according to

0 =

∫

M

d(ω ∧ ⋆η) =
∫

M

dω ∧ (⋆η) + (−1)degωω ∧ d(⋆η) = 〈dω , η〉 − 〈ω , d∗η〉

for ω, η ∈ C∞(M ; Λp−1T ∗M) .

Functional spaces: The L2-norm of sections of ΛT ∗M is the one given by the metric g and we
recall ∫

M

〈ω , η〉ΛT∗
qM dvolg(q) =

∫

M

ω ∧ ⋆η .

We use the notation W s,p for the Sobolev space with s derivatives in Lp . In particular, W s,2

corresponds to the standard Hilbertian Sobolev spaces whileW 1,∞ will be used for the set of Lips-
chitz functions. For an open domain Ω ⊂M and for s ∈ R , the notationW s,2(Ω; ΛT ∗M) denotes
the set of restrictions to Ω of W s,2-sections in M , and when there is no ambiguity or necessity,
we shall use the short versionW s,2(Ω) . The same definition holds for C∞(Ω; ΛT ∗M) . We recall
that when Ω is a regular domain, that is when ∂Ω is a C∞ hypersurface, W s,2(Ω; ΛT ∗M) coin-
cides with W s,2(Ω; ΛT ∗M) by interpolation and duality from the special cases of s ∈ N (see e.g.
[ChPi]). In such a case, the trace theorem holds from W s,2(Ω; ΛT ∗M) to W s−1/2,2(Ω; ΛT ∗∂Ω)
for s > 1

2 . The local regularity theory is not affected when sections of ΛT ∗M ⊗ orM and

ΛT ∗M ⊗ or∂Ω are considered and we shall use the short notation W s,2(Ω) or W s,2(∂Ω) indiffer-
ently for sections of the trivial and orientation line bundles, unless we need to distinguish the
global behaviour. Other functional spaces will be introduced later in our analysis.

Witten differential and Witten Laplacian: The Witten differential and the Witten Lapla-
cian are deformations of the differential d and the Hodge Laplacian dd∗ + d∗d associated with a
real valued function f and a positive parameter h > 0 in the asymptotics h→ 0 .

Definition 1.1. Let f be a real valued function on M . For a ∈ R = R ∪ {−∞,+∞} , we use
the notations

fa = {x ∈M , f(x) < a} , f≤a = {x ∈M , f(x) ≤ a} ,
fa = {x ∈M , f(x) > a} , f≥a = {x ∈M , f(x) ≥ a} ,

with all the combinations like f ba = {x ∈M , a < f(x) < b} .
Although weaker regularity assumptions for the function f will be discussed later, the following
simple hypothesis will be convenient for us.
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Hypothesis 1.2. The function f on (M, g) is assumed to be Lipschitz with a finite number N
of values c1, . . . , cNf such that:

• f ∈ C∞(M \ f−1(
{
c1, . . . , cNf

}
);R)

• ∀x ∈M \ f−1(
{
c1, . . . , cNf

}
) , |∇f(x)| 6= 0 .

When f ∈ C∞(M ;R) , the above assumption simply says that f has a finite number ≤ Nf of
critical values . For a Lipschitz function, we count also “fake” critical values allowing singularities
of f at those values. We nevertheless call c1, . . . , cNf the “critical values” of f and use the
notation

Mreg = {x ∈ (M \ suppsing f) ,∇f(x) 6= 0} ⊂M \ f−1(
{
c1, . . . , cNf

}
) .

When M is a real analytic manifold, Hypothesis 1.2 may be replaced by the following simpler
natural assumption.

Hypothesis 1.3. On the real analytic compact Riemannian manifold M , f is a Lipschitz sub-
analytic function.

Actually, the proof of the main result, Theorem 6.3, will hold under Hypothesis 1.2 or under
some milder assumptions which are more technical and will appear as consequences of Hy-
pothesis 1.3 in Subsection 8.3. We also refer to Subsection 8.3 for more material on Lipschitz
subanalytic functions.

Under Hypothesis 1.2 or more generally for a Lipschitz function f and for h > 0 , the differential
operators df,h , d

∗
f,h and ∆f,h are defined by:

df,h = e−
f
h (hd)e

f
h = hd+ df∧ , df,h ◦ df,h = 0 , (4)

d∗f,h = e
f
h (hd∗)e−

f
h = hd∗ + i∇f , d∗f,h ◦ d∗f,h = 0 , (5)

∆f,h = (df,h + d∗f,h)
2 = d∗f,hdf,h + df,h ◦ d∗f,h = h2∆0,1 + |∇f(x)|2 + h(L∇f + L∗∇f ) . (6)

The above identities make sense when considering df,h and d∗f,h as operators from W 1,2(M) to

L2(M) or from L2(M) to W−1,2(M) , and for the compositions of two of them and for ∆f,h , as
operators from W 1,2(M) to W−1,2(M) . We shall be more precise on requirements for domains
once we add the boundary conditions.

Convention for closed operators and quadratic forms:
We shall consider various closed realizations in L2 spaces of the above differential operators
df,h , d

∗
f,h , and ∆f,h , which will be denoted df,•,h , d∗f,•,h, and ∆f,•,h , where the subscript • will

specify the realization. When A is a closed operator in a Hilbert space (resp. when Q is a closed
quadratic form), writing Au (resp. Q(u) or Q(u, v) for the associated sesquilinear form) means
that u belongs to the domain of A (resp. u or u, v belong to the domain of Q). For example
df,•,hω = α ∈ L2 means in particular ω ∈ D(df,•,h) , possibly imposing boundary conditions.

Comparing exponential scales:

Definition 1.4. For two functions F,G :]0, h0[→ C , one says

• F (h) = Õ(G(h)) if:

∀ε > 0 , ∃hε, Cε > 0 , ∀h ∈]0, hε[ , |F (h)| ≤ Cε|G(h)|e
ε
h ;

• F (h) = õ(G(h)) if:

∃ε, hε, Cε > 0 , ∀h ∈]0, hε[ , |F (h)| ≤ Cε|G(h)|e−
ε
h ;
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• F (h) log∼ G(h) if:
|F (h)| = Õ(|G(h)|) and |G(h)| = Õ(|F (h)|) .

When |F |, |G| > 0 , the above three conditions can be written respectively

lim sup
h→0

h log

( |F (h)|
|G(h)|

)
≤ 0 ,

lim sup
h→0

h log

( |F (h)|
|G(h)|

)
< 0

lim
h→0

h log

( |F (h)|
|G(h)|

)
= 0 .

In the two first definitions, the constant Cε can be fixed to 1 by changing hε (and ε in the second
definition).
When F : X×]0, h[→ C , the statements “F (x, h) = Õ(G(h)) (or F (x, h) = õ(G(h))) (lo-
cally) uniformly” are used when the above definitions make sense for the corresponding suprema
supx F (x, h) .

Bar code:
Although a more precise definition and construction will be recalled especially in Appendix B,
we can start with a short definition.

Definition 1.5. Under Hypothesis 1.2, a (persistence cohomology) bar code associated with
f is a finite family B = ([aα, bα[)α∈A with −∞ < aα < bα ≤ +∞ , aα ∈

{
c1, . . . , cNf

}
,

bα ∈
{
c2, . . . , cNf ,+∞

}
, with the following properties:

• it is graded according to A = ⊔dp=0A
(p) , [aα, bα[= [a

(p)
α , b

(p+1)
α [ when α ∈ A(p) ;

• for any pair a, b , a < b , a, b 6∈
{
c1, . . . cNf

}
, there exists a basis of the relative homology

vector space Hp(f b, fa) indexed by the bars of degree p with a unique endpoint lying in
]a, b[ . In particular, the relative Betti number is given by:

βp(f b, fa) = dimHp(f b, fa) = ♯
{
α ∈ A(p) , ♯

{
a(p)α , b(p+1)

α

}
∩]a, b[= 1

}
.

For a general Lipschitz function, such a finite bar code is well defined under the following
assumption (see Subsection 8.3.1 and Appendix B).

Hypothesis 1.6. The function f : M → R is a Lipschitz function and there exists a finite
number of values c1 < c2 . . . < cNf such that for any a ∈ R \

{
c1, . . . , cNf

}
, the following

property holds along f−1({a}):
For any x0 ∈ f−1({a}) , there exists a neighborhood Ux0 of x0 in M , a local coordinate system
x = (x1, x′) ∈ R× Rd−1 , and a constant Cx0 such that

∀x = (x1, x′), y = (y1, x′) ∈ Ux0 ,
1

Cx0

|x1 − y1| ≤ |f(x1, x′)− f(y1, x′)| .

This notion of bar code, and especially the identification of two bar codes, after possibly
adding empty intervals, is better understood after associating with a bar code BA = ([aα, bα[)α∈A
the constructible sheaf ⊕α∈AK[aα,bα[ of K-vector spaces, on R . Then, a persistence bar code
associated with a function f satisfying Hypothesis 1.2 is essentially unique and then denoted
B(f) .
After possibly adding empty bars such that aα = bα or cβ = dβ , two different bar codes
BA = ([aα, bα[)α∈A and BB = ([cβ , dβ [)β∈B can be assumed with the same cardinality, ♯A = ♯B .
The bottleneck distance is then defined by

dbot(BA,BB) = inf
j:A

bij→B

max
α∈A

max(|aα − cj(α)|, |bα − dj(α)|) ,
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with the convention |(+∞)− (+∞)| = 0 .
The stability theorem for persistent (co)homology (see e.g. [CEH, KaSc]) says that for two
functions f1, f2 which satisfy Hypothesis 1.2 or Hypothesis 1.6,

dbot(B(f2),B(f1)) ≤ ‖f2 − f1‖C0 .

1.3 Simple results

The method presented in this text leads to several results and can actually be extended to
other cases. Essentially, we show that the usual generic assumption that the function f is a
Morse function can be replaced by a very general one, after replacing the algebraic topological
information in terms of Morse indices by the ones given by the persistent cohomology bar code
associated with f . The following simple statements illustrate what can be obtained.

Theorem 1.7. Assume that f satisfies Hypothesis 1.2 and let ∆f,M,h be the self-adjoint Witten
Laplacian defined with D(∆f,M,h) =

{
ω ∈W 1,2(M) ,∆f,hω ∈ L2(M)

}
and ∆f,M,hω = ∆f,hω

according to (6), and ∆f,M,h = ⊕⊥
0≤p≤d∆

(p)
f,M,h . Let B(f) be a persistent cohomology bar code

associated with f . Then, there is a bijection between A(p) ⊔
{
α ∈ A(p−1) , b

(p)
α 6= +∞

}
and the

õ(1) eigenvalues counted with multiplicities of ∆
(p)
f,M,h . Precisely, there exists ε0 > 0 small enough

such that for all ε ∈]0, ε0[ , there exists hε > 0 such that the Õ(e−
ε
h )-eigenvalues of ∆

(p)
f,h counted

with multiplicity for h ∈]0, hε[ are given by λ
(p)
α (h) , α ∈ A(p) or (α ∈ A(p−1) and b

(p)
α 6= +∞),

with

either b(p+1)
α = +∞ , and then λ(p)α (h) = 0 ,

or b∗+1
α < +∞ , and then lim

h→0
−h logλ(p)α (h) = 2(b∗+1

α − a∗α) .

Obviously, the multiplicity of the 0-eigenvalue of ∆
(p)
f,M,h , the dimension of its kernel, equals the

pth Betti number of M , ♯
{
α ∈ A(p) , b

(p+1)
α = +∞

}
= β(p)(M) , and does not depend on the

function f .

To summarize the situation, the logarithms of the exponentially small eigenvalues of ∆
(p)
f,M,h

are given by the lengths of the bars b∗+1
α − a∗α of which one endpoint in R is of degree p , the

eigenvalues associated with infinite lengths being identically 0 for h small enough. A direct
application of the stability results of persistent cohomology then gives the variations of the
exponentially small spectrum when the function f is perturbed.

Corollary 1.8. Assume that f satisfies Hypothesis 1.2, let B(f) = ([aα, bα[)α∈A , aα < bα , A =

⊔0≤p≤dA(p) , be a persistent bar code associated with f , and set ℓmin = min {bα − aα, α ∈ A} .
For any other function g which satisfy Hypothesis 1.2 with ‖g − f‖C0 < ℓmin

4 , the Õ(e−
ℓmin
h )

eigenvalues of ∆
(p)
g,M,h can be labelled with multiplicities

λα(g, h), α ∈ A(p)or α ∈ A(p−1) , b(p)α 6= +∞ ,

with

λα(g, h) = 0 if b(p+1)
α = +∞

or 2(bα − aα) + 4‖g − f‖C0 ≥ lim
h→0
−h log(λα(g, h)) ≥ 2(bα − aα)− 4‖g − f‖C0 > ℓmin .

One rapidly realizes that we make no normal form assumption for f near the “critical values”
c1, . . . cNf of f . Even if we work with C∞ functions, any closed set K of M can be the global
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minimum of f ∈ C∞(M) by taking a non negative C∞ function vanishing only on K after
Whitney’s extension theorem. Having a finite number of critical values restricts the possible
sets K which still make a very large class. Hence, no algebraic behaviour with respect to h
of the leading terms of the subexponential factors can be expected as it is the case when f is
assumed to be a Morse function. Theorem 1.7 simply says that exponentially small eigenvalues
and their exponential scales are given by the algebraic topology without specifying a possible
subexponential factor. Among other results, we will obtain similar things for ∆f,f−1([a,b]),h ,

−∞ ≤ a < b ≤ +∞ , a, b 6∈
{
c1, . . . cNf

}
, when considering the proper boundary conditions

on f−1({a}) (Dirichlet type) and f−1({b}) (Neumann type). Actually, this leads us to the
presentation of our strategy which passes through local problems on R = f(M) and a recurrence
argument on the number N of “critical values” lying in [a, b] .

1.4 Strategy and outline of the article

Proving a result like Theorem 1.7, even in this simplified form, is a rather long process which is
clearly split into various steps.

• A general presentation of bar codes in persistent (co)homology as well as properties of
Hodge Laplacians on weakly regular domains are recalled in Appendix B and in Ap-
pendix A.

• In Section 2, we set up the functional analysis framework, the relevant boundary condi-
tions for Witten Laplacians, the corresponding integration by parts formulas, as well as
weighted integration techniques à la Agmon, in order to obtain exponential decay estimates.
We especially consider self-adjoint realizations of Witten Laplacians ∆f,h in the domain
f−1([a, b]) when a < b are not critical values, always with Dirichlet boundary conditions
along f−1({a}) , the lowest level set, and Neumann boundary conditions along f−1({b}) ,
the highest level set. Those self-adjoint realizations will be denoted by ∆f,f−1([a,b],h) , and

possibly ∆
(p)
f,f−1([a,b]),h when specifying the degree. Remember the intuitive picture for

functions: Dirichlet (resp. Neumann) boundary conditions are associated with a potential
−∞ (resp. +∞). Such boundary conditions are actually the natural ones in order to
avoid boundary layer phenomena along the boundaries in the spectral analysis. For further
applications, this analysis is done in a weak regularity framework, and the long series of
works by Mitrea et al. were instrumental in setting up the proper framework. The end of
this section gathers repeatedly used technical lemmas, deduced from the exponential decay
and weighted resolvent estimates for boundary Witten Laplacians.

• Once the geometrical issues in the weak regularity case are solved, the rest of the analysis
becomes essentially one dimensional on R ⊃ f(M) , as suggested by the bar code structure.
The first step consists in understanding what happens when there is a single critical value in
the energy interval [a, b] , [a, b]∩

{
c1, . . . , cNf

}
= {c̃1} . In this specific case, the bar code of

f has no bar compactly included in ]a, b[ . Accordingly, ∆f,f−1([a,b]),h should not have any
non zero exponentially small eigenvalue. This is the main result of Section 3.2, formulated

in Proposition 3.2, which states that all the õ(1)-eigenvalues of ∆
(p)
f,f−1([a,b])h are equal to 0 .

After preliminary notations related with variations of the min-max principle, the core of the
proof is done in Subsection 3.2, and follows in some sense Carleman’s general scheme for
uniqueness results of PDE, along the energy interval [a, b] ⊂ R . Resolvent estimates and
other corollaries are listed afterwards. Section 2 and Proposition 3.2 provide in particular

the number of õ(1)-eigenvalues of ∆
(p)
f,f−1([a,b]),h counted with multiplicities in this setting:

it equals the relative Betti number

β(f b, fa;R) = dim ker(∆
(p)
0,f−1([a,b]),1) = dim ker(∆

(p)
f,f−1([a,b]),h) .
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• Only in Section 4 really starts the relationship between the bar code Bf of f and the
spectral properties of ∆f,f−1([a,b]),h . It contains an enumeration of the non zero õ(1)-
eigenvalues of ∆f,f−1([a,b]),h in terms of bars compactly embedded in ]a, b[ , while the di-

mension dimker(∆
(p)
f,f−1([a,b]),h) = β(p)(f b, fa;R) is also expressed in terms of Bf . This

section ends with Proposition 4.5 which proves the rough lower bound e−2 b−ah for the non
zero õ(1)-eigenvalues of ∆f,f−1([a,b]),h (see Proposition 4.5).

• An important step elucidated in [HKN], and used in many forthcoming articles, consisted
in the trivial observation that the eigenvalues of ∆f,f−1([a,b]),h , restricted to some spec-
tral compact segment , are the square of the singular values of the restricted differential
df,f−1([a,b]),h . Singular values are much more flexible spectral quantities than eigenvalues.
One of their advantage is that, in many situations, the approximation errors appear as
relative ones for all the singular values, a property which is not fulfilled by eigenvalues.
We gather several functional analysis preliminary results in Section 5, which elaborates
in a functional abstract setting how various matricial error estimates propagate nicely to
singular values estimates.

• The core of the proof of Theorem 1.7 is done in Section 6. It is a rather sophisticated proof
by induction on the number N of critical values contained in the energy interval [a, b] ,{
c1, . . . , cNf

}
∩ [a, b] = {c̃1, . . . , c̃N} . This recurrence is initiated by Section 3.2 for the case

N = 1 . Although it contains several steps, the induction from N to N +1 mimics in some
way the proof of Mayer-Vietoris’ Theorem. The main result of this section is Theorem 6.3,
which can be considered as the central result of this text, while Proposition 3.2 proves the
simplest non trivial particular case. This induction contains many intermediate results,
which lead in particular in Section 7 to Theorems 7.1 and 7.6, which generalize respectively
Theorem 1.7 and Corollary 1.8 to the boundary Witten Laplacian ∆f,f−1([a,b]),h .

• Section 8 is devoted to various generalizations of Theorem 6.3 and of its spectral corollaries.
The first one concerns results for some domains which are not bounded by level sets, e.g.
for (non necessarily) small deformations Nt and Nn of the level sets f−1({a}) and f−1({b})
for which the conditions ∂nf

∣∣
Nt

< 0 and ∂nf
∣∣
Nn

> 0 are still valid, and for which all the
conclusions of Theorem 6.3 and of its corollaries hold true. The second generalization is
about noncompact manifolds like Rd , for which the results still hold provided we make
some assumptions on M and f at infinity. The most technical one concerns the extension
to a general subanalytic Lipschitz function on a real analytic manifold (see Hypothesis 1.3).
Even when f is a subanalytic real Lipschitz function, it is possible to define self-adjoint
realizations ∆f,f−1([a,b]),h , critical values and finite bar codes, but there is an extra difficulty
to establish Agmon’s type estimates to accurately control the exponential decay estimates.
This problem is solved in Subsections 8.3.2 and 8.3.3 by modelling a collection of solutions
to Hamilton-Jacobi equations associated with some natural stratification of the subanalytic
graph of f in M × R .

• Finally, Section 9 answers precisely our Main Question in various explicit cases. We return
to our results of [LNV], where Morse functions with simple critical values (one critical point
for every critical value) were considered. It was too rapidly conjectured in [LNV] that some
topological constant κ2 appearing in the subexponential factor was equal to 1 . It is true in
the case of oriented surfaces (see [Lep2]), but examples are now provided with a constant
κ2 equal to any n2 , n ∈ N∗ , the first example with κ2 = 4 arising in the case of a Morse
function on RP 2 . Additionally, in the case of Morse functions with multiple critical values,
the constant κ has to be replaced by an “incidence matrix”, κ , related with the bar code.
Various examples, including non Morse functions, show that the accurate computation of
the prefactors now results from two well separated analyses: one for the global topology of
the sublevel sets relying on the bar code, and one for the local asymptotic expansions of
Laplace integrals.
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2 Boundary Witten Laplacians

In this section we specify the domain of various operators involved in our analysis and review
the basic exponential decay estimates. The general assumptions and notations have been set in
Subsection 1.2 and in particular the function f satisfies Hypothesis 1.2 or Hypothesis 1.6. We
shall give the definition of Dirichlet and Neumann boundary conditions for Witten Laplacians
on strongly Lipschitz domains Ω . Most of the time in the sequel, these domains will be level set
domains Ω = f−1([a, b]) with a, b 6∈

{
c1, . . . , cNf

}
. The required Agmon’s type or exponential

decay estimates will be proved under Hypothesis 1.2. We are unable to prove these estimates
in the general setting of Hypothesis 1.6 but will prove them for subanalytic Lipschitz functions
(see Subsection 8.3).

2.1 Tangential and normal traces

2.1.1 Smooth case

Definition 2.1. Let N ⊂ M is a C∞-hypersurface of M , n a unit normal vector and n♭ the
associated covector, defined locally. When ω ∈ W s,2(M ; ΛT ∗M) , s > 1

2 , the tangential and
normal traces denoted tNω and nNω are defined by

tNω = in(n
♭ ∧ ω)

∣∣
N

and nN = n♭ ∧ (inω)
∣∣
N
.

Before we extend this definition to more singular forms, let us make explicit this definition
in coordinate systems (see e.g. [Sch]):

• When n is a normalized normal vector to N , any vector field in X = TNM can be decom-
posed into X = XT ⊕Xnn . The traces tNω and nNω are then equal to

tNω(X1, . . . Xp) = ω
∣∣
N
(X1,T , . . . , Xp,T ) and nNω = ω

∣∣
N
− tNω .

• With local coordinates (x1, . . . , xd) = (x′, xd) ∈ Rd in a neighborhood UMx0
inM of x0 ∈ N ,

such that N ∩ UMx0
=
{
(x′, xd) ∈ UR

d

0 , xd = 0
}
, g =

∑
ij<d gi,j(x

′, xd)dxidxj + (dxd)2 ,

n = ∂
∂xd and n♭ = dxd , and when a differential form is written

ω =
∑

♯I′=p, d 6∈I′
ωI′(x

′, xd)dxI
′

+
∑

♯J′=p−1, d 6∈J′

ωJ′(x′, xd)dxJ
′ ∧ dxd ,

with dxI = dxi1 ∧ · · · ∧ dxi♯I , i1 < · · · < i♯I , I = {i1, . . . , i♯I} ,

the tangential and normal traces are given by

tNω =
∑

♯I′=p, d 6∈I′
ωI′(x

′, 0)dxI
′

and nf=sω =
∑

♯J′=p−1, d 6∈J′

ωJ′(x′, 0)dxJ
′ ∧ dxd .

• From those formulas one gets at once ⋆tN = nN⋆ , where ⋆ denotes the Hodge ⋆ operator
on (M, g) . The possible orientation twist orM is locally trivial so that the orientability of
M is not required.

• When restricted to the tangent space to N , tNω coincides with j∗Nω where jN : N → M
is the natural imbedding. Therefore tNd = dtN and therefore nNd

∗ = d∗nN . Note also
that tN and nN commute with multiplications by functions.
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2.1.2 Lipschitz domains

The typical case which will be considered is when N = ∂Ω is the boundary of a Lipschitz domain
of M (strongly Lipschitz according to the terminology of [GMM]). This means that Ω is locally
the hypograph of a Lipschitz function in a proper coordinate system. For the notations, Ω is an
open domain in M and its closed version is Ω = Ω⊔N with N = ∂Ω . Precisely we consider the
following situation.

Hypothesis 2.2. The domain Ω = Ω ⊔N ⊂M is a Lipschitz domain with N = Nt ⊔Nn made
of two disjoint closed hypersurfaces.

When Ω is a regular domain, with C∞ boundaries Nt and Nn , the unit normal vector field n to
N = ∂Ω is globally defined so that the hypersurface measure dσ , the orientation twist orN and
the Hodge ⋆ operation on N = ∂Ω are deduced from dVolg and orM and the Hodge ⋆ on M . In
the general case when the domain Ω has only the assumed Lipschitz regularity, the same things
hold except that the normal vector is defined dσ-almost everywhere along Nt ⊔ Nn , dσ being
the Hd−1-Hausdorff measure.

For two forms u, v ∈W 1,2(Ω,ΛT ∗M) , the Green formula yields

〈du, v〉L2(Ω) − 〈u, d∗v〉L2(Ω) =

∫

Ω

d(u ∧ ⋆v) =
∫

N

tN (u ∧ ⋆v)

=

∫

N

〈u, inv〉ΛT∗
σMdσ =

∫

N

〈tNu, inv〉ΛT∗
σMdσ, (7)

=

∫

N

〈n♭ ∧ u, v〉ΛT∗
σMdσ =

∫

N

〈n♭ ∧ u,nNv〉ΛT∗
σMdσ (8)

while the decomposition N = Nt ⊔Nn into two disjoint closed hypersurfaces clearly implies

(tNtu = 0)⇔
(
supp n♭ ∧ u ⊂ Nn

)

and (nNnv = 0)⇔ (supp inv ⊂ Nt) .

Moreover according to [JMM], when ω ∈ L2(Ω; ΛT ∗M) and dω ∈ L2(Ω; ΛT ∗M) , the above

Green formulas provide the duality needed to define n♭ ∧ ω
∣∣
N
∈W− 1

2 ,2(N ; ΛT ∗M) by

∀g ∈W 1
2 ,2(N) , 〈n♭ ∧ ω , g〉

W− 1
2
,2(N),W

1
2
,2(N)

= 〈dω , G〉L2(Ω) − 〈ω , d∗G〉L2(Ω) , (9)

where G is any form inW 1,2(Ω; ΛT ∗M) such that G
∣∣
N

= g ∈W 1
2 ,2(N ; ΛT ∗M) . Similarly, when

ω and d∗ω belong to L2(Ω; ΛT ∗M) , one can define inω
∣∣
N
∈W− 1

2 ,2(N ; ΛT ∗M) by

∀g ∈W 1
2 ,2(N) , 〈inω , g〉

W− 1
2
,2(N),W

1
2
,2(N)

= 〈ω , dG〉L2(Ω) − 〈d∗ω , G〉L2(Ω) . (10)

In particular, when O is an open subset of N and when the trace n♭ ∧ ω
∣∣
O

defined in the sense

of (9) (resp. of (10)) belongs to L2(O; ΛT ∗M) , the tangential (resp. normal) trace tOω (resp.
nOω) is well defined on O by the standard formula from Definition 2.1:

tOω = in(n
♭ ∧ ω)

∣∣
O

(
resp. nO = n♭ ∧ (inω)

∣∣
O

)
.

We may thus make sense of the boundary condition tNtω = 0 (resp. nNnω = 0), which is
equivalent to supp n♭ ∧ ω

∣∣
N
⊂ Nn (resp. supp inω

∣∣
N
⊂ Nt), for any ω ∈ L2(Ω; ΛT ∗M) such

that dω ∈ L2(Ω; ΛT ∗M) (resp. d∗ω ∈ L2(Ω; ΛT ∗M)).
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According to [JMM, Proposition 3.1], C∞0 (Ω ∪Nn; ΛT ∗M) (resp. C∞0 (Ω ∪Nt; ΛT ∗M)) is dense
in

T =
{
ω ∈ L2(Ω; ΛT ∗M) , dω ∈ L2(Ω; ΛT ∗M) , tNtω = 0

}
(11)

(
resp. in N =

{
ω ∈ L2(Ω; ΛT ∗M) , d∗ω ∈ L2(Ω; ΛT ∗M) ,nNnω = 0

} )
(12)

endowed with the norm ‖ω‖L2(Ω) + ‖dω‖L2(Ω) (resp. ‖ω‖L2(Ω) + ‖d∗ω‖L2(Ω)). Theorem 3.4 of
[JMM] also says that when u, v ∈ L2(Ω) with du ∈ L2(Ω; Λp+1T ∗M) , d∗v ∈ L2(Ω; ΛpT ∗M) ,
and

supp inv ⊂ Γ or supp (n♭ ∧ u) ⊂ Γ

with Γ = Nt or Γ = Nn , the following Green formulas

〈du, v〉L2(Ω) − 〈u, d∗v〉L2(Ω) =

∫

Γ

〈n♭ ∧ u, n♭ ∧ (inv)〉T∗
σΩdσ

=

∫

Γ

〈in(n♭ ∧ u), inv〉T∗
σΩdσ

(13)

make sense with a r.h.s. interpreted in general in a weak form specified in [JMM, Proposition 3.3].
Notice that under Hypothesis 2.2, the geometric assumptions concerned with Γ in [JMM] are
trivially satisfied without any locally mixed boundary conditions. Additionally, when inv and
n♭ ∧ u belong to L2(Γ) , the r.h.s. of (13) are standard integrals along the boundary.

Definition 2.3. Let Ω be a Lipschitz domain of M with Ω = Ω ⊔N , N = Nt ⊔Nn like above,
and let T ,N be the spaces defined in (11)(12).
The space

W (Ω; ΛT ∗M) =
{
ω ∈ L2(Ω; ΛT ∗M); dω ∈ L2(Ω; ΛT ∗M); d∗ω ∈ L2(Ω; ΛT ∗M)

}

is endowed with its natural Hilbert space norm given by

‖ω‖2W (Ω) := ‖ω‖2L2(Ω) + ‖dω‖2L2(Ω) + ‖d∗ω‖2L2(Ω) . (14)

The closed subspace T ∩ N of W (Ω; ΛT ∗M) will be denoted W∂(Ω; ΛT
∗M) and the restriction

of the W (Ω; ΛT ∗M)-norm ‖ ‖W∂(Ω) .

Remark 2.4. i) By interior elliptic regularity, note that

W∂(Ω; ΛT
∗M) ⊂W (Ω; ΛT ∗M) ⊂W 1,2

loc
(Ω; ΛT ∗M)

with continuous embeddings. However it is known thatW (Ω; ΛT ∗M) , and evenW∂(Ω; ΛT
∗M)

if we add boundary conditions, differs from W 1,2(Ω; ΛT ∗M) for a general Lipschitz do-

main (see e.g. [MTV][MMMT]). An easy counter example is u = r
π
θ0

−1
cos( πθ0 θ)dr −

r
π
θ0

−1 sin( πθ0 θ)dθ in the sector 0 < θ < θ0 of R2 near r = 0 . It satisfies nu = 0 , du = 0

and d∗u ∈ L2 near r = 0 while u 6∈W 1,2 near r = 0 when θ0 > π .

ii) The space W (Ω; ΛT ∗M) and its subspace W∂(Ω; ΛT
∗M) are Lipschitz-module: for any

ϕ ∈ W 1,∞(Ω;R) and ω ∈ W (Ω; ΛT ∗M) , ϕω belongs to W (Ω; ΛT ∗M) and the mapping ω ∈
W (Ω; ΛT ∗M) 7→ ϕω ∈ W (Ω; ΛT ∗M) is continuous. Moreover, for any bounded sequence
(ϕn)n∈N of W 1,∞(Ω;R) such that ϕn → ϕ a.e. and dϕn → dϕ a.e., the convergence
ϕnω → ϕω holds for the W (Ω; ΛT ∗M)-norm for every ω ∈W (Ω; ΛT ∗M) .

iii) In our case it is proven in [MMMT] and it is extended in [JMM] that W∂(Ω; ΛT
∗M)

is embedded in W 1/2,2(ΛT ∗M) . Again the exponent 1
2 cannot be improved for a general

strongly Lipschitz domain Ω .
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iv) For a different approach on regularity issues for Lipschitz domains and relying on a gener-
alization of Bogovskĭı and Poincaré type integrals, we refer to [CoMcI], [Mit] and [MiMo].

Proposition 2.5. Let W∂(Ω; ΛT
∗M) be the space of Definition 2.3.

Every ω ∈ W∂(Ω; ΛT
∗M) belongs to W

1
2 ,2(Ω; ΛT ∗M) and has, in the sense of (9) and (10),

tangential and normal traces tNω and nNω which actually belong to L2(N ; ΛT ∗M) . Moreover,
there exists C > 0 such that

∀ω ∈W∂(Ω; ΛT
∗M) , ‖ω‖2

W
1
2
,2(Ω)

+ ‖ω|N‖2L2(N) ≤ C‖ω‖2W∂(Ω) ,

where ω|N := tNω + nNω ∈ L2(N ; ΛT ∗M) is the total trace of ω .
Finally, in the case where Ω is a smooth domain, Gaffney’s inequality holds:

W∂(Ω; ΛT
∗M) =

{
ω ∈W 1,2(Ω; ΛT ∗M), tNtω = 0 , nNnω = 0

}

and there exists C ≥ 1 such that

∀ω ∈ W∂(Ω; ΛT
∗M) , C−1‖ω‖2W 1,2(Ω) ≤ ‖ω‖W∂(Ω) ≤ C‖ω‖2W 1,2(Ω) .

Proof. The first part of the statement is an immediate consequence of the analysis led in [JMM]
(see e.g. Theorem 1.1 there), but our setting is actually simpler since no locally mixed boundary
conditions appear.
For Gaffney’s inequality when the domain Ω is smooth, consider first

ω ∈ W ′(Ω; ΛT ∗M) :=
{
u ∈W 1,2(Ω; ΛT ∗M), tNtu = 0 , nNnu = 0

}

and a function χ ∈ C∞0 (Ω ∪Nt; [0, 1]) such that χ ≡ 1 in a neighborhood of Nt , and decompose
ω as ω = χω + (1− χ)ω = ω1 + ω2 . For any differential operator L of order ≤ 1 , note then the
relation ‖Lωj‖L2 ≤ Cχ,L,j‖ω‖L2 + ‖Lω‖L2 , j = 1, 2 . Now, ω1 = χω ∈W 1,2(Ω; ΛT ∗M) satisfies
t∂Ωω1 = 0 and ω2 = (1 − χ)ω ∈ W 1,2(Ω; ΛT ∗M) satisfies n∂Ωω2 = 0 . Gaffney’s inequality for
Dirichlet boundary conditions then says

‖ω1‖2W 1,2 ≤ C1

[
‖ω1‖2L2 + ‖dω1‖2L2 + ‖d∗ω1‖2L2

]

for some C1 independent of ω1 , while Gaffney’s inequality for Neumann boundary conditions
says

‖ω2‖2W 1,2 ≤ C2

[
‖ω2‖2L2 + ‖dω2‖2L2 + ‖d∗ω2‖2L2

]

for some C2 independent of ω2 (these two different boundary conditions have been treated
separately in [Sch]). Adding the above two inequalities then leads to

∀ω ∈W ′(Ω; ΛT ∗M) , ‖ω‖2W 1,2 ≤ C
[
‖ω‖2L2 + ‖dω‖2L2 + ‖d∗ω‖2L2

]
.

In order to achieve the proof of Proposition 2.5, it then suffices to show that W ′(Ω; ΛT ∗M)
equals W∂(Ω; ΛT

∗M) . We can forget the boundary conditions. With a regular boundary, a
simple local reflexion after identifying the domain with a half space, leads to the problem on
Rd with a Lipschitz riemannian metric, asking if a compactly supported form in ω ∈ L2

comp(R
d)

such dω ∈ L2(Rd) and d∗ω ∈ L2(Rd) belongs to H1
comp(R

d) . It is a straightforward application
of Lax-Milgram’s theorem.

2.2 Witten’s deformation

The function f is assumed to be a Lipschitz function and the domain Ω satisfies Hypothesis 2.2.
Improved regularity results are stated when f and Ω are more regular.
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Definition 2.6. Assume f ∈ W 1,∞(M ;R) , h > 0 , and Hypothesis 2.2 for Ω = Ω ⊔ N =
Ω ⊔Nt ⊔Nn . The operators df,Ω,h and d∗

f,Ω,h
are defined by

D(df,Ω,h) :=
{
ω ∈ L2(Ω; ΛT ∗M) , df,hω ∈ L2(Ω; ΛT ∗M) , tNtω = 0

}
= T

and D(d∗
f,Ω,h

) :=
{
ω ∈ L2(Ω; ΛT ∗M) , d∗f,hω ∈ L2(Ω; ΛT ∗M) ,nNnω = 0

}
= N ,

where T and N are the spaces defined in (11) and (12), and we recall that

df,h = e−
f
h (hd)e

f
h = hd+ df ∧ and d∗f,h = e

f
h (hd∗)e−

f
h = hd∗ + i∇f

according to (4) and (5).

A particular case that we will study extensively is when Ω = f−1([a, b]) , Nt = f−1({a}) ,
Nn = f−1({b}) , and a < b do not belong to

{
c1, . . . , cNf

}
under Hypothesis 1.2 (in this case

Ω = f ba according to Definition 1.1). With such an f -dependent domain, it will be useful to
consider d0,f−1([a,b]),h and df,f−1([a,b]),h .

Proposition 2.7. In the framework of Definition 2.6, the operator df,Ω,h (resp. d∗
f,Ω,h

) is

densely defined, closed, and Ran df,Ω,h ⊂ kerdf,Ω,h (resp. Ran d∗
f,Ω,h

⊂ ker d∗
f,Ω,h

) . Its adjoint

is d∗
f,Ω,h

(resp. df,Ω,h). The subspace C∞0 (Ω ∪Nn; ΛT ∗M) (resp. C∞0 (Ω ∪Nt; ΛT ∗M)) is dense

in D(df,Ω,h) (resp. D(d∗
f,Ω,h

)). Finally, the identity

D(df,Ω,h) ∩D(d∗
f,Ω,h

) = W∂(Ω; ΛT
∗M) ,

holds true when W∂(Ω; ΛT
∗M) is the space of Definition 2.3.

Proof. The operators df,Ω,h and d∗
f,Ω,h

having respective domains T and N , with T ∩ N =

W∂(Ω; ΛT
∗M) by Definition 2.3, they are clearly densely defined, and they are bounded pertur-

bations of hd0,Ω,1 and hd∗
0,Ω,1

owing to df,h = hd+ df∧ and d∗f,h = hd0,Ω,1+ i∇f . The operators

d0,Ω,1 and d∗
0,Ω,1

are moreover closed with the density properties, according to the presentation

around (9)–(12).
As bounded perturbations, the adjoint of df,Ω,h equals d∗

f,Ω,h
because the adjoint of d0,Ω,1 is

d∗
0,Ω,1

while the adjoint of the bounded perturbation df∧ is i∇f . Actually ω belongs to the

domain of the adjoint of d0,Ω,1 iff

∃C > 0 , ∀u ∈ C∞0 (Ω ∪Nn; ΛT ∗M) , |〈du , ω〉| ≤ C‖u‖L2 .

Taking any u ∈ C∞0 (Ω; ΛT ∗M) implies d∗ω ∈ L2(Ω; ΛT ∗M) and therefore inω
∣∣
N

is well defined

in W−1/2,2(N ; ΛT ∗M) . Using afterwards Green’s formula (10) with a general u ∈ C∞0 (Ω ∪
Nn; ΛT

∗M) leads to inω
∣∣
Nn

= 0 . Thus the domain of the adjoint of d0,Ω,1 is included in

D(d∗
0,Ω,1

) , which is enough to conclude.

It remains to check Ran df,Ω,h ⊂ kerdf,Ω,h and Ran d∗
f,Ω,h

⊂ ker d∗
f,Ω,h

. The identities (4) and

(5) already say that df,hdf,Ω,hω = 0 inD′

(Ω ,ΛT ∗M) (resp. d∗f,hd
∗
f,Ω,h

ω = 0) when ω ∈ D(df,Ω,h)

(resp. ω ∈ D(d∗
f,Ω,h

)) . We can conclude that df,Ω,hω ∈ kerdf,Ω,h (resp. d∗
f,Ω,h

ω ∈ ker d∗
f,Ω,h

)

if tNtdf,hω = 0 (resp. nNnd
∗
f,hω = 0) or more precisely, with the weak formulation of the trace

defined in (9) (resp. in (10)), if supp n♭ ∧ (df,hω)
∣∣
N
⊂ Nn (resp. supp in(d

∗
f,h)ω

∣∣
N
⊂ Nt). For

ω ∈ C∞0 (Ω∪Nn; ΛT ∗M) (resp. ω ∈ C∞0 (Ω∪Nt; ΛT ∗M)) the weakly defined trace n♭∧ (df,hω)
∣∣
Nt

(resp. in(d
∗
f,hω)

∣∣
Nn

) obviously vanishes because Nt∩supp df,hω = ∅ (resp. Nn∩supp d∗f,hω = ∅) .
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By the density of C∞0 (Ω∪Nn; ΛT ∗M) (resp. C∞(Ω∪Nt; ΛT ∗M)) in D(df,Ω,h) (resp. D(d∗
f,Ω,h

)),

we deduce

∀ω ∈ D(df,Ω,h) , n♭ ∧ (df,Ω,hω)
∣∣
Nt

= 0 in W−1/2,2(Nt)
(
resp. ∀ω ∈ D(d∗

f,Ω,h
) , ind

∗
f,Ω,h

ω
∣∣
Nn

= 0 in W−1/2,2(Nn)
)
.

This ends the proof.

We now apply results of the abstract Hodge theory reviewed in Appendix A to our specific
framework.

Proposition 2.8. Assume Hypothesis 2.2 for Ω = Ω ⊔ Nt ⊔ Nn , f ∈ W 1,∞(Ω;R) and let
W∂(Ω; ΛT

∗M) be the space of Definition 2.3 .

1. The operator df,Ω,h + d∗
f,Ω,h

with domain

D(df,Ω,h) ∩D(d∗
f,Ω,h

) = W∂(Ω; ΛT
∗M)

is self-adjoint and has a compact resolvent.

2. The operator ∆f,Ω,h := df,Ω,hd
∗
f,Ω,h

+ d∗
f,Ω,h

df,Ω,h with domain

D(∆f,Ω,h) = {u ∈ D(df,Ω,h) ∩D(d∗
f,Ω,h

) s.t. df,hu ∈ D(d∗
f,Ω,h

) and d∗f,hu ∈ D(df,Ω,h)}

is a self-adjoint operator with a compact resolvent. It is the Friedrichs extension asso-
ciated with the (closed) quadratic form Qf,Ω,h(ω) = ‖df,hω‖2L2 + ‖d∗f,hω‖2L2 with domain
D(df,Ω,h) ∩D(d∗

f,Ω,h
) .

3. The ranges of df,Ω,h and d∗
f,Ω,h

are closed and the following Hodge decompositions hold in

L2:

L2(Ω; ΛT ∗M) = Ran(df,Ω,h)
⊥
⊕ ker(∆f,Ω,h)︸ ︷︷ ︸

ker(df,Ω,h)

ker (d∗
f,Ω,h

)
︷ ︸︸ ︷

⊥
⊕Ran(d∗

f,Ω,h
)

4. For any z ∈ C \ σ(∆f,Ω,h) , one has for any compactly supported and bounded measurable
function χ on R and for any ω ∈ D(d) , where d = df,Ω,h or d = d∗

f,Ω,h
,

d(z −∆f,Ω,h)
−1ω = (z −∆f,Ω,h)

−1dω and d ◦ χ(∆f,Ω,h)ω = χ(∆f,Ω,h) ◦ dω .

5. When Ω is smooth and f ∈ C2(Ω;R) , the domain of ¿ ∆f,Ω,h equals

D(∆f,Ω,h) =

{
ω ∈ W 2,2(Ω; ΛT ∗M) ,

tNtω = 0 , nNnω = 0 ,
tNtd

∗
f,hω = 0 , nNndf,hω = 0

}
.

Proof. The identification of D(df,Ω,h)∩D(d∗
f,Ω,h

) is done in Proposition 2.7. The statements 1),

2), 3) are then straightforward applications of Proposition A.1 in Appendix A. The first identity
of the statement 4) is an application of the general relation (155) in Appendix A. The second
identity then comes from the functional calculus for self-adjoint operators.
Finally, for 5), it suffices to notice that ∆f,h = −h2∆0,1 + |∇f |2 + h(L∇f + L∗∇f ) and that

∆f,Ω,h is a bounded perturbation of h2∆0,Ω,1 when f ∈ C2(Ω;R) . But the elliptic analysis made
in [Sch][MMMT] (see also [LNV] for the combination of Dirichlet on Nt and Neumann on Nn
boundary conditions) ensures that the domain of ∆0,Ω,1 = dd∗ + d∗d is

D(∆0,Ω,1) =

{
ω ∈ W 2,2(Ω; ΛT ∗M) ,

tNtω = 0 , nNnω = 0 ,
tNtd

∗
f,hω = 0 , nNndf,hω = 0

}
.

17



Remark 2.9. Let us complete the statements of Propositions 2.7 and 2.8 with some remarks
when f satisfies Hypothesis 1.2 or Hypothesis 1.6.

• The domain D(df,Ω,h) does not contain any other regularity assumption than ω ∈ L2(Ω) ,

df,hω ∈ L2(Ω) , and does not contain any condition on Nn . In particular, when a′ ≤ a < b
do not belong to

{
c1, . . . , cNf

}
according to Hypothesis 1.2 , the domain f ba (resp. f ba′) equals

to f−1([a, b]) and satisfies Hypothesis 2.2 with Nt = f−1({a}) (resp. Nt = f−1({a′})) and
Nn = f−1({b}) . This a consequence of implicit functions theorem which is the classical
C1-version under Hypothesis 1.2 and still holds in a Lipschitz version under the more
general Hypothesis 1.6 (see Subsection 8.3.1). The density of C∞0 (f ba ∪ f−1({b}); ΛT ∗M)
in D(df,f−1([a,b]),h) provides the following extension result:

∀ω ∈ D(df,f−1([a,b]),h) , ω̃ ∈ D(df,f−1([a′,b]),h) , where ω̃
∣∣
fba

= ω and ω̃
∣∣
fa
a′
≡ 0 . (15)

• Hodge decomposition in Proposition 2.8-3) says that

ker(∆f,Ω,h) ≃ ker(df,Ω,h)/Ran(df,Ω,h) ≃ ker(d0,Ω,1)/Ran(d0,Ω,1) .

From the usual Hodge theory on the manifold with boundary Ω , the dimension of ker(∆
(p)

f,Ω,h
)

is thus the relative Betti number dimHp(Ω , Nt) and is independent of h > 0 . In particular,
when Ω = f ba and a < b are not in

{
c1, . . . , cNf

}
, it is

dimker(∆f,f−1([a,b]),h) = dimHp(f b, fa) =: β(p)(f b, fa) .

If moreover [c, d] ⊂ [a, b] and ([a, b]\]c, d[) ∩
{
c1, . . . , cNf

}
= ∅ , then for every a′ ∈ [a, c]

and b′ ∈ [d, b] , the dimensions dimHp(f b, fa) and dimHp(f b
′

, fa
′

) are equal and then

dim ker(∆f,f−1([a,b]),h) = dim ker(∆f,f−1([a′,b′]),h) . (16)

• When s ≥ 0 , the commutation of df,Ω,h with 1[0,s](∆f,Ω,h) ensures that the restricted differ-
ential δ[0,s] = 1[0,s](∆f,Ω,h)df,Ω,h defines a finite dimensional complex with Betti numbers

dimHp(Ω, Nt):

0 // F (0)
[0,s] . . . F

(p−1)
[0,s]

δ
(p−1)

[0,s] //oo F
(p)
[0,s]

δ
(p)

[0,s] //

δ
(p−1)∗

[0,s]

oo F
(p+1)
[0,s] . . . F

(d)
[0,s]

//

δ
(p)∗

[0,s]

oo 0oo (17)

where F
(p)
[0,s] = Ran1[0,s](∆

(p)

f,Ω,h
) . This will be studied more carefully when Ω = f ba , with

the notations F[0,s],[a,b],h and δ[0,s],[a,b],h in order to handle various intervals [a, b] .

2.3 Agmon’s type estimates

We review a series of exponential decay estimates which are adapted from [DiSj][HeSj2], and
[LNV] for Witten Laplacians with boundary conditions. Those are standard when the function
f satisfy Hypothesis 1.2 but only a part of them can be proved when f is a general Lipschitz
function which satisfies Hypothesis 1.6.

2.3.1 Weighted integration by parts formulas

We present here weighted integration by parts formulas with low regularity assumptions. These
formulas will be used in the sequel, after optimizing the weights, in order to prove different
exponential decay estimates. Under Hypothesis 1.2, the regular case, this will lead to the usual
Agmon estimates presented in the next section. A variation of these arguments will be developed
in Section 8.3 under Hypothesis 1.3 (subanalytic case) and will require the low regularity results
listed below.
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Lemma 2.10. Assume Hypothesis 2.2 for Ω = Ω ⊔Nt ⊔Nn . Let f, ϕ ∈ W 1,∞(M ;R) , ∆f,Ω,h

be the self-adjoint operator defined in Proposition 2.8, and
∑J

j=1 χ
2
j = 1 be a smooth partition

of unity in Ω . For any ω ∈ D(Qf,Ω,h) =W∂(Ω; ΛT
∗M) (see (14) and the lines below), with the

notation
ω̃ = e

ϕ
h ω,

the following identities hold true:

Re Qf,Ω,h(ω , e
2ϕ
h ω) = ‖df,Ω,hω̃‖2 + ‖d∗f,Ω,hω̃‖

2 − 〈ω̃ , |∇ϕ|2ω̃〉 , (18)

and Re Qf,Ω,h(ω , e
2ϕ
h ω) =

J∑

j=1

Re Qf,Ω,h(χjω , e
2ϕ
h χjω)− h2

J∑

j=1

‖|∇χj |ω̃‖2 . (19)

Moreover, when in addition f ∈ C2(M) , the identity (18) writes also

Re Qf,Ω,h(ω, e
2ϕ
h ω) = h2‖dω̃‖2L2 + h2‖d∗ω̃‖2L2

+ 〈ω̃ , (|∇f |2 − |∇ϕ|2 + hL∇f + hL∗∇f )ω̃〉

+ h

(∫

Nn

−
∫

Nt

)
〈ω̃ , ω̃〉ΛT∗

σΩ

(
∂f

∂n

)
(σ) dσ . (20)

Lastly, when f ∈ W 1,∞(M ;R) and ϕ ∈ C2(M) , the above quantity can be written

Re Qf,Ω,h(ω , e
2ϕ
h ω) = Qf−ϕ,Ω,h(ω̃ , ω̃)

+ 〈ω̃ , (2∇f.∇ϕ− 2|∇ϕ|2 + hL∇ϕ + hL∗∇ϕ)ω̃〉

+ h

(∫

Nn

−
∫

Nt

)
〈ω̃ , ω̃〉ΛT∗

σΩ

(
∂ϕ

∂n

)
(σ) dσ . (21)

Proof. We recall that according to Remark 2.4, W∂(Ω; ΛT
∗M) is a Lipschitz-module. For the

first statement (18), simply write

Re Qf,Ω,h(ω , e
2ϕ
h ω) = Re Qf,Ω,h(e

−ϕ
h ω̃ , e

ϕ
h ω̃)

= Re 〈(df,h − dϕ∧)ω̃ , (df,h + dϕ∧)ω〉
+Re 〈(d∗f,h + i∇ϕ)ω̃ , (d

∗
f,h − i∇ϕ)ω̃〉

= ‖df,hω‖2 + ‖d∗f,hω‖2 − 〈dϕ ∧ ω̃ , dϕ ∧ ω̃〉 − 〈i∇ϕω̃ , i∇ϕω̃〉
= ‖df,hω‖2 + ‖d∗f,hω‖2 − 〈ω̃ , (i∇ϕ(dϕ∧) + (dϕ∧)i∇ϕ)︸ ︷︷ ︸

=|∇ϕ|2

ω̃〉 .

For (19), we start from (18) after noticing that χjω̃ ∈W∂(Ω; ΛT
∗M) when ω ∈ W∂(Ω; ΛT

∗M) .
We compute

‖df,hχjω̃‖2 + ‖d∗f,hχjω̃‖2 = ‖χjdf,hω̃‖2 + ‖χjd∗f,hω̃‖2

+ 2Re 〈χjdf,hω̃ , (hdχj∧)ω̃〉 − 2Re 〈χjd∗f,hω̃ , hi∇χj ω̃〉
+ h2

[
〈dχj ∧ ω̃ , dχj ∧ ω̃〉+ 〈i∇χj ω̃ , i∇χj ω̃〉

]

= ‖χjdf,hω̃‖2 + ‖χjd∗f,hω̃‖2

+Re 〈df,hω̃ , (hdχ2
j∧)ω̃〉 − Re 〈d∗f,hω̃ , hi∇χ2

j
ω̃〉

+ h2〈ω̃ , (i∇χj (dχj∧) + (dχj∧)i∇χj )︸ ︷︷ ︸
=|∇χj |2

ω̃〉 .
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Summing w.r.t j ∈ {1, . . . , J} leads to

Qf,Ω,h(ω , e
2ϕ
h ω)−

J∑

j=1

Qf,Ω,h(χjω , e
2ϕ
h χjω) = −h2

J∑

j=1

‖|∇χj |ω̃‖2 .

Let us now assume that f ∈ C2(M) . According to (18), the identity

Re Qf,Ω,h(ω , e
2ϕ
h ω) = Qf,Ω,h(ω̃ , ω̃)− 〈ω̃ , |∇ϕ|2ω̃〉

holds true and it suffices to prove the formula (20) when ϕ = 0 . To this end, one first writes for

ω ∈ D
(
Qf,Ω,h

)
,

‖df,hω‖2L2 +
∥∥d∗f,hω

∥∥2
L2 = h2 ‖dω‖2L2 + h2 ‖d∗ω‖2L2 + ‖df ∧ ω‖2L2

+ ‖i∇fω‖2L2 + h
(
〈df ∧ ω, dω〉L2 + 〈dω, df ∧ ω〉

+ 〈d∗ω, i∇fω〉L2 + 〈i∇fω, d∗ω〉
)

= h2 ‖dω‖2L2 + h2 ‖d∗ω‖2L2 + ‖|∇f |ω‖2L2

+ h〈ω, (L∇f + L∗∇f )ω〉L2 + h(〈df ∧ ω, dω〉L2

− 〈d∗(df ∧ ω), ω〉L2 − 〈di∇fω, ω〉L2 + 〈i∇fω, d∗ω〉L2) ,

where the last equality holds thanks to the relations (df∧)∗ = i∇f ,

L∇f = d ◦ i∇f + i∇f ◦ d and L∗∇f = (df∧) ◦ d∗ + d∗ ◦ (df∧) .

The relation (20) follows using in addition the generalized Green formula (13) which gives here,

since ω ∈ D
(
Qf,Ω,h

)
and hence admits a total trace on N , and df ∧ ω , i∇fω ∈ {v ∈ L2, dv ∈

L2, d∗v ∈ L2}:

〈df ∧ ω, dω〉L2 − 〈d∗(df ∧ ω), ω〉L2 =

∫

Nn

〈n♭ ∧ ω, n♭ ∧ in(df ∧ ω)〉T∗
σΩdσ

=

∫

Nn

〈ω, in(n♭ ∧ in(df ∧ ω))〉T∗
σΩdσ

=

∫

Nn

〈ω, in(df ∧ ω)〉T∗
σΩdσ

=

∫

Nn

(∂nf 〈ω, ω〉T∗
σΩ − 〈ω, df ∧ inω︸︷︷︸

=0

〉T∗
σΩ)dσ

=

∫

Nn

∂nf 〈ω, ω〉T∗
σΩdσ

as well as

〈i∇fω, d∗ω〉L2 − 〈di∇fω, ω〉L2 = −
∫

Nt

〈n♭ ∧ i∇fω, n
♭ ∧ inω〉T∗

σΩ

= −
∫

Nt

∂nf 〈ω, ω〉T∗
σΩdσdσ .

Lastly, let us prove the relation (21). By direct expansion with f and ϕ Lipschitz continuous
and

df−ϕ,h = df,h − (dϕ∧) = hd+ (df∧) − (dϕ∧) and d∗f−ϕ,h = d∗f,h − i∇ϕ = hd∗ + i∇f − i∇ϕ ,
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we obtain

Qf−ϕ,Ω,h(ω̃, ω̃) = Qf,Ω,h(ω̃, ω̃)

− 2Re
(
〈df ∧ ω̃, dϕ ∧ ω̃〉+ 〈i∇f ω̃, i∇ϕω̃〉

)

− 2hRe
(
〈dω̃, dϕ ∧ ω̃〉+ 〈d∗ω̃, i∇ϕω̃〉

)

+ ‖dϕ ∧ ω̃‖2 + ‖i∇ϕω̃‖2 .

By adding this relation for the pairs (f, ϕ) and (0,−ϕ) , we obtain

Qf−ϕ,Ω,h(ω̃, ω̃) +Qϕ,Ω,h(ω̃, ω̃) = Qf,Ω,h(ω̃, ω̃) +Q0,Ω,h(ω̃, ω̃)

− 2Re
(
〈df ∧ ω̃, dϕ ∧ ω̃〉+ 〈i∇f ω̃, i∇ϕω̃〉

)
︸ ︷︷ ︸

=〈ω̃,(∇f ·∇ϕ)ω̃〉

+ 0

+ 2 ‖|∇ϕ|ω̃‖2 .

Finally, using the relation (18) gives

Re Qf,Ω,h(ω, e
2ϕ
h ω) = Qf,Ω,h(ω̃, ω̃)− ‖|∇ϕ|ω̃‖

2

= Qf−ϕ,Ω,h(ω̃, ω̃) + 2〈ω̃, (∇f · ∇ϕ− |∇ϕ|2)ω̃〉
+Qϕ,Ω,h(ω̃, ω̃)−Q0,Ω,h(ω̃, ω̃)− ‖|∇ϕ|ω̃‖

2
.

When in addition ϕ ∈ C2(M) , using (18) and (20) with f = ϕ leads to the relation (21).

Remark 2.11. Alternatively, one could first prove the relation (21) for f, ϕ ∈ C2(M) , and then
approximate a general f ∈ W 1,∞(M) by a sequence in C2(M) as in Remark 2.4.

2.3.2 Exponential decay estimates

Under Hypothesis 1.2, these estimates rely on the integration by parts formula (20) of Lemma 2.10.
They will be replaced by a new hypothesis for more general Lipschitz function f , which will be
ultimately verified when f is Lipschitz subanalytic in Subsection 8.3.

Definition 2.12. Assume Hypothesis 1.2 for f and remember

Mreg = {x ∈ (M \ suppsing f) ,∇f(x) 6= 0} ⊂M \ f−1(
{
c1, . . . , cNf

}
) .

The Agmon distance dAg on M associated with f ∈ C∞(M) is the geodesic pseudodistance
associated with the degenerate metric 1Mreg |∇f |2g , namely

dAg(x, y) = inf
γ ∈ C1([0, 1];M) ,
γ(0) = x , γ(1) = y

∫ 1

0

1Mreg (γ(t))|∇f(γ(t))||γ′(t)| dt .

Because f ∈ W 1,∞(M) ∩ C∞(Mreg) , we know dAg(x, y) ≤ ‖∇f‖L∞dg(x, y) where dg is the
geodesic distance and dAg is a Lipschitz function of (x, y) ∈M ×M . Moreover when x, y belong
to the same connected component of M \ f−1(

{
c1, . . . , cNf

}
) any C1 curve γ staying in this

connected component satisfies

∫ 1

0

|∇f(γ(t))||γ′| dt ≥ |
∫ 1

0

∇f(γ(t)).γ′(t) dt| = |f(y)− f(x)| .
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For a general γ ∈ C1([0, 1];M) such that γ(0) = x and γ(1) = y , {f(γ(t)) , t ∈ [0, 1]} is a compact

interval. Therefore, bounding from below the integral
∫ 1

0 . . . dt by a sum of integrals on intervals

]tk, t
′
k[ , where f(γ(t)) 6∈

{
c1, . . . , cNf ,max(f ◦ γ),min(f ◦ γ)

}
, leads to

∫ 1

0

1Mreg (γ(t)) |∇f(γ(t))| |γ′(t)| dt ≥ max
t∈[0,1]

f(γ(t))− min
t∈[0,1]

f(γ(t)) ≥ |f(y)− f(x)| .

We obtain
∀x, y ∈M , ‖∇f‖L∞dg(x, y) ≥ dAg(x, y) ≥ |f(y)− f(x)| . (22)

When f is a C∞ Morse function, more details about the more general broken geodesic curves,
which do not hold anymore with our general assumption and which we do not need, are given
in [HeSj4].

Proposition 2.13. Assume Hypothesis 1.2 for f and Hypothesis 2.2 for Ω = Ω ⊔Nt ⊔Nn with

∂Ω = Nt ⊔Nn ⊂Mreg ,
∂f

∂n

∣∣
Nt
< 0 ,

∂f

∂n

∣∣
Nn

> 0 . (23)

Let ∆f,Ω,h be the self-adjoint operator defined in Proposition 2.8 and let U denote the compact

subset of Ω , U = (M \Mreg)∩Ω . All families (λh)h>0 in C , (rh)h>0 in L2(Ω) and (ωh)h>0 in
D(∆f,Ω,h) ⊂W∂(Ω; ΛT

∗M) such that

(∆f,Ω,h − λh)ωh = rh , supp rh ⊂ K , lim
h→0

λh = 0 ,

where K is a fixed compact subset of Ω , satisfy the estimate (see (14) and the lines below)

‖e
dAg(·,U∪K)

h ωh‖W∂(Ω) = Õ(1)× (‖rh‖L2(Ω) + tU‖ωh‖L2(Ω)) ,

where tU = 1 if U 6= ∅ and tU = 0 if U = ∅ .

Proof. For ε ∈]0, 1[ , one introduces Kε =
{
y ∈ Ω , dAg(y, U ∪K) ≤ ε

}
and χ1 = χ1,ε, χ2 =

χ2,ε ∈ C∞(Ω, [0, 1]) such that χ1 ≡ 0 when U = ∅ and χ1 = 1 near U else, supp χ1 ⊂ Kε ∩ Ω ,
and χ2

1 + χ2
2 ≡ 1 . Let us also introduce ϕε : x 7→ (1 − ε)dAg(x,Kε) ∈ W 1,∞(Ω) , so that ϕε

satisfies |∇ϕε| ≤ (1 − ε)|∇f | almost everywhere in Ω . Setting ω̃h := e
ϕε
h ωh and applying (19)

with ϕε = 0 on Kε , supp χ1, supp rh ⊂ Kε , we obtain

〈rh, ωh〉L2 + λh‖ω̃h‖2L2 = Re Qf,Ω,h(ωh, e
2ϕεh ωh)

≥ Re Qf,Ω,h(χ2ωh, χ2e
2ϕεh ωh) +Qf,Ω,h(χ1ωh, χ1ωh)− cεh2‖ω̃h‖2L2 .

Then, applying (20) of Lemma 2.10 with a C2-extension to M of f
∣∣
supp χ2

, with |∇f |2 ≥ Cε on

supp χ2 and the sign condition (23) leads to

‖ωh‖L2‖rh‖L2 ≥ Qf,Ω,h(χ1ωh, χ1ωh) + h2
(
‖dχ2ω̃h‖2L2 + ‖d∗χ2ω̃h‖2L2

)

+ (Cε − λh − cεh2)‖χ2ω̃h‖2L2 − tU (λh + cεh
2)‖χ1ωh‖2L2

≥ Qf,Ω,h(χ1ωh, χ1ωh) + C′
ε h

2‖χ2ω̃h‖2W − tU‖ωh‖2L2 , (24)

where we recall from Definition 2.3 that ‖ω‖W = ‖ω‖L2 + ‖dω‖L2 + ‖d∗ω‖L2 .
Since Qf,Ω,h(χ1ωh, χ1ωh) ≥ 0 and ‖ωh‖L2 ≤ C‖rh‖L2 + tU‖ωh‖L2 (this is obvious when U 6= ∅
and apply (20) of Lemma 2.10 with ϕ = 0 else), we obtain the estimate

‖χ2ω̃h‖W∂(Ω) ≤
C′′
ε

h

(
‖rh‖L2 + tU‖ωh‖L2

)
. (25)
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This ends the proof when U = ∅ .
When U 6= ∅ , the relations (24) and

Qf,Ω,h(χ1ωh, χ1ωh) = ‖(hd+ df∧)χ1ωh‖2L2 + ‖(hd∗ + i∇f )χ1ωh‖2L2

≥ h2

2
(‖dχ1ωh‖2L2 + ‖d∗χ1ωh‖2L2)− C‖χ1ωh‖2L2

lead, since ϕε = 0 on supp χ1 , to

‖χ1ω̃h‖W∂(Ω) ≤
C′

h

(
‖rh‖L2 + ‖ωh‖L2

)
. (26)

The statement of Proposition 2.13 then follows from (25) and (26), by using again the IMS
localization formula (19) with now ϕ = f = 0 but ω replaced by ω̃ .

Following [HeSj2][DiSj] we extend the definition of Õ to the kernels of bounded operators from
L2 to W , which appears to be more natural than W 1,2 in our setting (see indeed Definition 2.3
and Proposition 2.5). For more flexibility, boundary conditions do not appear in the following
definition and the full space W (Ω; ΛT ∗M) of Definition 2.3 is used.

Definition 2.14. Let the domain Ω satisfy Hypothesis 2.2. Let the operator Ah act continuously
from L2(Ω; ΛT ∗M) to W (Ω; ΛT ∗M) and let Φ ∈ C0(Ω×Ω;R) . We say that the kernel Ah(x, y)

of Ah is Õ(e−
Φ(x,y)
h ) if, for all x0, y0 ∈ Ω and ε > 0 , there exist neighborhoods Uε, Vε in M of

y0 and x0 and constants hε such that

∀h ∈]0, hε[ , ∀χ ∈ C∞0 (Vε) , ∃Cχ,ε > 0 , ∀u ∈ L2(Ω) s.t. supp u ⊂ Uε ,
‖χAhu‖W (Ω) ≤ Cχ,εe−

Φ(x0,y0)−ε
h ‖u‖L2 .

For a finite family
(
Φk
)
k∈{1,...,K} in C0(Ω × Ω;R) , the kernel Ah(x, y) of Ah is said to be

Õ(
∑K

k=1 e
−Φk(x,y)

h ) when it is Õ(e−
min1≤k≤K Φk(x,y)

h ) .

When Ah(x, y) = Õ(e−
Φ(x,y)
h ) and Bh(x, y) = Õ(e−

Ψ(x,y)
h ) and Dh is a differential opera-

tor of order ≤ 1 which vanishes in a fixed (independent of h) neighborhood of ∂Ω (remem-
ber W (Ω; ΛT ∗M) ⊂ W 1,2

loc (Ω; ΛT
∗M)), with ‖Dh‖L(W 1,2;L2) = Õ(1) , then (AhDhBh)(x, y) =

Õ(e−
Θ(x,y)
h ) with Θ(x, y) = minz∈ΩΦ(x, z) + Ψ(z, y) .

If Ah(x, y) = Õ(e−
Φ(x,y)
h ) and ψ ∈ C0(Ω) , ϕ ∈ W 1,∞(Ω) satisfy ϕ(x) ≤ Φ(x, y) − ψ(y) for all

y ∈ Ω , then supu∈L2(Ω)
‖e
ϕ
h Ahu‖W1,2

‖e
ψ
h u‖L2

= Õ(1) .

An easy application concerns the case when the gradient of f does not vanish in Ω ⊂ Mreg ,
under Hypothesis 1.2.

Proposition 2.15. Assume Hypothesis 1.2 for f , and Hypothesis 2.2 for Ω = Ω⊔Nt⊔Nn with
now

Ω ⊂Mreg ,
∂f

∂n

∣∣
Nt
< 0 ,

∂f

∂n

∣∣
Nn

> 0 , (27)

where we recall that f ∈ C∞(Mreg) has a non vanishing gradient. The self-adjoint operator
∆f,Ω,h defined in Proposition 2.8 is bounded from below by cΩ,f,h1 > 0 . when h ∈]0, h1[ with
h1 > 0 small enough. If limh→0 ρ(h) = 0+ , then the resolvent (∆f,Ω,h − z)−1 , |z| ≤ ρ(h) , well
defined for h ∈]0, h0[ , h0 > 0 small enough, satisfies

(∆f,Ω,h − z)−1(x, y) = Õ(e−
dAg(x,y)

h ) ≤ Õ(e−
|f(x)−f(y)|

h ) ,

according to Definition 2.14 and uniformly with respect to z , |z| ≤ ρ(h) .
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Proof. The lower bound and the definition of the resolvent is deduced from (20) in Lemma 2.10
applied with ϕ ≡ 0 , |∇f(x)| ≥ c > 0 for all x ∈ Ω and where the condition (27) ensures
the positivity of the boundary terms. The estimate of the kernel is then a straightforward
consequence of Proposition 2.13 with here U = ∅ .

We cannot prove Proposition 2.13 and Proposition 2.15 for a general Lipschitz function
even under Hypothesis 1.6. We replace it by an assumption which is proved to be fulfilled by
subanalytic Lipschitz functions in Subsection 8.3

Hypothesis 2.16. For a Lipschitz function which satisfy Hypothesis 1.6 with the “critical val-
ues” c1 < . . . < cNf , we assume that Proposition 2.13 and Proposition 2.15 hold true after

replacing Mreg by M \ f−1
({
c1, . . . , cNf

})
, dAg(x, y) by the pseudodistance |f(x) − f(y)| , and

by restricting to the case Ω = f−1([a, b]) , a < b , a, b 6∈
{
c1, . . . , cNf

}
.

2.3.3 Adjusting boundary conditions

Another consequence of Agmon estimates is the following lemma which will be used to correct
boundary conditions and to extend solutions to df,hω = 0 to a wider domain with suitably
small errors. Under Hypothesis 1.2, it is stated in the more general framework of Proposi-
tion 2.15 with Ω ⊂ Mreg , although it will be applied essentially when Ω = f−1([a, b]) with
[a, b] ∩

{
c1, . . . , cNf

}
= ∅ . For a more general Lipschitz function we work directly in the frame-

work of Hypothesis 2.16.

Lemma 2.17. Assume Hypothesis 1.2 for f and Hypothesis 2.2 for Ω = Ω ⊔ Nt ⊔ Nn with
Ω ⊂ Mreg and the sign conditions ∂f

∂n

∣∣
Nt

< 0 , ∂f
∂n

∣∣
Nn

> 0 . Consider the operator ∆f,Ω,h of

Proposition 2.8. There exists c > 0 and h0 > 0 determined by f and Ω and for any pair of cut-
off functions χ, χ̃ ∈ C∞(Ω; [0, 1]) which satisfies dχ, dχ̃ ∈ C∞0 (Ω) , with χ̃ ≡ 1 in a neighborhood
of supp dχ , a constant Cχ,χ′ > 0 such that the following holds.
When ω ∈ W (Ω; ΛT ∗M) , the forms

η1 = d∗
f,Ω,h

(∆f,Ω,h)
−1((hdχ) ∧ ω) and η2 = df,Ω,h(∆f,Ω,h)

−1(hi∇χω)

both belong to
D(∆f,Ω,h) ⊂W∂(Ω; ΛT

∗M) ⊂W (Ω; ΛT ∗M)

and satisfy the following inequality with convention dAg(supp dχ̃, supp dχ) = +∞ when χ̃ is the
constant function 1:

‖η1‖L2 ≤ 1√
c
‖(hdχ) ∧ ω‖L2 and ‖η2‖L2 ≤ 1√

c
‖(hi∇χ)ω‖L2 ,

‖df,h(χω − χ̃η1)‖L2 ≤ 1√
c
‖(hdχ) ∧ df,hω‖L2 + ‖χdf,hω‖L2

+Õ(e−
dAg(supp dχ̃,supp dχ)

h )‖(hdχ) ∧ ω‖L2 ,

‖d∗f,h(χ̃η1)‖L2 ≤ Õ(e−
dAg(supp dχ̃,supp dχ)

h )‖(hdχ) ∧ ω‖L2 ,

‖d∗f,h(χω − χ̃η2)‖L2 ≤ 1√
c
‖hi∇χd∗f,hω‖L2 + ‖χd∗f,hω‖L2

+Õ(e−
dAg(supp dχ̃,supp dχ)

h )‖hi∇χω‖L2 ,
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‖df,h(χ̃η2)‖L2 ≤ Õ(e−
dAg(supp dχ̃,supp dχ)

h )‖hi∇χω‖L2 ,



‖df,h(χω − χ̃(η1 + η2))‖L2

+
‖d∗f,h(χω − χ̃(η1 + η2))‖L2


 ≤ Cχ,χ̃

[
‖df,hω‖L2 + ‖d∗f,hω‖L2

]

+Õ(e−
dAg(supp dχ̃,supp dχ)

h )‖ω‖L2(supp dχ) .

When f is a Lipschitz function which satisfies Hypothesis 1.6 and Hypothesis 2.16 the results
are the same when Ω = f−1([a, b]) , cn < a < b < cn+1 , and dAg(K,K

′) is replaced by
infx∈K ,y∈K′ |f(x)− f(y)| .
Remark 2.18. Note that ω is not assumed to belong to the domain of df,Ω,h , d

∗
f,Ω,h

or ∆f,Ω,h (no

boundary conditions) and the same holds in general for χω . Accordingly, we used the notations
df,h and d∗f,h for the differential operators. In some applications χ will be chosen such that χω
and therefore χω−χ̃(η1+η2) belong to one of these domains. Example given, if χω ∈ D(∆f,Ω,h) ,
the last inequality then provides a good estimate of Qf,Ω,h(χω − χ̃(η1 + η2)) when supp χ and
supp χ̃ are well chosen.

Proof. Proposition 2.15 under Hypothesis 1.2, or Hypothesis 2.16 with Ω = f−1([a, b]) in the
more general case, ensures ∆f,Ω,h ≥ c > 0 for h ∈]0, h0[ . When ∆f,Ωhu = v ∈ L2(Ω) , it implies

first ‖u‖ ≤ 1
c‖v‖ . We apply (18) with ϕ = 0:

‖df,Ω,hu‖2 + ‖d∗f,Ω,hu‖
2 = Re 〈u , ∆f,Ω,hu〉 ≤ ‖u‖‖v‖ ≤

1

c
‖v‖2 .

This proves the two first inequalities for ‖η1‖L2 and ‖η2‖L2 .
Moreover, the equality

df,h(χω) = χ(df,hω) + (hdχ) ∧ ω
implies

0 = df,h[χ(df,hω)] + df,h [(hdχ) ∧ ω] = (hdχ) ∧ (df,hω) + df,h [(hdχ) ∧ ω] . (28)

Our assumptions ensure (hdχ) ∧ ω ∈ D(df,Ω,h) and η1 ∈ D(∆f,Ω,h) ⊂ D(df,Ω,h) . By using
∆f,Ω,h = df,Ω,hd

∗
f,Ω,h

+ d∗
f,Ω,h

df,Ω,h and the commutation relation stated in Proposition 2.8-4),
compute:

df,Ω,hη1 = df,Ω,hd
∗
f,Ω,h

(∆f,Ω,h)
−1(hdχ ∧ ω)

= (hdχ) ∧ ω − d∗
f,Ω,h

df,Ω,h(∆f,Ω,h)
−1((hdχ) ∧ ω)

= (hdχ) ∧ ω − d∗
f,Ω,h

(∆f,Ω,h)
−1(df,Ω,h[(hdχ) ∧ ω])

(28)
= (hdχ) ∧ ω + d∗

f,Ω,h
(∆f,Ω,h)

−1((hdχ) ∧ df,hω) .

With df,h(χ̃η1) = χ̃(df,hη1) + (hdχ̃) ∧ η1 and χ̃dχ ≡ dχ , this implies:

df,h(χ̃η1) = (hdχ)∧ω+ χ̃d∗
f,Ω,h

(∆f,Ω,h)
−1((hdχ)∧df,hω)+(hdχ̃)∧d∗

f,Ω,h
(∆f,Ω,h)

−1((hdχ)∧ω) .

We have proved

df,h(χω − χ̃η1) = χ(df,hω)− χ̃d∗f,Ω,h(∆f,Ω,h)
−1((hdχ) ∧ df,hω)

︸ ︷︷ ︸
(I)

− (hdχ̃) ∧ d∗
f,Ω,h

(∆f,Ω,h)
−1((hdχ) ∧ ω)

︸ ︷︷ ︸
(II)

.
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Since ‖d∗
f,Ω,h

(∆f,Ω,h)
−1‖ ≤ 1√

c
for h small enough, it follows

‖(I)‖L2 ≤ 1√
c
‖(hdχ) ∧ df,hω‖L2 .

For the last term, Proposition 2.15 under Hypothesis 1.2 says

‖(II)‖L2 = Õ(e−
dAg(supp dχ̃,supp dχ)

h )‖(hdχ) ∧ ω‖L2 ,

while Hypothesis 2.16 with Ω = f−1([a, b]) in the more general case gives

‖(II)‖L2 = Õ(e−
minx∈supp dχ̃,y∈supp dχ |f(x)−f(y)|

h )‖(hdχ) ∧ ω‖L2 ,

Meanwhile the identities d∗f,h(χ̃η1) = χ̃d∗f,hη1 + hi∇χ̃η1 and d∗f,hη1 = 0 lead to

d∗f,h(χ̃η1) = hi∇χ̃η1 = hi∇χ̃d
∗
f,Ω,h

(∆f,Ω,h)
−1((hdχ) ∧ ω) .

which yields the fourth inequality.
Working with η2 is completely symmetric by exchanging the role of df,h and d∗f,h , after starting
with

d∗f,h(χω) = χ(d∗f,hω) + hi∇fω

and 0 = d∗f,h(d
∗
f,hχω) = hi∇χ(d

∗
f,hω) + d∗f,h

[
hi∇χd

∗
f,hω

]
.

The last inequality is obtained by summation.

2.3.4 Resolvent estimates

From this paragraph and until the end of Section 6, the analysis becomes essentially one di-
mensional along R ⊃ f(M) . Accordingly we now work specifically with Ω = f−1([a, b]) ,
Nt = f−1(a) , Nn = f−1(b) , a, b 6∈

{
c1, . . . , cNf

}
or possibly Ω = ⊔Nn=1f

−1([an, bn]) , an, bn 6∈{
c1, . . . , cNf

}
, under Hypothesis 1.2 for f , or by assuming Hypothesis 1.6 and Hypothesis 2.16

for a more general Lipschitz function f .

Also the upper bounds Õ(e−
dAg(K,K

′)

h ) in Proposition 2.13 , Proposition 2.15 and Lemma 2.17

are replaced by their weaker form Õ(e−
inf
x∈K,y∈K′ |f(x)−f(y)|

h ) which is the one given in Hypothe-
sis 2.16.
We present here resolvent kernel estimates when [a, b] contains one or a fixed number N of “criti-
cal values” of f . It assumes some spectral localization, in (29) and (31), which is not yet proved.
It will be done in the next sections with increasing complexity and precision: first for N = 1 in
Section 3 and then for a general N in Section 4, followed by the accurate version for N ≥ 1 in
Section 6. It is also presented in a more general form where actually the N critical values may
be replaced by N clusters of critical values for further applications.
Let us first consider the case when [a, b] contains one cluster of “critical values”.

Proposition 2.19. Assume Hypothesis 1.2, or more generally Hypothesis 1.6 and Hypothe-
sis 2.16, for f and let a < c < b and ε0 ∈]0,min(b− c, c− a)[ be such that

[a, b] ∩
{
c1, . . . , cNf

}
⊂]c− ε0

16
, c+

ε0
16

[ .

Assume also that ∆f,f−1([a,b]),h , the self-adjoint operator in f−1([a, b]) ⊂ M given in Proposi-
tion 2.8 with Nt = {f = a} and Nn = {f = b} satisfies:

∃h0 > 0 , ∀h ∈]0, h0[ , σ(∆f,f−1([a,b]),h) ∩ [0, e−
ε0
h ] ⊂ [0, e−

4ε0
h ] . (29)
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Then the estimate
(∆f,f−1([a,b]),h − z)−1(x, y) = Õ(e−

|f(x)−f(y)|
h +

3ε0
h )

holds, according to Definition 2.14, uniformly with respect to z , |z| = e−
2ε0
h .

Proof. We prove Proposition 2.19 by adapting the analysis made in [DiSj, pp. 57–58]. Let us
consider the self-adjoint realizations ∆f,f−1([a,c− ε0

16
]),h and ∆f,f−1([c+

ε0
16
,b]),h for which Proposi-

tion 2.15 says

(∆f,f−1([a,c− ε0
16 ]),h

− z)−1(x, y) and (∆f,f−1([c+
ε0
16 ,b]),h

− z)−1(x, y) are Õ(e−
|f(x)−f(y)|

h ) , (30)

uniformly with respect to z ∈ C, |z| = e−2
ε0
h . Let moreover θ and θ̂ be two cut-off functions

such that θ ∈ C∞
0 (f−1(]c − ε0

8 , c +
ε0
8 [); [0, 1]) , θ ≡ 1 around f−1([c − ε0

16 , c +
ε0
16 ]) , and θ̂ ∈

C∞
0 (f−1(]c− 3ε0

16 , c+
3ε0
16 [); [0, 1]) , θ̂ ≡ 1 around f−1([c− ε0

8 , c+
ε0
8 ]) . Let us also define θ−, θ̂− ∈

C∞(f−1(]−∞, c[); [0, 1]) and θ+, θ̂+ ∈ C∞(f−1(]c,+∞[); [0, 1]) such that

θ− + θ + θ+ = 1 and θ̂− + θ̂ + θ̂+ = 1 .

a
+

c+ 3ε0
16

+

c− 3ε0
16

+
c
+

c− ε0
16

+

c+ ε0
16

+
c− ε0

8

+
c+ ε0

8

+
b
+

θ̂

θ θ+θ−

θ̂− θ̂+

Figure 1: Positions of the cut-off functions, θ−, θ, θ+, θ̂−, θ̂, θ̂+ .

The support conditions imply the following resolvent identity:

(∆f,f−1([a,b]),h − z)−1 = (∆f,f−1([a,b]),h − z)−1θ̂ + θ−(∆f,f−1([a,c− ε0
16 ]),h

− z)−1θ̂−

− (∆f,f−1([a,b]),h − z)−1θ̂[∆f,h, θ−](∆f,f−1([a,c− ε0
16 ]),h

− z)−1θ̂−

+ θ+(∆f,f−1([c+
ε0
16 ,b]),h

− z)−1θ̂+

− (∆f,f−1([a,b]),h − z)−1θ̂[∆f,h, θ+](∆f,f−1([c+
ε0
16 ,b]),h

− z)−1θ̂+ .

Since moreover ‖(∆f,f−1([a,b]),h − z)−1‖L(L2,L2) ≤ 2e2
ε0
h for |z| = e−

2ε0
h , because the hypothesis

ensures distC(z, σ(∆f,f−1([a,b]),h)) ≤ e−
2ε0
h

2 for h > 0 small enough, applying Proposition 2.13 to

(∆f,f−1([a,b]),h − z)ωh = rh = θ̂r̂h

with supp θ̂ ⊂ f−1(]c− 3 ε016 , c+ 3 ε016 [) first yields

[(∆f,f−1([a,b]),h − z)−1θ̂](x, y) = Õ(e−
|f(x)−c|−3ε0/16

h +2
ε0
h )

and then

[(∆f,f−1([a,b]),h − z)−1θ̂](x, y) = Õ(e−
|f(x)−c|−3ε0/16

h +2
ε0
h ) Õ(e−

|f(y)−c|−3ε0/16
h )

= Õ(e−
|f(x)−f(y)|

h +3
ε0
h ) .
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By using (30), ‖[∆f,h, θ±]‖L(W 1,2;L2) = Õ(1) , [∆f,h, θ±] vanishing in a neighborhood of f−1({a, b}) ,
and the latter estimate for all the left factors concerned in the above resolvent identity, we obtain

(∆f,f−1([a,b]),h − z)−1(x, y) = Õ(e−
|f(x)−f(y)|

h +
3ε0
h ) + Õ(e−

|f(x)−f(y)|
h )

= Õ(e−
|f(x)−f(y)|

h +
3ε0
h ) .

Proposition 2.20. Assume Hypothesis 1.2, or more generally Hypothesis 1.6 and Hypothe-
sis 2.16 for f . Let a < b belong to R\

{
c1, . . . , cNf

}
and let Ω = f−1([a, b]) with Nt = f−1({a}) ,

Nn = f−1({b}) . Assume that there exist a = c̃0 < c̃1 < . . . < c̃N < c̃N+1 = b and

ε0 ∈]0, min1≤n≤N+1(c̃n−c̃n−1)

16 [ such that

]a, b[∩
{
c1, . . . , cNf

}
⊂ ⊔Nn=1]c̃n −

ε0
16
, c̃n +

ε0
16

[ .

The operator ∆f,f−1([a,b]),h is the self-adjoint realization of the Witten Laplacian given in Proposi-
tion 2.8 and accordingly ∆n = ∆f,f−1([c̃n−1+(1−δn,1)ε0,c̃n+1−(1−δn,N )ε0]),h is defined for 1 ≤ n ≤ N
where δm,n is the Kronecker symbol. We assume

∀n ∈ {1, . . . , N} , σ(∆n) ∩ [0, e−
ε0
h ] ⊂ [0, e−

4ε0
h ] . (31)

Then every z ∈ C such that |z| = e−
2ε0
h belongs to the resolvent set of ∆f,f−1([a,b]),h provided that

h ∈]0, h0[ with h0 > 0 small enough. Moreover, there exists a constant N0 ∈ N∗ , determined by
b− a and min2≤n≤N c̃n − c̃n−1 , such that

(∆f,f−1([a,b]),h − z)−1(x, y) = Õ(e−
|f(x)−f(y)|

h +3N0
ε0
h )

holds, according to Definition 2.14 uniformly with respect to z , |z| = e−
2ε0
h .

Proof. We prove Proposition 2.20 by adapting the analysis made in [DiSj, pp. 58–59]. Call

η0 = min2≤n≤N
c̃n−c̃n−1

2 and take ε0 ∈]0,min1≤n≤N+1
c̃n−c̃n−1

16 [ , ε0 ≤ η0
8 as stated.

For n ∈ {1, . . . , N} , let us introduce θn ∈ C∞
0 (f−1(]c̃n − ε0

8 , c̃n +
ε0
8 [); [0, 1]) such that θn ≡ 1 in

a neighborhood of f−1([c̃n − ε0
16 , c̃n + ε0

16 ]) , and

χn :=
(
1−

∑

m 6=n
θm
)∣∣
f−1([c̃n−1,c̃n+1])

=
(
1− θn−1 − θn+1

)∣∣
f−1([c̃n−1,c̃n+1])

.

Here, we use the convention θ−1 = θN+1 = 0 . We also need another partition of unity 1 =∑N
n=1 χ̃n , 0 ≤ χ̃n ≤ 1 , such that

χ̃n ≡ 1 on f−1([c̃n − η0/2, c̃n + η0/2]) for 1 ≤ n ≤ N ,

χ̃n ∈ C∞0 (f−1(]c̃n−1 + η0/2, c̃n+1 − η0/2[)) for 2 ≤ n ≤ N − 1

and χ̃1 ≡ 0 on f−1([c̃2 − η0/2, b]) χ̃N ≡ 0 on f−1([a, c̃N−1 + η0/2]) .

Note in particular that our conditions, ε0 ≤ η0
8 and supp θn ⊂ f−1([c̃n − ε0

8 , c̃n + ε0
8 ]) , ensure

χn ≡ 1 on supp χ̃n .
We now set for every z ∈ C, |z| = e−2

ε0
h :

R0(z) :=

N∑

n=1

χn(∆n − z)−1χ̃n , (32)
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where we recall ∆n = ∆f,f−1([c̃n−1+(1−δn,1)ε0,c̃n+1−δN,nε0]),h . Because the boundary conditions
are satisfied , a simple computation shows

(∆f,f−1([a,b]),h − z)R0 = I −K , (33)

with

K =

N∑

n=1

∑

m∈{n−1,n+1}
[∆f,h, θm]

∣∣
f−1([c̃n−1,c̃n+1])

(∆n − z)−1χ̃n . (34)

Moreover Proposition 2.19 applied to every ∆n and (34) combined with the support conditions
of θm, χ̃n imply

‖K‖L(L2,L2) = Õ(e−
C
h+

3ε0
h ) ,

where
C := min

n ∈ {1, . . . , N}
m ∈ {n− 1, n+ 1}

(
min

y ∈ supp χ̃n

x ∈ supp θm

|f(x)− f(y)|
)
≥ η0

2
− ε0

8
,

and ε0 ≤ η0
8 , yields

‖K‖L(L2;L2) = Õ(e−
η0/2−25ε0/8

h ) = Õ(e−
7η0
64h ) .

For h > 0 small enough, I−K : L2 → L2 in then invertible and the resolvent set of ∆f,f−1([a,b]),h

contains
{
z ∈ C , |z| = e−

2ε0
h

}
.

Let us now consider the exponential decay estimate. Write first

(∆f,f−1([a,b]),h − z)−1 = R0(z)
∑

ℓ∈N

Kℓ = R0(z)

N0−1∑

ℓ=0

Kℓ +R0(z)KN0 , (35)

and choose N0 ∈ N∗ such that N0 × 7η0
64 ≥ (b − a) and

‖KN0‖L(L2,L2) = ‖
∑

ℓ≥N0

Kℓ‖L(L2,L2) = Õ(e−
b−a
h ) = Õ(e−

max
x,y∈f−1([a,b])

|f(x)−f(y)|

h ) . (36)

By referring again to Proposition 2.19 and from the definition (32) or R0(z) , we know:

R0(z)(x, y) = Õ(e−
|f(x)−f(y)|

h +3
ε0
h ) . (37)

The relation (37) together with (36) implies that

(R0 ◦KN0)(x, y) = Õ(e−
minz∈M |f(x)−f(z)|+b−a

h +3
ε0
h ) = Õ(e−

|f(x)−f(y)|
h +3

ε0
h ) . (38)

Moreover, the relation (37) together with

K(x, y) = Õ(e−
|f(x)−f(y)|

h +3
ε0
h ) ,

which follows as well from Proposition 2.19, implies that for every ℓ ∈ N , one has:

(R0(z) ◦Kℓ)(x, y) = Õ(e−
|f(x)−f(y)|

h +3(ℓ+1)
ε0
h ) . (39)

One finally deduces from (35) and from (38), (39) that the estimate

(∆f,f−1([a,b]),h − z)−1(x, y) = Õ(e−
|f(x)−f(y)|

h +3N0
ε0
h ) ,

holds uniformly with respect to z ∈ C, |z| = e−2
ε0
h . This concludes the proof of Proposition 2.20.
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3 Local problems

In this section we shall use Agmon type estimates to study carefully the case when there is a
unique “critical value” of f in ]a, b[ , −∞ ≤ a < b ≤ +∞ .

Hypothesis 3.1. The function f is assumed to satisfy Hypothesis 1.2, or Hypothesis 1.6 and
Hypothesis 2.16, and the values a, b , −∞ ≤ a < b ≤ +∞ , are chosen such that

[a, b] ∩
{
c1, . . . , cNf

}
=]a, b[∩

{
c1, . . . , cNf

}
= {c̃1} .

The domain is Ω = f−1([a, b]) , with Nt = f−1({a}) and Nn = f−1({b}) , and the operator
∆f,f−1([a,b]),h is the one defined in Proposition 2.8.

With this assumption all the exponential decay estimates of Section 2.3 can be used with the
pseudodistance |f(x) − f(y)| . The main result of this section says that, in this framework, the
only possible exponentially small eigenvalue of ∆f,f−1([a,b]),h is 0 .

Proposition 3.2. Under Hypothesis 3.1, the spectrum of the operator ∆f,f−1([a,b]),h satisfies

∀ε > 0 , ∃hε > 0 , ∀h ∈]0, hε[ , σ(∆f,f−1([a,b]),h) ∩ [0, e−
ε
h ] ⊂ {0} .

Proposition 3.2 will be proved in several steps. Consequences e.g. for resolvent estimates will
be given afterwards.

3.1 Useful quantities and notations

Let us first recall the following notion of distance between (spectral) subspaces which is conve-
nient for spectral analysis (see e.g. [DiSj, pp. 59–61]).

Definition 3.3. For E,F two closed subspaces of a Hilbert space H , the non symmetric distance
~d(E,F ) is defined as

~d(E,F ) = sup
x∈E,‖x‖=1

dH(x, F ) = ‖ΠE −ΠFΠE‖ = ‖ΠE −ΠEΠF ‖ ,

where ΠE ,ΠF are the orthogonal projection on E ,F .

This distance satisfies:

• ~d(E,F ) = 0 iff E ⊂ F ;

• ~d(E,G) ≤ ~d(E,F ) + ~d(F,G) ;

• ~d(E,F ) < 1 if and only if ΠF
∣∣
E
: E → F is one-to-one with a continuous left-inverse, and

ΠE
∣∣
F
: F → E is onto in this case;

•
(
~d(E,F ) < 1 and ~d(F,E) < 1

)
if and only if ΠF

∣∣
E

: E → F and ΠE
∣∣
F

: F → E are

bijections with continuous inverses. In this case, the equality ~d(E,F ) = ~d(F,E) holds
true ;

• if we know a priori dimE = dimF < +∞ then

(~d(E,F )) < 1)⇔
(
~d(E,F ) < 1 and ~d(F,E) < 1

)
⇔ (~d(F,E) < 1) .

We will use a variation of the min-max principle associated with the quantities γ(α, [a, b], h) and

Γ(α, [a, b], h) defined below. Remember that Q
(p)
f,f−1([a,b]),h is the quadratic form associated with

∆f,f−1([a,b]),h (see the second item of Proposition 2.8).
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Definition 3.4. For p ∈ {0, . . . d} , s ≥ 0 , let F
(p)
[0,s],[a,b],h denote the range of the spectral

projection 1[0,s](∆
(p)
f,f−1([a,b]),h) , with in particular F

(p)
{0},f−1([a,b]),h = ker(∆

(p)
f,f−1([a,b]),h) .

For α > 0 , the quantities γ(p)(α, [a, b], h) and Γ(p)(α, [a, b], h) are defined by

γ(p)(α, [a, b], h) = ~d(F
(p)

[0,e−
α
h ],[a,b],h

, F
(p)
{0},[a,b],h) =

~d(F
(p)

[0,e−
α
h ],[a,b],h

, ker(∆
(p)
f,f−1([a,b]),h))

= sup
ωh∈F (p)

[0,e
−α
h ],[a,b],h

\{0}

distL2(ωh, ker∆
(p)
f,f−1([a,b]),h)

‖ωh‖L2

, (40)

Γ(p)(α, [a, b], h) = sup
‖ωh‖L2=1 : Q

(p)

f,f−1([a,b]),h
(ωh)≤e−

α
h

distL2(ωh, ker(∆
(p)
f,f−1([a,b]),h)) . (41)

Those quantities satisfy simple properties:

• The quantities γ(p)(α, [a, b], h) and Γ(p)(α, [a, b], h) are decreasing w.r.t α and, since

F
(p)

[0,e−
α
h ],[a,b],h

⊂ {ω ∈ D(Qf,f−1([a,b]),h) s.t. Q
(p)
f,f−1([a,b]),h(ωh) ≤ e−

α
h } ,

they satisfy
0 ≤ γ(p)(α, [a, b], h) ≤ Γ(p)(α, [a, b], h) .

It says in particular:

(
lim
h→0

Γ(p)(α, [a, b], h) = 0

)
⇒
(
lim
h→0

γ(p)(α, [a, b], h) = 0

)
.

• Since ∆f,f−1([a,b]),h is self-adjoint, the spectral theorem implies:

γ(p)(α, [a, b], h) = 0 iff σ(∆
(p)

f,f−1([a,b]),h) ∩ [0, e−
α
h ] ⊂ {0}

and
γ(p)(α, [a, b], h) = 1 else.

In particular, it provides the expression

γ(p)(α, [a, b], h) = sup

‖ωh‖=1 :







∆
(p)
f,f−1([a,b]),hωh = λhωh

λh ≤ e−α
h

distL2(ωh, ker∆
(p)
f,f−1([a,b]),h)

and the convergence limh→0 γ
(p)(α, [a, b], h) = 0 means precisely that:

∃hα > 0 , ∀h ∈]0, hα[ , σ(∆(p)
f,f−1([a,b],h)) ∩ [0, e−

α
h ] ⊂ {0} . (42)

• The spectral theorem also implies

Γ(p)(α, [a, b], h) = 1 iff σ(∆
(p)
f,f−1([a,b],h))∩]0, e−

α
h ] 6= ∅

and
(
Γ(p)(α, [a, b], h)

)2 ∈ [0,
e−

α
h

min
(
σ(∆

(p)
f,f−1([a,b],h)) \ {0}

) ] ⊂ [0, 1[ else . (43)

Actually, σ(∆
(p)
f,f−1([a,b],h))∩]0, e−

α
h ] 6= ∅ implies Γ(p)(α, [a, b], h) ≥ γ(p)(α, [a, b], h) ≥ 1 and

obviously Γ(p)(α, [a, b], h) = 1 .
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Reciprocally when σ(∆f,f−1([a,b]),h)∩]0, e−
α
h ] = ∅ and for any ωh which satisfies the in-

equality Q
(p)
f,f−1([a,b]),h(ωh) ≤ e−

α
h ‖ωh‖2L2 , the spectral decomposition

ωh = 1{0}(∆
(p)
f,f−1([a,b]),h)ωh + 1

[min(σ(∆
(p)

f,f−1([a,b],h)
)\{0} ),+∞[

(∆
(p)
f,f−1([a,b]),h)ωh

leads to

dist2L2(ωh, ker(∆
(p)
f,f−1([a,b]),h)) = ‖1

[min( σ(∆
(p)

f,f−1([a,b],h)
)\{0} ),+∞[

(∆
(p)
f,f−1([a,b]),h)ωh‖2L2

≤ e−
α
h

min
(
σ(∆

(p)

f,f−1([a,b],h)) \ {0}
)‖ωh‖2L2 .

• We deduce from (42) and (43) that

(
lim
h→0

γ(p)(α′, [a, b], h) = 0

)
⇒
(
∀α > α′ ,Γ(p)(α, [a, b], h) ≤ e−α−α′

2h −→
h→0

0

)
.

Up to an arbitrary small change of the positive parameter α , working with γ(p) or Γ(p) is
then essentially equivalent.

3.2 Exponentially small eigenvalues are zero

This section is devoted to the proof of Proposition 3.2. First of all, we can assume c̃1 = 0 if f is
replaced by f − c̃1 . The proof will be done in three steps connected by the remarks on γ(p) and
Γ(p) from the previous subsection.

Step 1: Assume [a, b] = [−ε, ε] with ε > 0 (and c̃1 = 0). We prove here that

∀α′ = 2ε+ c > 2ε , lim
h→0

γ(p)(α′, [−ε, ε], h) = 0 ,

where, owing to the monotonicity of γ(p)(α, [−ε, ε], h) w.r.t α , we can focus on c ∈]0, ε[ .
According to (42), it amounts to show there exists hc > 0 such that

(
λh ∈ σ(∆(p)

f,f−1([a,b],h)) ∩ [0, e−
2ε+c
h ]
)
⇒ (∀h ∈]0, hc[ , λh = 0) .

Take then ωh ∈ D(∆
(p)
f,f−1([−ε,ε]),h) satisfying

‖ωh‖L2 = 1 and ∆
(p)
f,f−1([−ε,ε]),hωh = λhωh with 0 ≤ λh ≤ e−

2ε+c
h

(the result is obvious for the h’s for which the existence of ωh fails). The exponential decay
estimates of Proposition 2.13 (or Hypothesis 2.16 for a general Lipschitz function) applied with
Nt = f−1({−ε}) and Nn = f−1({ε}) , K = ∅ , U = f−1({0}) , dAg(x, U) ≥ |f(x)| , and rh = 0
writes: ∫

f−1([−ε,ε])
e

2|f(x)|
h |ωh(x)|2 dx ≤ ‖e

|f|
h ωh‖2W (f(−1)([−ε,ε])) = Õ(1) . (44)

Hence the mass of the probability measure with density |ωh|2(x) concentrates on U = f−1({0})
as h→ 0 . We deduce the a priori estimate

∀δ ∈]0, ε[ , ∃hδ > 0 , ∀h ∈]0, hδ[ , ‖e fh 1fε−δ (x)ωh‖L2 ≥ e−
δ
h

2
.
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Once the parameter c ∈]0, ε[ is fixed, introduce s1 = c
4 and s2 ∈ ( c4 ,

c
2 ) and take χ ∈ C∞(M ; [0, 1])

such that χ ≡ 0 near f−s2 which contains a neighborhood of f− c
2 and χ ≡ 1 near f−s1 = f− c

4
.

0
+

−ε
+

ε
+

−c
+

− c
2

+
− c

4

+

Figure 2: Positions in the interval [−ε, ε] .

0
+

− c
2

+
− c

4 = −s1
+

−s2
+

χ

Figure 3: Cut-off function χ in [−ε, ε] .
Since

d(χe
f
hωh) = χd(e

f
hωh) + dχ ∧ (e

f
hωh) ,

we deduce
‖d(χe fhωh)‖2L2 ≤ 2‖χd(e fhωh)‖2L2 + 2‖dχ ∧ (e

f
hωh)‖2L2 . (45)

The estimate

Qf,f−1([−ε,ε]),h(ωh) = ‖e−
f
h (hd)e

f
hωh‖2L2 + ‖e

f
h (hd∗)e−

f
hωh‖2L2 ≤ e−

2ε+c
h

with f ≤ ε then implies that the first term in the r.h.s. of (45) is of order Õ(e−
c
h ) . Meanwhile

supp (dχ) ⊂ f− c
4 and the exponential decay estimate (44) imply that the second term in the r.h.s.

of (45) is of order Õ(e−2 2c
4h ) . Adding the boundary conditions nf=εωh = 0 and nf=εdf,hωh = 0 ,

i.e. nf=ε(e
f
hωh) = 0 and nf=εd(e

f
hωh) = 0 , we have thus proved that





χe
f
hωh ∈ D(∆0,f−1([−s2,ε],1)) ,

‖d0,f−1([−s2,ε],1)(χe
f
hω)‖2L2 = Õ(e−

c
h ) ,

limh→0 h log ‖χe
f
hωh‖L2 = 0 .

Set uh = χe
f
h ωh

‖χe
f
h ωh‖L2

so that ‖uh‖L2 = 1 , uh ∈ D(∆0,f−1([−s2,ε]),1) and ‖duh‖2L2 = Õ(e−
c
h ) .

By using the Hodge decomposition (see Proposition 2.8) and σ(∆0,f−1([−s2,ε]),1)\{0} ⊂ [µ1,+∞) ⊂
R+∗ , with µ1 fixed by ε > 0 and s2 > 0 , we obtain the decomposition of uh:

uh = Πker d0,f−1([−s2,ε]),1
uh + d∗0,f−1([−s2,ε]),1u2,h ,

where d∗0,f−1([−s2,ε]),1u2,h in
(
ker∆0,f−1([−s2,ε]),1)

⊥ = Ran 1{[µ1,+∞)}(∆
(p)
0,f−1([−s2,ε]),1) . Writing

shortly d = d0,f−1([−s2,ε],1) and d∗ = d∗0,f−1([−s2,ε],1) , it follows that

Õ(e−
c
h ) = ‖duh‖2L2 = ‖dd∗u2,h‖2L2 = Q

(p)
0,f−1([−s2,ε]),1(d

∗u2,h) ≥ µ1‖d∗u2,h‖2L2 .
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We deduce distL2(uh, ker d0,f−1([−s2,ε],1)) = Õ(e−
c
2h ) and then the existence of a form ηh ∈

ker(d0,f−1([−s2,ε],1)) such that

‖χe fhωh − ηh‖L2(f−1([−s2,ε]) = Õ(e−
c
2h ) .

By the first item of Remark 2.9, the extension η̃h of ηh by 0 in f−s2
−ε belongs to ker(d0,f−1([−ε,ε]),1)

with supp η̃h ⊂ f ε−s2 and ‖χe fhωh − η̃h‖L2 = Õ(e−
c
2h ) .

After multiplying by e−
f
h = O(e s2h ) in f ε−s2 , we obtain

{
‖χωh − e−

f
h η̃‖L2 = Õ(e−

c
2h+

s2
h ) , c

2 > s2 ,

e−
f
h η̃h ∈ ker(df,f−1([−ε,ε]),h) .

We conclude with ‖χωh − ωh‖L2 = Õ(e−
c
4h ) (since supp (1 − χ) ⊂ f−s1 = f− c

4 ) that

dist(ωh, ker(df,f−1([−ε,ε]),h)) = O(e−
c′

h ) for some c′ > 0.

The duality consists in replacing f by −f (which does not change [−ε, ε]), the differential form
ωh ∈W (f−1(]−ε, ε[); ΛpT ∗M) by ⋆ωh ∈ W (f−1(]−ε, ε[); Λd−pT ∗M⊗orM ) where the orientation
twist does not change the analysis, t by n (and conversely), ⋆ and ⋆−1 , and df,h by d∗−f,h (and
conversely). This leads to

dist(⋆ωh , ker(d−f,f−1([−ε,ε]),h)) = dist(ωh , ker(d
∗
f,f−1([−ε,ε]),h)) = O(e−

c′

h ) .

Assume by contradiction that λh 6= 0 . Since ωh = λ−1
h ∆

(p)

f,f−1([−ε,ε]),hωh ∈
(
ker∆

(p)

f,f−1([−ε,ε]),h
)⊥

,

the Hodge decomposition (see Proposition 2.8) leads to

ωh = Πker d
f,f−1([−ε,ε]),h

ωh +Πker d∗
f,f−1([−ε,ε]),h

ωh .

The squared norm 1 = ‖ωh‖2 thus equals

dist2L2(ωh, ker(df,f−1([−ε,ε]),h)) + dist2L2(ωh, ker(d
∗
f,f−1([−ε,ε]),h)) = Õ(e−

c′

h ) ,

which is impossible for 0 < h < hε , hε > 0 small enough. It follows that σ(∆
(p)
f,f−1([a,b],h)) ∩

[0, e−
2ε+c
h ] ⊂ {0} for h small enough, which implies limh→0 γ

(p)(α′, [−ε, ε], h) = 0 according to
the comments following Definition 3.4.

Step 2: From Step 1, we know limh→0 γ
(p)(α′, [−ε, ε], h) = 0 for any α′ > 2ε and the comparison

of the quantities γ(p) and Γ(p) in the previous subsection leads to

∀α > 2ε , lim
h→0

Γ(p)(α, [−ε, ε], h) = 0 .

Working with Γ(p) brings the flexibility to use some restriction argument from f ba to f ε−ε , which
of course does not send eigenvectors onto eigenvectors.

Step 3: For the general case a < 0 = c̃1 < b , we now prove

∀α > 0 , σ(∆
(p)
f,f−1([a,b],h)) ∩ [0, e−

α
h ] ⊂ {0} ,

where, by monotonicity w.r.t α , it is sufficient to consider α ≤ min(−a, b) . Let us then assume

that ωh satisfies ∆
(p)
f,f−1([a,b]),hωh = λhωh with ‖ωh‖L2 = 1 and 0 ≤ λh ≤ e−

α
h . Take ε ∈]0, α4 [

and consider f ε−ε ⊂ f ba . We know that

‖df,hωh‖2L2(fε−ε)
+ ‖d∗f,hωh‖2L2(fε−ε)

≤ ‖df,f−1([a,b]),hωh‖2L2(fba)
+ ‖d∗f,f−1([a,b]),hωh‖2L2(fba)

≤ e−α
h ,
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although ωh
∣∣
fε−ε

a priori does not belong neither to D(∆
(p)
f,f−1([−ε,ε]),h) nor to D(Q

(p)
f,f−1([−ε,ε],h)) .

We now use Lemma 2.17 in the two subsets f−1([−ε,−δ]) and f−1([δ, ε]) for some δ ∈]0, ε4 [ which
will be fixed later.
Consider Ω = f−1([−ε,−δ]) (the other case is symmetric) and take the cut-off χ−, χ̃− ∈
C∞(f−1[−ε,−δ]; [0, 1]) with supp χ− ⊂ f−1(−]ε + δ,−δ]) , χ− ≡ 1 in f−1([−ε + 2δ,−δ]) , and
supp χ̃− ⊂ f−1([−ε,−δ[) , χ̃− ≡ 1 in f−1([−ε,−2δ]) .

0
+

a
+
−α
+

b
+

−α4
+
−ε
+

ε
+

Figure 4: Positions in the interval [a, b] .

0
+

−ε
+

−ε+ δ

+

−ε+ 2δ

+

−δ
+

−2δ
+

χ−

χ̃−

Figure 5: Cut-off functions χ− and χ̃− in [−ε, 0] ⊂ [a, b] .

The form η1,− and η2,− in D(∆f,f−1([−ε,−δ]),h) are defined by

η1,− = d∗f,[−ε,−δ],h(∆f,f−1([−ε,−δ]),h)
−1((hdχ−) ∧ ωh)

η2,− = df,[−ε,−δ],h(∆f,f−1([−ε,−δ]),h)
−1(hi∇χ−ωh) .

Lemma 2.17 combined with dAg(x, y) ≥ |f(x)− f(y)| implies

‖df,h(χ−ωh − χ̃−(η1,− + η2,−)‖L2(f−δ
−ε )

+ ‖d∗f,h(χ−ωh − χ̃−(η1,− + η2,−)‖L2(f−δ
−ε )

≤ Õ(e−
ε−4δ
h )‖ωh‖L2(f−ε+2δ

−ε+δ ) + Cχ−

[
‖df,hωh‖L2(f−δ

−ε )
+ ‖d∗f,hωh‖L2(f−δ

−ε )

]
.

Because ∆f,f−1([a,b],h)ωh = λhωh with ‖ωh‖L2 = 1 , the Agmon estimate of Proposition 2.13
(or Hypothesis 2.16 for a general Lipschitz function), applied with Nt = f−1({a}) and Nn =
f−1({b}) , K = ∅ , U = f−1({0}) , dAg(x, U) ≥ |f(x)| , and rh = 0 implies

‖ωh‖L2(f−ε+2δ
−ε+δ ) = Õ(e−

ε−2δ
h ) , (46)

while we know

‖df,hωh‖2L2(f−δ
−ε )

+ ‖d∗f,hωh‖2L2(f−δ
−ε )
≤ ‖df,hωh‖2L2(fba)

+ ‖d∗f,hωh‖2L2(fba)
≤ e−α

h .

With α
4 > ε > 4δ , we have thus

‖df,h(χ−ωh − χ̃−(η1,− + η2,−)‖L2(f−δ
−ε )

+ ‖d∗f,h(χ−ωh − χ̃−(η1,− + η2,−)‖L2(f−δ
−ε )

= Õ(e−
2ε−6δ
h ) .

(47)
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A symmetric construction provides two cut-off functions χ+, χ̃+ ∈ C∞(f−1([δ, ε])) such that

supp χ+ ⊂ f−1([δ, ε− δ[) and χ+ ≡ 1 in f−1([δ, ε− 2δ]) ,

supp χ̃+ ⊂ f−1(]δ, ε]) and χ̃+ ≡ 1 in f−1([2δ, ε]) ,

and then two forms η1,+, η2,+ ∈ D(∆f,f−1([δ,ε]),h) such that

‖df,h(χ+ωh− χ̃+(η1,++η2,+)‖L2(fεδ )
+‖d∗f,h(χ+ωh− χ̃+(η1,++η2,+)‖L2(fεδ )

= Õ(e−
2ε−6δ
h ) . (48)

Take now χ ∈ C∞0 (f−1(]−ε+δ, ε−δ[; [0, 1]) which equals 1 in f−1([−ε+2δ, ε−2δ]) and coincides
with χ− (resp. χ+) in f

−ε+2δ
−ε+δ (resp. in f ε−δε−2δ) and set

vh = χωh − χ̃−(η1,− + η2,−)− χ̃+(η1,+ + η2,+) .

ε
+

−ε
+

−ε+ δ

+

−ε+ 2δ

+

ε− δ
+

ε− 2δ

+
0
+

δ

+

−δ
+

χ− χ+χ

Figure 6: Cut-off function χ in [−ε, ε] .

This form is close to ωh
∣∣
fε−ε

. In fact, write

vh − ωh
∣∣
fε−ε

= (χ− 1)ωh
∣∣
fε−ε
− χ̃−(η1,− + η2,−)− χ̃+(η1,+ + η2,+) ,

where, according to Lemma 2.17 and to the exponential decay estimate (46) (and its symmetric
version on [ε− 2δ, ε− δ]) ,

‖χ̃±ηi,±‖L2 = O(‖ωh‖supp dχ±) = Õ(e−
ε−2δ
h ) for i ∈ {1, 2}

and
‖(χ− 1)ωh‖L2(fε−ε)

= Õ(e−
ε−2δ
h ) ,

which implies

‖vh − ωh‖L2(fε−ε)
= Õ(e−

ε−2δ
h ) .

The form vh also satisfies, for d = df,h or d = d∗f,h ,

dvh = [d(χ−ωh − χ̃−(η1,− + η2,−))]
∣∣
f−δ
−ε

+ [dωh]
∣∣
fδ−δ

+ [d(χ+ωh − χ̃+(η1,+ + η2,+)]
∣∣
fεδ
.

Then, since vh belongs to D(∆f,f−1([−ε,ε],h)) by construction, it satisfies, by (47) and (48),

‖df,f−1([−ε,ε])hvh‖2 + ‖d∗f,f−1([−ε,ε]),hvh‖2 = Õ(e−
4ε−12δ
h ) .

We finally take δ = ε
12 for which the r.h.s. of the above relation is Õ(e−

3ε
h ) , with 3ε > 2ε . By

Step 2, this implies

lim
h→0

distL2(vh, ker(∆f,f−1([−ε,ε]),h))

‖vh‖L2

= 0 .
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But the Agmon estimates of Proposition 2.13 or Hypothesis 2.16 also imply

‖ωh‖L2(fε−ε)
= 1 + Õ(e−

ε
h ) and then ‖vh‖L2(fε−ε)

= 1+ Õ(e−
ε−2δ
h ) .

Denoting by F ⊂ L2(f ba) the subspace ker(∆
(p)
f,f−1([−ε,ε]),h) extended by 0 in f−ε

a ⊔ f bε , it then

follows from the preceding analysis that

lim
h→0

distL2(ωh , F ) = 0 .

Since dimF is finite and does not depend on h > 0 (see the second item in Remark 2.9), there
exists hα > 0 such that for every h ∈]0, hα[ ,

dimF
(p)

[0,e−
α
h ],[a,b],h

≤ dimF = dimker(∆
(p)
f,f−1([−ε,ε],h)) = dimker(∆

(p)
f,f−1([a,b]),h) ,

where the last equality follows from [−ε, ε] ⊂ [a, b] and [a, b]∩
{
c1, . . . , cNf

}
= {c̃1 = 0} (see (16)).

This implies that σ(∆
(p)
f,f−1([a,b],h)) ∩ [0, e−

α
h ] ⊂ {0} for h ∈]0, hα[ and this ends the proof.

3.3 Consequences

We still work under Hypothesis 3.1: f admits a unique “critical value” c̃1 ∈ [a, b] , a < c̃1 < b .
With the information of Proposition 3.2, the resolvent estimates of Subsection 2.3.1 lead easily
to similar estimates for spectrally defined operators. Finally we deduce other properties which
will be used in the induction process in terms of the number N of “critical values”.

3.3.1 Estimates for spectral operators

For a Borel set I ⊂ R we introduce the notation:

ΠI,[a,b],h = 1I(∆f,f−1([a,b]),h) . (49)

Proposition 3.5. Under Hypothesis 3.1 the spectral projection on the kernel Π{0},[a,b],h satisfies

Π{0},[a,b],h(x, y) = Õ(e−
|f(x)−f(y)|

h )

according to Definition 2.14.

Proof. It suffices to use the formula

Π{0},[a,b],h =
1

2iπ

∫

γh

(z −∆f,f−1[a,b],h)
−1 dz

for the suitable contour γh such that 1 = Õ(dist(γh, σ(∆f,f−1([a,b]),h))) , and then to apply
Proposition 2.19 with ε0 > 0 arbitrarily small. Such a contour is chosen as follows. For n ∈ N ,
Proposition 3.2 says

∃hn > 0 , ∀h ∈]0, hn[ , σ(∆f,f−1([a,b]),h) ∩ [0, e−
1

2(n+1)h ] = {0} ,

and the condition hn+1 < hn can be added . Take simply γh =
{
z ∈ C , |z| = e−

1
(n+1)h

}
for

h ∈ [hn+1, hn[ .
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The final result of this paragraph extends the exponential decay estimates of Proposition 2.13
(or Hypothesis 2.16), when f admits a single singular value c̃1 , under orthogonality conditions.
It will be referred to as the “orthogonality lemma”.
Because ∆f,f−1([a,b]),h has a discrete spectrum, the operator

∆f,f−1([a,b]),h

∣∣
ker(∆f,f−1([a,b]),h)

⊥ : ker(∆f,f−1([a,b]),h)
⊥ → ker(∆f,f−1([a,b]),h)

⊥ ,

is invertible. We now define (∆⊥
f,f−1([a,b]),h)

−1 by extension by 0 on ker(∆f,f−1([a,b]),h):

(∆⊥
f,f−1([a,b]),h)

−1 = 0︸︷︷︸
ker(∆f,f−1([a,b]),h)

⊥
⊕ (∆f,f−1([a,b]),h

∣∣
ker(∆f,f−1([a,b]),h)

⊥)
−1

︸ ︷︷ ︸
ker(∆f,f−1([a,b]),h)

⊥

(50)

Thus, the equality ωh = (∆⊥
f,f−1([a,b],h))

−1rh simply means that ωh is the unique solution in

ker(∆f,f−1([a,b]),h)
⊥ ∩D(∆f,f−1([a,b]),h) to

∆f,f−1([a,b],h)ωh = (1−Π{0},[a,b],h)rh .

Lemma 3.6. Under Hypothesis 3.1, the operator defined by (50) satisfies

(∆⊥
f,f−1([a,b]),h)

−1(x, y) = Õ(e−
|f(x)−f(y)|

h )

in the sense of Definition 2.14.

Proof. With A = ∆f,f−1([a,b]),h and Π{0},[a,b],h = 1{0}(A) write simply ωh = (∆⊥
f,f−1([a,b]),h)

−1rh
as

ωh = (1 −Π{0},[a,b],h)ωh = − 1

2iπ

∫

γh

A

z(z −A)ωh dz

= − 1

2iπ

∫

γh

1

z(z −A) (1−Π{0},[a,b],h)rh dz ,

where γh is the contour introduced in the proof of Proposition 3.5. To conclude, it then suffices
to combine the resolvent estimates of Proposition 2.19 with ε0 > 0 arbitrarily small, as used in
the proof of Proposition 3.5, and the result of Proposition 3.5.

3.3.2 Changing the interval [a, b]

For further applications, it is useful to specify the effect of changing b in f ba . Rough estimates
after a change of a and b are followed by more accurate estimates after a change of b only.
Remember that we work under Hypothesis 3.1 which contains Hypothesis 1.2 or for a more
general Lipschitz function Hypothesis 1.6 and Hypothesis 2.16.

Proposition 3.7. Assume Hypothesis 3.1 and a < a′ < c̃1 < b′ < b . The kernels F{0},[α,β],h =
ker(∆f,f−1([α,β]),h) = Ran Π{0},[α,β],h , α ∈ {a, a′} , β ∈ {b, b′} satisfy

~d(F{0},[a′,b′],h, F{0},[a,b],h) = ~d(F{0},[a,b],h, F{0},[a′,b′],h) = Õ(e−
min{b′−c̃1,c̃1−a′}

h ) ,

where the second inclusion of F{0},[a′,b′],h ⊂ L2(f b
′

a′ ) ⊂ L2(f ba) is implemented by the extension

by 0 on fa
′

a ∪ f bb′ .
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Proof. We already know dimF
(p)
{0},[a,b],h = dimF

(p)
{0},[a′,b′],h = β(p)(f b, fa) for p ∈ {0, . . . , d} .

From the remarks following Definition 3.3, it then suffices to prove

~d(F{0},[a,b],h, F{0},[a′,b′],h) = Õ(e−
min{b′−c̃1,c̃1−a′}

h ) .

For a normalized vector ψ ∈ F{0},[a,b],h the exponential decay estimate of Proposition 2.13 (or
Hypothesis 2.16 for a more general Lipschitz function f) with rh = 0 and λh = 0 says

‖e
|f(x)−c̃1|

h ψ‖W (fba)
= Õ(1) .

For any ε > 0 small enough, take χ ∈ C∞0 (f b
′−ε
a′+ε ; [0, 1]) such that χ ≡ 1 in a neighborhood of

f−1([a′+2ε, b′− 2ε]) . The form χψ then belongs to D(∆f,f−1([a′,b′]),h) with df,hψ = (hdχ)∧ψ ,
d∗f,hψ = −hi∇χψ , and therefore

〈χψ , ∆f,f−1([a′,b′]),h(χψ)〉 = ‖df,h(χψ)‖2L2 + ‖d∗f,h(χψ)‖2L2 = Õ(e−2
min{c̃1−a′,b′−c̃1}−2ε

h )

and ‖ψ − χψ‖2L2 = Õ(e−2
min{c̃1−a′,b′−c̃1}−2ε

h ) .

Because 0 is the only exponentially small eigenvalue of ∆f,f−1([a′,b′]),h , this implies

distL2(χψ , F{0},[a′,b′],h) = Õ(e−
min{c̃1−a′,b′−c̃1}−2ε

h ) .

If F = F{0},[a′,b′],h is considered as a subspace of L2(f ba) after extension by 0 on fa
′

a ∪ f bb′ , the
orthogonal projection ΠF : L2(f ba)→ F is given by ΠFu = Π{0},[a′,b′],h(u

∣∣
fb

′

a′
) again extended by

0 on fa
′

a ∪ f bb′ .
From ‖Π{0},[a′,b′],h‖ ≤ 1 and the exponential decay estimates for ψ , we deduce, by setting
E = F{0},[a,b],h ,

‖(ΠE −ΠFΠE)ψ‖ = ‖ψ −Π{0},[a′,b′],h(ψ
∣∣
fb

′

a′
)‖L2(fba)

≤ ‖ψ − χψ‖L2(fba)
+ ‖χψ −Π{0},[a′,b′],h(χψ)‖L2(fb

′

a′
) + ‖χψ − ψ

∣∣
fb

′

a′
‖L2(fb

′

a′
)

≤ Õ(e−
min(c̃1−a′,b′−c̃1)−2ε

h ) .

Since this holds for all ψ ∈ E , ‖ψ‖ = 1 , this proves ~d(E,F ) = Õ(e−
min(c̃1−a′,b′−c̃1)−2ε

h ) , and we
conclude by taking ε > 0 arbitrarily small.

The above result implies that the mapping Ah : F{0},[a,b],h → F{0},[a′,b′],h ⊂ L2(f ba) defined

by Ahψ = Π{0},[a′,b′],h(ψ
∣∣
fb

′

a′
)) satisfies

‖A∗
hAh − 1‖L(F{0},[a,b],h) = Õ(e−

min{c̃1−a′,b′−c̃1}
h )

and then

‖A∗
hAh − 1‖L(F{0},[a,b],h) + ‖AhA∗

h − 1‖L(F{0},[a′,b′],h)
= Õ(e−

min{c̃1−a′,b′−c̃1}
h ) .

A more accurate version can be given when a = a′ . Actually Õ(e−
min{c̃1−a′,b′−c̃1}

h ) is easily

replaced by Õ(e−
b′−c̃1
h ) but additionally a small change of Ah allows to improve the estimates

in f c̃1a .
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Proposition 3.8. Keep the same assumptions and conventions as in Proposition 3.7 with now
a = a′ . There exists a linear mapping Ah : F{0},[a,b],h → F{0},[a,b′],h such that

‖e
b′−f(x)+b′−c̃1

h [ψ −Ahψ]‖W (f
c̃1
a )

= Õ(1)‖ψ‖L2

holds for all ψ ∈ F{0},[a,b],h and

‖A∗
hAh − 1‖L(F{0},[a,b],h) + ‖AhA∗

h − 1‖L(F{0},[a′,b′],h)
= Õ(e−

b′−c̃1
h ) . (51)

Proof. The proof is modelled on Lemma 2.17.
Let ε ∈]0, b′−c̃14 [ , and let χ, χ̃ ∈ C∞(f−1([a, b′]); [0, 1]) satisfy

χ ≡ 1 in f b
′−2ε
a , χ ≡ 0 in f b

′

b′−ε ,

χ̃ ≡ 0 in f c̃1+εa , χ̃ ≡ 1 in f b
′

c̃1+2ε .

A form ψ ∈ F{0},[a,b],h = ker(∆f,f−1([a,b]),h) , ‖ψ‖L2 = 1 , satisfies df,hψ = 0 and d∗f,hψ = 0 in

f b
′

a but has not to belong to D(∆f,f−1([a,b′]),h) . We introduce

ψ̃ε = χψ − χ̃(η1 + η2) ,

where

η1 = d∗f,f−1([c̃1+ε,b′],h)
(∆f,f−1([c̃1+ε,b′],h))

−1(hdχ ∧ ψ)
= (∆f,f−1([c̃1+ε,b′],h))

−1[d∗f,h(hdχ ∧ ψ)]
and

η2 = −df,f−1([c̃1+ε,b′],h)(∆f,f−1([c̃1+ε,b′],h)
−1(hi∇χψ)

= −(∆f,f−1([c̃1+ε,b′],h)
−1[df,h(hi∇χψ)] .

Note that the last equality in each of the two above relations follows from the intertwining
relations of Proposition 2.8-4). This implies in particular that η1, η2 both belong to the do-
main D(∆f,f−1([c̃1+ε],b′),h) and hence satisfy the boundary conditions at {f = b′} . Since more-

over ψ ∈ D(∆f,f−1([a,b]),h) satisfies the boundary conditions at {f = a} , ψ̃ε then belongs to
D(∆f,f−1([a,b′],h)) .
Besides, the exponential decay estimates on ψ given by Proposition 2.13 (or Hypothesis 2.16)
imply

‖ψ‖W (fb
′

b′−2ε
) = Õ(e−

b′−c̃1−2ε
h )

and therefore

‖d∗f,h(hdχ ∧ ψ)‖L2 = Õ(e−
b′−c̃1−2ε

h ) , ‖df,h(hi∇χψ)‖L2 = Õ(e−
b′−c̃1−2ε

h ).

The exponential decay estimates stated in Proposition 2.15 (or Hypothesis 2.16) then imply

‖e
b′−f(x)+b′−c̃1−4ε

h η1‖W (fb
′
c̃1+ε)

+ ‖e
b′−f(x)+b′−c̃1−4ε

h η2‖W (fb
′
c̃1+ε)

= Õ(1) .

Set ωh = ψ̃ε −Π{0},[a,b′],hψ̃ε ∈ D(∆f,f−1([a,b′]),h) ∩ ker(∆f,f−1([a,b′]),h)
⊥ and compute

df,f−1([a,b′]),hωh = df,f−1([a,b′]),hψ̃ε
df,hψ=0

= −hdχ̃ ∧ (η1 + η2)

d∗f,f−1([a,b′]),hωh = d∗f,f−1([a,b′]),hψ̃ε
d∗f,hψ=0

= hi∇χ̃(η1 + η2)

∆f,f−1([a,b′]),hωh = rh = (1 −Π{0},[a,b′],h)rh

‖e
b′−f(x)+b′−c̃1−4ε

h rh‖L2(fb′a ) = Õ(1) .
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The “orthogonality lemma” (Lemma 3.6) with ωh = ψ̃ε −Π{0},[a,b′],hψ̃ε yields

‖e
b′−f(x)+b′−c̃1−4ε

h [ψ̃ε −Π{0},[a,b′],hψ̃ε]‖W (fb′a ) = Õ(1) .

By defining Aεhψ := Π{0},[a,b′],hψ̃ε ∈ F{0},[a,b′],h ⊂ L2(f ba) , it then follows from the latter relation

and from the relation ψ ≡ ψ̃ε in f c̃1+εa that

‖e
b′−f(x)+b′−c̃1

h [ψ −Aεhψ]‖W (f
c̃1
a )

= Õ(e
4ε
h )

and

‖ψ −Aεhψ‖L2(fba)
≤ ‖ψ − ψ̃ε‖L2(fba)

+ ‖ψ̃ε −Aεhψ‖L2(fb′a )

≤ ‖(1− χ)ψ‖L2(fb′a ) + ‖χ̃(η1 + η2)‖L2(fb′a ) + ‖ψ‖L2(fb
b′
) + ‖ψ̃ε −Aεhψ‖L2(fb′a )

= Õ(e−
b′−c̃1−4ε

h ) .

In order to conclude, it thus just remains to choose ε depending on h ∈]0, h0[ in a proper way.

To do so, note that when ε = 1
n+1 with n ∈ N large enough to ensure ε ∈]0, b′−c̃14 [ , there exists

hn > 0 such that for every h ∈]0, hn[ ,

‖e
b′−f(x)+b′−c̃1

h [ψ −Aεhψ]‖W (f
c̃1
a )
≤ e 5

(n+1)h and ‖ψ −Aεhψ‖L2(fba)
≤ e 5

(n+1)h e−
b′−c̃1
h .

The sequence (hn)n∈N can be chosen decreasing and it then suffices to define Ah := A
1

n+1

h when
h ∈ [hn+1, hn[ .

3.3.3 Interactions of solutions to df,hω = 0 with local spectral problems

We conclude this section with a result which will be used in the construction and analysis of
global quasimodes (see Section 6). It provides information about solutions to df,hω = 0 in f c̃1 ,
in particular how the exponential decay can be combined with local spectral information.

Proposition 3.9. Assume Hypothesis 3.1 and a0 ≤ a < c̃1 < b′ < b . Let δ(h) > 0 satisfy

limh→0 δ(h) = 0 and let the family (ωh)h∈]0,h0[ satisfy ωh ∈ W (f
c̃1−δ(h)
a ; ΛT ∗M) and df,hωh = 0

in f
c̃1−δ(h)
a0 with

‖e
f(x)−a0

h ωh‖W (f
c̃1−δ(h)
a )

= Õ(1) .

Take any cut-off function χ ∈ C∞0 (f−1([a, c̃1[); [0, 1]) such that χ ≡ 1 in a neighborhood of
{f = a} and assume that h > 0 is small enough so that supp χ ⊂ [a, c̃1 − δ(h)[ .
i) The form Π{0},[a,b],h[df,h(χωh)] = Π{0},[a,b],h[(hdχ)∧ωh] does not depend on the choice of the

cut-off function χ .

ii) If Π{0},[a,b],h[df,h(χωh)] = 0 , then there exists a family of similar cut-off functions χh such

that ω̃h = χhωh− d∗f,f−1[a,b],h(∆
⊥
f,f−1[a,b],h)

−1[(hdχh)∧ωh)] , where, in the r.h.s., χh in the
first term is extended by 1 and the second term is extended by 0 in faa0 , satisfies

ω̃h ≡ ωh in faa0 ,

df,hω̃h = 0 in f ba0 ,

and ‖e
f(x)−a0

h ω̃h‖W (fba)
= Õ(1) .

iii) If Ah : F{0},[a,b],h → F{0},[a,b′],h is the operator introduced in Proposition 3.8, then for any
ψ ∈ F{0},[a,b],h , the quantity 〈df,h(χωh) , ψ−Ahψ〉 does not depend on the choice of χ and

∀ψ ∈ F{0},[a,b],h , 〈df,h(χωh) , ψ −Ahψ〉 = Õ(e−
b′−a0+b′−c̃1

h )‖ψ‖L2 .
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Proof. i) Let χ1, χ2 be two cut-off functions like χ in our assumptions. Then χ1ωh − χ2ωh
belongs to D(df,f−1[a,b],h) and

df,f−1[a,b],h(χ1ωh − χ2ωh) = df,h(χ1ωh)− df,h(χ2ωh) .

We simply conclude with the commutation

Π{0},[a,b],hdf,f−1([a,b]),h = df,f−1([a,b]),hΠ{0},[a,b],h = 0 .

ii) When Π{0},[a,b],h[df,h(χωh)] = 0 , i) ensures that the latter relation is also satisfied if we

replace χ by χε with χε ≡ 1 in fa
′−ε

a and χε = 0 in f c̃1a′+ε for a′ = a+c̃1
2 and some ε ∈]0, c̃1−a2 [ .

The a priori estimates on ωh and supp (hdχε) ∧ ωh ⊂ f−1([a′ − ε, a′ + ε]) imply

‖((hdχε) ∧ ωh‖L2(fba)
= Õ(e−

a′−a0−ε
h ) .

The orthogonality lemma, Lemma 3.6, then implies that

ηε = d∗f,f−1([a,b]),h(∆
⊥
f,f−1([a,b],h))

−1[(hdχε) ∧ ωh]

(is well defined and) satisfies

‖e |f(x)−a′|−ε
h ηε‖L2(fba)

= Õ(e−
a′−a0−ε

h ) .

Since moreover df,h(χεωh) = (hdχε)∧ωh = (1−Π{0},[a,b],h)[(hdχε∧ωh)] belongs toD(df,f−1([a,b],h)) ,
we can write

df,f−1([a,b]),hηε = ∆f,f−1([a,b]),h(∆
⊥
f,f−1([a,b]),h)

−1((hdχε) ∧ ωh) = (hdχε) ∧ ωh .

Using in addition d∗f,f−1([a,b]),hηε = 0 , we deduce

‖e |f(x)−a′|−ε
h ηε‖W (fba)

= Õ(e−
a′−a0−ε

h ) .

If ηε denotes the extension by 0 in faa0 of ηε ∈ D(df,f−1([a,b],h)) , it still belongs toD(df,f−1([a0,b]),h)

and solves df,hηε = (hdχε)∧ ωh in faa0 ∪ f ba . We have thus proved that ω̃ε := χεωh− ηε satisfies

df,hω̃ε = 0 in f ba0 and ‖e
f(x)−a0

h ω̃ε‖W (fba)
= Õ(e

2ε
h ) .

We then end the proof by choosing conveniently ε depending on h ∈]0, h0[ as we did at the end
of the proof of Proposition 3.8: when ε = 1

n+1 , take hn > 0 such that

∀h ∈]0, hn[ , ‖e
f(x)−a0

h ω̃ε‖W (fba)
≤ e 3

(n+1)h

with (hn)n∈N decreasing, and choose χh := χ 1
n+1

when h ∈ [hn+1, hn[ .

iii) Since

〈df,h(χωh) , ψ −Ahψ〉 = 〈Π{0},[a,b],h[df,h(χωh)] , ψ〉 − 〈Π{0},[a,b′],h[df,h(χωh)] , Ahψ〉

does not depend on χ , we may take the preceding χ = χε . Owing to Proposition 3.8, we deduce

|〈df,h(χεωh) , ψ −Ahψ〉| ≤ ‖(hdχε) ∧ ωh‖L2(fa
′+ε

a′−ε
)
‖ψ −Ahψ‖L2(fa

′+ε

a′−ε
)

= Õ(e−
a′−a0−ε

h )× Õ(e−
b′−a′−ε+b′−c̃1

h ) ‖ψ‖L2 .

Since this holds for every ε > 0 small enough, this yields the result.
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4 Rough estimates for several “critical values”

In this section, we give first estimates for the exponentially small eigenvalues of ∆f,f−1([a,b],h) .
We work under the following assumption which, like Hypothesis 3.1 in Section 3, gathers Hy-
pothesis 1.2 or (Hypothesis 1.6 and Hypothesis 2.16), and specify some notations.

Hypothesis 4.1. The function f satisfies Hypothesis 1.2, or more generally Hypothesis 1.6 and
Hypothesis 2.16, and we choose ηf such that

0 < ηf <
1

2
min

1<n≤Nf
|cn − cn−1| .

In addition, a, b , −∞ ≤ a < b ≤ +∞ , are not “critical values” of f : a, b 6∈
{
c1, . . . , cNf

}
.

4.1 Bar code associated with f

We refer to Appendix B for details and simply recall the useful notations. We already mentionned
in Subsection 1.2 that Hypothesis 1.6 implies Hypothesis B.1 in the beginning of Appendix B
(this is actually proved in Subsection 8.3).
Under the assumption that M is compact and f has a finite number of “critical values” c1 <
. . . < cNf , there is a bar code B = B(f) = ([aα, bα[)α∈A where A is finite, −∞ < aα < bα ≤ +∞ ,

aα ∈
{
c1, . . . , cNf

}
, bα ∈

{
c2, . . . , cNf ,+∞

}
. The set A is graded according to A = ⊔dimM

p=0 A(p)

so that, for α ∈ A(p) , the grading of endpoints of the corresponding bar is given by [aα, bα[=

[a
(p)
α , b

(p+1)
α [ . It contains all the information about the relative cohomology groups H(f b, fa;R)

when a < b , a, b 6∈
{
c1, . . . , cNf

}
.

More precisely here is the situation when a < b are not “critical values”. We forget the bars with
no end point in ]a, b[ , and among the remaining ones we distinguish the ones with two endpoints
in ]a, b[:

A∗(a, b) =
{
α ∈ A∗, [a∗α, b

∗+1
α [∩]a, b[ 6∈ {∅, ]a, b[}

}
, (52)

A∗
c(a, b) =

{
α ∈ A∗(a, b), [a∗α, b

∗+1
α [∩]a, b[ relatively compact in ]a, b[

}
, (53)

α ∈ A∗(a, b)⇔ a < a∗α < b or a < b∗+1
α < b ,

α ∈ A∗
c(a, b)⇔ a < a∗α < b∗+1

α < b .

We now partition the endpoints of the bars, multiple value being distinguished by the index
α ∈ A(a, b) , according to

X ∗(a, b) = {(α, a∗α) , α ∈ A∗
c(a, b)} (54)

Y∗(a, b) =
{
(α, b∗α), α ∈ A∗−1

c (a, b)
}

(55)

Z∗(a, b) = {(α, a∗α) , α ∈ A∗(a, b) \A∗
c(a, b) , a < aα < b} (56)

⊔
{
(α, b∗α) , α ∈ A∗−1(a, b) \A∗−1

c (a, b), a < b∗α < b
}
,

J ∗(a, b) = X ∗(a, b) ⊔ Y∗(a, b) ⊔ Z∗(a, b) . (57)

Those definitions are illustrated in Figure 7: the degrees of the bars and of the corresponding
endpoints are indicated. The bars in Ac(a, b) are the ones with two endpoints in ]a, b[ and the
critical values lying in ]a, b[ are relabelled c̃1 < . . . < c̃N .
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killed in ]a, b[

(p−1)

(p)

(p−1)

(p)

(p−1)

(p)

(p−1)

Z(p)

X (p) Y(p+1)

X (p−1) Y(p)

X (p) Y(p+1)

X (p−1) Y(p)

Z(p)

Z(p−1)

c̃N+1

+
a
+

b
+

c̃1
+

c̃2
+

c̃N
+

•

•
•

•
•

•
•

Figure 7: X ∗ = X ∗(a, b) (lower) , Y∗ = Y∗(a, b) (upper) , Z∗ = Z∗(a, b) (lonely)

Then the relative Betti number are given by

β(p)(f b, fa) = dimHp(f b, fa;R) = dimF{0},[a,b],h = ♯Z(p)(a, b) , (58)

which counts the number of degree p endpoints of the bar code lying lonely in ]a, b[ .
The rest of this section shows that there are exactly ♯J (p)(a, b) exponentially small eigenvalues

of ∆
(p)
f,f−1([a,b]),h , and provides a priori estimates on the size of the non zero ones.

4.2 Counting exponentially small eigenvalues

Proposition 4.2. Under Hypothesis 4.1 and with the notations of Subsection 4.1, the exponen-
tially small eigenvalues of ∆f,f−1([a,b]),h are counted according to:

dimker(∆
(p)
f,f−1([a,b],h)) = ♯Z(p)(a, b) (59)

dimF
(p)
[0,õ(1)],[a,b],h = ♯J (p)(a, b) = ♯X (p)(a, b) + ♯Y(p)(a, b) + ♯Z(p)(a, b) , (60)

where the second quality holds for h ∈]0, hε[ when õ(1) is replaced by e−2
ηf−2ε

h for ε ∈]0, ηf2 [ .

Note that the right-hand side of (60) is nothing but the total number of degree p endpoints

of the bar code lying in ]a, b[ . This counting also says that the õ(1) eigenvalues of ∆
(p)
f,f−1([a,b]),h

are actually Õ(e−
2ηf
h ) .

Proof. Equality (59), which was already stated in Subsection 4.1, is proved in Appendix B.
Equality (60) relies on exponential decay estimates and on the result in the case

{
c1, . . . , cNf

}
∩

[a, b] = {c̃1} ⊂]a, b[ stated in Proposition 3.2.
The “critical values” of f lying in ]a, b[ are relabelled as a < c̃1 < . . . < c̃N < b according to

]a, b[∩
{
c1, . . . , cNf

}
= [a, b] ∩

{
c1, . . . , cNf

}
= {c̃1, . . . , c̃N} .

Consider the disjoint union Ω:

Ω =

N⊔

j=1

f−1([c̃j − ηf , c̃j + ηf ] ∩ [a, b])
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for which the associated boundary Witten Laplacian is

∆f,Ω,h =

N⊕

j=1

∆f,f−1([a,b]∩[c̃j−ηf ,c̃j+ηf ]),h (61)

By Proposition 3.2, we know that the õ(1) eigenvalues of ∆f,Ω,h are equal to 0 . For ε ∈]0, ηf/2[ ,
take χ ∈ C∞(Ω; [0, 1]) such that χ(x) = 1 if min1≤j≤N |f(x) − c̃j | ≤ ηf − ε and χ(x) = 0 if

min1≤j≤N |f(x) − c̃j | ≥ ηf − ǫ/2 . For any ω ∈ ker(∆
(p)

f,Ω,h
) , ‖ω‖L2 = 1 , Proposition 2.13 (or

Hypothesis 2.16) gives

df,h(χω) = (hdχ) ∧ ω = Õ(e−
ηf−ε

h ) and d∗f,h(χω) = hi∇χω = Õ(e−
ηf−ε

h ) .

Meanwhile our choice of χ ensures χω ∈ D(∆
(p)
f,f−1([a,b]),h) with now

‖df,f−1([a,b]),h(χω)‖2L2 + ‖d∗f,f−1([a,b]),h(χω)‖2L2 ≤ Õ(e−2
ηf−ε

h ) . (62)

Since ‖χω − ω‖L2 = Õ(e−
ηf−ε

h ) , the spectral decomposition of ∆
(p)
f,f−1([a,b]),h ensures

~d(ker(∆
(p)

f,Ω,h
), F

(p)

[0,e−2
ηf−2ε

h ],[a,b],h

) = Õ(e−
ε
h )

and then (see indeed the lines following Definition 3.3)

dim(ker(∆
(p)

f,Ω,h
)) ≤ dimF

(p)

[0,e−2
ηf−2ε

h ],[a,b],h

, (63)

for h ∈]0, hε[ with hε > 0 small enough.

Reciprocally, when ω ∈ F (p)

[0,e−
ε
h ],[a,b],h

, the exponential decay estimates of Proposition 2.13 (or

Hypothesis 2.16) lead again to

(hdχ) ∧ ω = Õ(e−
ηf−ε

h ) and hi∇χω = Õ(e−
ηf−ε

h )

and then to
‖df,h(χω)‖2L2 + ‖d∗f,h(χω)‖2L2 ≤ Õ(e−

ε
h )

with now χω ∈ D(∆
(p)

f,Ω,h
) . Again, with ‖χω − ω‖L2 = Õ(e−

ηf−ε

h ) , the spectral decomposition

of ∆
(p)

f,Ω,h
, with 1

[0,e−
ε
2h ]

(∆
(p)

f,Ω,h
) = 1{0}(∆

(p)

f,Ω,h
) , leads to

~d(F
[0,e−

ε
h ],[a,b],h

, ker(∆
(p)

f,Ω,h
)) = Õ(e−

ε
4h )

and then to
dimF

(p)

[0,e−
ε
h ],[a,b],h

≤ dimker∆
(p)

f,Ω,h
≤ dimF

(p)

[0,e−2
ηf−2ε

h ],[a,b],h

,

for h ∈]0, hε[ , hε > 0 small enough, where the last inequality follows from (63).
In particular, we deduce that for every ε > 0 small enough:

F
(p)

[0,e−
ε
h ],[a,b],h

= F
(p)

[0,e−2
ηf−2ε

h ],[a,b],h

(64)

and
dimF

(p)

[0,e−2
ηf−2ε

h ],[a,b],h

= dimker∆
(p)

f,Ω,h
.
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We conclude with

dimker∆
(p)

f,Ω,h
=

N∑

j=1

β(p)(fmin(b,c̃j+ηf ), fmax(a,c̃j−ηf ))

=

N∑

j=1

♯Z(p)(max(a, c̃j − ηf ),min(b, c̃j + ηf )) = ♯J (p)(a, b) ,

the total number of degree p endpoints of the bar code lying in ]a, b[ .

We have also proved the following result.

Proposition 4.3. In the framework of Proposition 4.2 and when ∆f,Ω,h is the operator defined
in (61), the following inequality holds:

~d(F
(p)
[0,õ(1)],h, ker(∆

(p)

f,Ω,h
)) + ~d(ker(∆

(p)

f,Ω,h
), F

(p)
[0,õ(1)],h) = Õ(e−

ηf
h ) .

Proof. By (64) we know that for ε > 0 small enough

~d(ker(∆
(p)

f,Ω,h
), F

(p)

[0,e−
ε
h ],h

) = ~d(ker(∆
(p)

f,Ω,h
), F

(p)

[0,e−
2ηf−2ε

h ],h

) ,

while we are in cases with ~d(A,B) = ~d(B,A) < 1 by the result of Proposition 4.2 . From (62)
we deduce

~d(ker(∆
(p)

f,Ω,h
), F

(p)

[0,e−
ε
h ],h

) = Õ(e−
ηf−3ε/2

h ) ,

which yields the result.

The result of Proposition 4.2 can be translated in terms of singular values of df,f−1([a,b]),h .
Remember that df,f−1([a,b]),h and d∗f,f−1([a,b]),h are endomorphisms of F[0,C],[a,b],h such that

∆f,f−1([a,b]),h

∣∣
F[0,C],[a,b],h

= δ[0,C],[a,b],hδ
∗
[0,C],[a,b],h + δ∗[0,C],[a,b],hδ[0,C],[a,b],h

with δ[0,C],[a,b],h = df,f−1([a,b]),h

∣∣
F[0,C],[a,b],h

.

Proposition 4.4. Under Hypothesis 4.1 and with the notations of Subsection 4.1 , the number
of õ(1) non zero singular values of δ[0,õ(1)],[a,b],h = df,f−1([a,b]),h

∣∣
F[0,õ(1)],[a,b],h

is ♯Ac(a, b) for h > 0

small enough. More precisely “h > 0 small enough” means h ∈]0, hε[ for some hε > 0 when õ(1)
is replaced by e−

ε
h , ε ∈]0, ηf2 [ .

Proof. Eigenvalues and singular values are counted with multiplicities. The non zero singular
values of δ = δ

[0,e−
ε
h ],[a,b],h

are the square roots of the non zero eigenvalues of δ∗δ and coincide

with the non zero singular values of δ δ∗ , i.e. the square roots of the non zero eigenvalues of δ δ∗ .
By Hodge decomposition, the number of non zero eigenvalues of ∆f,f−1([a,b]),h

∣∣
F

[0,e
− ε
h ],[a,b],h

=

δ δ∗ + δ∗δ is twice the number of non zero singular values of δ . For h ∈]0, hε[ , Proposition 4.2
gives

dimF
[0,e−

ε
h ],[a,b],h

= ♯X (a, b) + ♯Y(a, b) + ♯Z(a, b)
= 2♯Ac(a, b) + dim(ker(∆f,f−1([a,b]),h)) ,

which ends the proof.
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4.3 Rough exponential estimates

The upper bound on the õ(1) eigenvalues of ∆f,f−1([a,b]),h contained in Proposition 4.2 can be
completed by a rough lower bound for the non zero ones.

Proposition 4.5. Assume Hypothesis 4.1 and denote a < c̃1 . . . < c̃N < b the “critical values”

of f in ]a, b[ . There exist r(h) > 0 satisfying e−2
max{b−c̃1,c̃N−a}

h = Õ(r(h)) and R(h) = Õ(e−2
ηf
h )

such that the õ(1) non zero eigenvalues λ(h) of ∆f,f−1([a,b]),h all belong to [r(h), R(h)] for h ∈
]0, h0[ , h0 > 0 small enough.

Proof. The upper bound R(h) = Õ(e−2
ηf
h ) is given by Proposition 4.2.

For the lower bound, it suffices to check that if λ(h) ∈ σ(∆f,f−1([a,b]),h) satisfies λ(h) ≤
e−2

max{b−c̃1,c̃N−a}+c

h for some fixed c ∈]0,min {c̃1 − a, b− c̃N} [ , then there exists hc > 0 such
that λ(h) = 0 for all h ∈]0, hc[ . The proof follows the same arguments as those of Step 1 in
Subsection 3.2.
Let us proceed by contradiction and assume that there exists a decreasing sequence (hn)n∈N

tending to 0 such that, for every n ∈ N , ∆f,f−1([a,b]),hn admits an eigenvalue λ(hn) in the

interval ]0, e−2
max{b−c̃1,c̃N−a}+c

hn ] . Let then, for every n ∈ N , ωn ∈ D(∆f,f−1([a,b]),hn) satisfy
‖ωn‖L2 = 1 and ∆f,f−1([a,b]),hnωn = λ(hn)ωn . From the Agmon estimates of Proposition 2.13
(or Hypothesis 2.16) with U ⊂ f−1({c̃1, . . . , c̃N}) , we know that

∀δ > 0 , ∃hδ > 0 , ∀hn ∈]0, hδ[ , ‖e
f−c̃1
hn ωn‖L2(fbc̃1−δ)

≥ e−
δ
hn

2

while ‖df,hnωn‖2L2(fb
c̃1−δ)

+ ‖d∗f,hnωn‖2L2(fb
c̃1−δ)

≤ e−
2(b−c̃1)+c

hn .

By setting ω̃n = e
f−c̃1
hn χωn , with χ ∈ C∞(f−1([a, b]); [0, 1]) , χ ≡ 1 in f bc̃1− c

4
and χ ≡ 0 in f c̃1−c

′

a

with c′ ∈ ( c4 ,
c
2 ) , we get, for every n ∈ N ,





ω̃n ∈ D(∆0,f−1([c̃1−c′,b]),1) ,
‖d0,f−1([c̃1−c′,b]),1ω̃n‖2L2 = Õ(e−

c
hn )

lim infn→+∞ hn log ‖ω̃n‖L2 ≥ 0 .

c1
+

c1 − c
2

+

c1 − c
4

+
a
+

cN
+

b

+

χ

Figure 8: The cut-off χ in the interval [a, b] .

Besides, the Agmon estimates of Proposition 2.13 (or Hypothesis 2.16) with U ⊂ f−1({c̃1, . . . , c̃N})
also imply

lim sup
n→+∞

hn log ‖ω̃n‖L2 ≤ c̃N − c̃1 .

Hence, by extracting, we can assume that there exists ℓ ∈ [0, 2(c̃N − c̃1)] such that

lim
n→+∞

hn log ‖ω̃n‖L2 =
ℓ

2
.

47



The normalized form un = ω̃n
‖ω̃n‖L2

thus belongs toD(∆0,f−1([c̃1−c′,b]),1) and ‖dun‖2L2 = Õ(e−
c+ℓ
hn ) .

By Hodge decomposition (see Step 1 in Subsection 3.2 for details), this implies that ηn belongs
to ker(d0,f−1([c̃1−c′,b]),1) and

‖un − ηn‖L2(fb
c̃1−c′

) = Õ(e−
c+ℓ
2hn ) .

Moreover, extending ηn by 0 in f c̃1−c
′

a gives ηn ∈ D(d0,f−1([a,b]),1) and therefore e−
f−c̃1
hn ηn ∈

ker(df,f−1([a,b]),hn) with

‖χωn − ‖ω̃n‖L2e−
f−c̃1
hn ηn‖L2(fba)

= Õ(e−
c/2−c′

hn ) .

With ‖ωn − χωn‖L2 = Õ(e−
c

4hn ) and c′′ = min {c/2− c′, c/4} , we deduce

distL2(ωh, ker(df,f−1([a,b]),hn)) = Õ(e−
c′′

hn ) →
h→0

0 .

By duality, starting from ‖d∗f,hωhn‖2L2 ≤ e−
2(c̃N−a)+c

hn and extracting again, we also get

lim
h→0

distL2(ωhn , ker(d
∗
f,f−1([a,b],hn)

)) = 0

and Hodge decomposition implies λ(hn) = 0 for n large enough (see indeed the end of Step 1 in
Subsection 3.2), which leads to a contradiction and achieves the proof of Proposition 4.5.

Remark 4.6. The lower bound for the non zero eigenvalues is not optimal at this level. Actu-
ally, generalizing Step 3 of Subsection 3.2 requires the propagation of exponential decay through

“critical values”, which is not true in general. This will be refined into e−2
c̃N−c̃1
h = Õ(r(h)) at

the end, when global quasimodes for df,f−1([a,b],h) will have been constructed by induction on N .
Like e.g. in [HKN, HeNi, Lep1, LNV], we follow the strategy which consists in studying carefully
the singular values of df,f−1([a,b]),h , which brings more flexibility than studying the tricky problem
of interacting wells for ∆f,f−1([a,b]),h in the spirit of [HeSj2, HeSj3].

Proposition 4.7. Assume Hypothesis 4.1, let a < c̃1, . . . < c̃N < b be the “critical values”
of f in ]a, b[ and let R(h) be the function of h ∈]0, h0[ given by Proposition 4.5 such that
σ(∆f,f−1([a,b]),h) ∩ [0, õ(1)] ⊂ [0, R(h)] . The projection Π[0,R(h)],[a,b],h = 1[0,R(h)](∆f,f−1([a,b]),h)
satisfies

Π[0,R(h)],[a,b],h = Õ(e−
|f(x)−f(y)|

h )

in the sense of Definition 2.14.

Proof. By Proposition 4.5, we know that R(h) = Õ(e−
2ηf
h ) . Set c̃0 = a and c̃N+1 = b and take

any ε0 ∈]0, ηf8 [ , where ηf is defined in Hypothesis 4.1. Here the first assumption of Proposi-
tion 2.20 is obviously satisfied:

]a, b[∩
{
c1, . . . , cNf

}
= {c̃1, . . . , c̃N} ⊂ ⊔Nn=1]c̃n −

ε0
16
, c̃n +

ε0
16

[ .

For ∆n = ∆f,f−1([c̃n−1+(1−δn,1)ε0,c̃n+1−(1−δn,N )ε0]) , n ∈ {1, . . . , N} , we know moreover that

σ(∆n) ∩ [0, e−
ε0
h ] ⊂ {0} ⊂ [0, e−

4ε0
h ] ,

owing to Proposition 3.2 because we are in the case [c̃n−1 + (1 − δn,1)ε0, c̃n+1 − (1 − δn,N )ε0] ∩{
c1, . . . , cNf

}
= {c̃n} .

Then Proposition 2.20 says: for some N ∈ N∗ ,

(∆f,f−1([a,b]),h − z)−1(x, y) = Õ(e−
|f(x)−f(y)|

h +
3Nε0
h )
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uniformly w.r.t z , |z| = e−
2ε0
h . But our choice of ε0 , ε0 > 0 and 4ε0 ≤ ηf

2 , and

σ(∆f,f−1([a,b]),h) ∩ [0, e−
ε0
h ] ⊂ [0, R(h)] ⊂ [0, e−

ηf
h ] ⊂ [0, e−

4ε0
h ]

for h ∈]0, h0[ , h0 small enough, imply

Π[0,R(h)],[a,b],h =
1

2iπ

∫

|z|=e−
2ε0
h

(z −∆f,f−1([a,b]),h)
−1 dz .

This proves

Π[0,R(h)],[a,b],h(x, y) = Õ(e−
|f(x)−f(y)|

h +
3Nε0
h ) ,

and we conclude by choosing ε0 > 0 arbitrarily small.

5 Singular values

Singular values of compact operators are much more flexible than eigenvalues because they allow
to work with two different orthonormal bases instead of one. Ky Fan inequalities recalled below
provide uniform multiplicative errors for all the singular values after perturbing the orthonormal
bases or moving the initial and final spaces. We recall those facts in a convenient way and
complete those results by some refined analysis of additive error terms. This is a better rewriting
of techniques already used e.g. in [HKN, HeNi, Lep1, LNV]
The singular values of a compact operator B : E 7→ F , E and F Hilbert spaces, are the
square roots of the eigenvalues of B∗B (and BB∗) and they are labelled in the decreasing order
µ1(B) = ‖B‖ ≥ . . . ≥ µℓ(B) ≥ µℓ+1(B) . . . with limℓ→∞ µℓ(B) = 0 after possibly completing
the sequence by a sequence of 0’s . They satisfy µℓ(B) = µℓ(B

∗) . With this order, the min-max
principle becomes a max-min principle applied to B∗B and gives:

µℓ(B) = min
dimV=ℓ−1

max
u∈V ⊥\{0}

‖Bu‖
‖u‖ . (65)

Note also that the definition also provides the existence of two Hilbert bases (ϕj)j∈J , J ⊃ J1 =
{ℓ ∈ N \ {0} , µℓ(B) > 0} , of E , and (ψk)k∈K of F , and a one-to-one mapping j ∈ J1 → k(j) ∈ K
such that

Bϕℓ = µℓ(B)ψk(ℓ) and then µℓ(B) = ‖Bϕℓ‖ = 〈ψk(ℓ) , Bϕℓ〉 if ℓ ∈ J1
Bϕj = 0 if j ∈ J \ J1 .

When E,F,G are three Hilbert spaces and A : E → F , B : F → F , and C : F → G , the
singular values of B also satisfy

∀ℓ ∈ N \ {0} , µℓ(CBA) ≤ ‖C‖µℓ(B)‖A‖ .

In order to handle accumulated multiplicative errors, it is convenient to use the function

τ :
∞⊔
n=1

[0, 1[n→]0,+∞[ , τ(ε1, . . . , εn) =

n∏

k=1

1 + εk
1− εk

. (66)

In particular we have the implications i) ⇒ ii) ⇒ iii) for

i) max(‖CC∗ − IdG‖, ‖C∗C − IdF ‖) ≤ ε1 < 1

and max(‖AA∗ − IdF ‖, ‖A∗A− IdE‖) ≤ ε2 < 1 ;

ii) max(‖C‖, ‖C−1‖) ≤ τ(ε1)1/2 , max(‖A‖, ‖A−1‖) ≤ τ(ε2)1/2 ;
iii) ∀j ∈ N \ {0} , τ(ε1, ε2)−1/2µj(B) ≤ µj(CBA) ≤ τ(ε1, ε2)1/2µj(B) .
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The first implication is a consequence of the following operator inequalities

(1− ε ≤ |A|2 = A∗A ≤ 1 + ε)⇒
(
τ(ε)−1/2 ≤ (1− ε)1/2 ≤ |A| ≤ (1 + ε)1/2 ≤ τ(ε)1/2

)
.

Definition 5.1. Let H,H′ be two Hilbert spaces and let ε ∈ [0, 1[ .
An operator A : H → H′ will be said ε-unitary if it satisfies the condition

max(‖A∗A− IdH‖, ‖AA∗ − IdH′‖) ≤ ε ,

used in i) just above.
A family of vectors (vj)j∈J is an ε-orthonormal basis of H if

• it is total in H , Span(vj , j ∈ J ) = H ,

• ‖(〈vj , vk〉)j,k∈J − Idℓ2(J )‖L(ℓ2(J )) ≤ ε .
Two closed subspaces H1,H2 of H provide an ε-orthogonal decomposition of H if H = H1 ⊕H2

and ‖ΠH1ΠH2‖ ≤ ε .
Before we review applications to singular values, notice the following properties.

Lemma 5.2. Let H , H′ be Hilbert spaces and let ε ∈ [0, 1[ .

a) For an operator A : H → H′ , the condition ‖A∗A− IdH‖ ≤ ε is satisfied iff |A| : H → H is
ε-unitary and iff IdH : (H, 〈 , 〉)→ (H, 〈 , |A|2 〉) is ε-unitary.

b) An operator A : H → H′ is ε-unitary iff

‖A∗A− IdH‖ ≤ ε and Ran A = H′ .

c) A family (vj)j∈J is an ε-orthonormal basis of H′ iff the linear map A : ℓ2(J )→ H′ given by
A((aj)j∈J ) =

∑
j∈J ajvj is ε-unitary.

d) If the decomposition H′ = H1 ⊕ H2 is ε-orthogonal and (ϕj′ )j′∈J ′ and (ϕj′′ )j′′∈J ′′ are or-
thonormal bases of H1 and H2 respectively, then (ϕj)j∈J ′∪J ′′ is an ε-orthonormal basis

of H′ . Additionally, the identity map induces an ε-unitary map from H′ = H1

⊥
⊕H2 to

H′ = H1⊕H2 , where the first space is endowed with the scalar product 〈 , 〉
H1

⊥
⊕H2

making

(ϕj)j∈J ′∪J ′′ orthonormal, i.e. defined by

∀u1, v1 ∈ H1 , ∀u2, v2 ∈ H2 , 〈u1 + u2 , v1 + v2〉H1

⊥
⊕H2

:= 〈u1 , v1〉+ 〈u2 , v2〉 .

Proof. a) The first statement is a consequence of |A|∗ = |A| and |A|2 = A∗A . The second one
is deduced from Id∗ = |A|2 when the identity operator maps H with the scalar product 〈u, v〉 to
itself with the scalar product 〈u , |A|2v〉 .
b) It suffices to notice that the condition ‖A∗A− IdH‖ ≤ ε implies

∀u ∈ H ,
√
1− ε‖u‖ ≤ ‖Au‖ ≤

√
1 + ε‖u‖ .

Thus A is one-to-one with a closed range which has to be H′ by the second assumption and A ,
A∗ , and AA∗ are invertible. Hence the spectrum of AA∗ coincides with the spectrum of A∗A by
A∗(AA∗−λIdH′) = (A∗A−λIdH)A∗ for λ ∈ C . The spectral theorem yields ‖AA∗− IdH′‖ ≤ ε .
c) is a particular case of b) if we notice that ‖A∗A − IdH‖ = ‖(〈vj , vk〉)j,k∈J − Idℓ2(J )‖ with

H = ℓ2(J ) , while the condition Ran A = H′ becomes equivalent to the totality of the family
(vj)j∈J .
d) The family (ϕj)j∈J ′∪J ′′ is clearly total in H′ and, defining the map A : H → H′ with
H = ℓ2(J ) as in c), we get

A∗A− Idℓ2(J ) =

(
0 B
B∗ 0

)
with B = (〈ϕk , ϕj〉)j∈J ′′,k∈J ′ .
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To prove that (ϕj)j∈J ′∪J ′′ is an ε-orthonormal basis of H′ , it is then enough to prove that
‖B‖L(ℓ2(J ′′),ℓ2(J ′)) ≤ ε , which follows from the observation that B is unitarily equivalent to
ΠH1 |H2 : H2 → H1 .
For the last statement, it suffices to note that the mapping

u ∈
(
H1

⊥
⊕H2 , 〈 , 〉H1

⊥
⊕H2

)
7−→ (〈ϕj , u〉H1

⊥
⊕H2

)j∈J ′∪J ′′ ∈ ℓ2(J ′ ∪ J ′′)

is unitary and to apply c).

Below are consequences of those notions on singular values.

Proposition 5.3. Let E,F,G be three closed subspaces of a Hilbert spaceH and assume ~d(E,F )+
~d(F,E) = ε1 < 1 and ~d(F,G) + ~d(G,F ) = ε2 < 1 . Let B : F → F be a bounded operator and
let ΠF ,ΠG be the orthogonal projections on F and G . The operator B̃ = ΠGBΠF

∣∣
E
: E → G is

compact iff B is compact and in this case:

∀ℓ ∈ N \ {0} , τ(ε21, ε
2
2)

−1/2 µℓ(B̃) ≤ µℓ(B) ≤ µℓ(B̃) τ(ε21, ε
2
2)

1/2 .

Proof. Call AFE = ΠFΠE + (1−ΠF )(1 −ΠE) , with 1 = IdH , and compute

A∗
FEAFE − 1 = ΠEΠF +ΠFΠE −ΠE −ΠF .

We deduce that for all u ∈ H ,

〈u , (A∗
FEAFE − 1)u〉 = 2Re 〈ΠEu , ΠFu〉 − ‖ΠEu‖2 − ‖ΠFu‖2

= −‖(ΠE −ΠF )u‖2

≥ −2‖(ΠE −ΠF )ΠEu‖2 − 2‖(ΠE −ΠF )(1 −ΠE)u‖2

≥ −2‖(ΠE −ΠFΠE)u‖2 − 2‖(ΠF −ΠFΠE)u‖2

≥ −2
(
~d(E,F )2 + ~d(F,E)2

)
‖u‖2 .

Since 0 ≤ ε1 < 1 , we know that ~d(E,F ) = ~d(F,E) = ε1
2 (see indeed the lines following

Definition 3.3) and we have thus proved the operator inequalities

0 ≤ (IdH −A∗
FEAFE) ≤ ε21IdH .

Owing to the spectral theorem, it follows

‖A∗
FEAFE − IdH‖ ≤ ε21 ,

and by symmetry, since A∗
FE = AEF , we also get ‖AFEA∗

FE − Id‖ ≤ ε21 . The operator AFE is
thus ε21-unitary, and similarly AGF is ε22-unitary.
Finally, B̃ = ΠGBΠF

∣∣
E
: E → G is nothing but the nonzero diagonal block of

AGF BAFE : H = E
⊥
⊕E⊥ −→ H = G

⊥
⊕G⊥ .

It is thus compact if and only if B is compact. Moreover, up to some additional irrelevant
zeros, the singular values of B̃ are the ones of AGFBAFE and the result follows from the general
statement i) ⇒ iii) above.

Proposition 5.4. Let E,F be two Hilbert spaces, B : E → F be a bounded operator and let
ε1, ε2 ∈]0, 1[ .
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a) When (ϕj)j∈J is an ε1-orthonormal basis in E and (ψk)k∈K is an ε2-orthonormal in basis

F , let B̃ : ℓ2(J )→ ℓ2(K) be defined by B̃δj =
∑
k∈K〈ψk , Bϕj〉δk . Then B̃ is compact iff

B is compact, and in this case their singular values satisfy

∀ℓ ∈ N \ {0} , τ(ε1, ε2)
−1/2µℓ(B̃) ≤ µℓ(B) ≤ µℓ(B̃)τ(ε1, ε2)

1/2 . (67)

b) Assume that E = E′ ⊕ E′′ is an ε1-orthogonal decomposition and F = F ′ ⊕ F ′′ is an ε2-
orthogonal decomposition such that BE′ ⊂ F ′ and BE′′ ⊂ F ′′ , then the relation (67) holds

with B̃ = ΠF ′B
∣∣
E′

⊥
⊕ΠF ′′B

∣∣
E′′ : E

′ ⊥⊕E′′ → F ′ ⊥⊕F ′′ .

c) Assume that B is compact and that E = E′ ⊕E′′ is an ε1-orthogonal decomposition, and set
F ′ = BE′ , F ′′ = (F ′)⊥ . Assume moreover that

ν = inf
( {

µℓ(B
∣∣
E′), ℓ ∈ N \ {0}

}
∩]0,+∞[

)
≥

‖B
∣∣
E′′‖

(1− ε1) 1
2 ε2

.

Then, the operator B̃ = B
∣∣
E′

⊥
⊕ΠF ′′B

∣∣
E′′ : E

′ ⊥⊕E′′ → F ′ ⊥⊕F ′′ satisfies

∀ℓ ∈ N \ {0} , τ(ε1, ε2)
−1µℓ(B̃) ≤ µℓ(B) ≤ µℓ(B̃)τ(ε1, ε2) .

Proof. a) This item simply follows from the general statement i) ⇒ iii) above and from the re-
lation B̃ = Ψ∗

FBΦE , where ΦE : ℓ2(J )→ E and ΨF : ℓ2(K)→ F are defined by ΦE((uj)j∈J ) =∑
j∈J ujϕj and ΨF ((vk)k∈K) =

∑
k∈K vkψk , and are thus respectively ε1- and ε2-unitary ac-

cording to item c) in Lemma 5.2.
b) Let (ϕj)j∈J ′ and (ϕj)j∈J ′′ be two Hilbert bases of E′ and E′′ , so that (ϕj)j∈J ′∪J ′′ is an ε1-
orthonormal basis of E according to item d) in Lemma 5.2. An ε2-orthonormal basis (ψk)k∈K′∪K′′

of F is constructed in a similar way. It also follows from item d) in Lemma 5.2 that the identity

IdE : E = E′ ⊥
⊕E′′ → E = E′⊕E′′ is ε1-unitary and, similarly, IdF is ε2-unitary. We conclude

by applying the general statement i) ⇒ iii) above to the relation B̃ = Id∗
F B IdE .

c) If ‖B
∣∣
E′′‖ = 0 there is nothing to do. Actually this is a particular case of b) with BE′′ =

{0} ⊂ F ′′ , ε2 = 0 and of course τ1/2 ≤ τ . If ‖B
∣∣
E′′‖ > 0 , then there exists ℓ1 ∈ N \ {0} such

that ν = µℓ1(B
∣∣
E′) and rank(B

∣∣
E′) = ℓ1 . In particular, we can find two Hilbert bases (ϕj)j∈J ′

of E′ and (ψk)k∈K of F such that J ′ ∩ K ⊃ {1, . . . , ℓ1} and

∀j ∈ {1, . . . , ℓ1} , Bϕj = µj(B
∣∣
E′)ψj .

Set F ′ = Span(ψj , , j ∈ {1, . . . , ℓ1}) = RanB
∣∣
E′ and F ′′ = (F ′)⊥ , and introduce the map

R : E → E defined by

R
∣∣
E′ = 0 ,

∀u ∈ E′′, Ru =

ℓ1∑

j=1

〈ψj , Bu〉
µj(B

∣∣
E′)

ϕj .

The norm of R is not greater than ε2 since for every u = u′ + u′′ ∈ E = E′ ⊕ E′′ ,

‖Ru‖2 = ‖Ru′′‖2 =

ℓ1∑

j=1

|〈ψj , Bu′′〉|2
µ2
j(B

∣∣
E′)

≤
‖B
∣∣
E′′‖2

µ2
ℓ1
(B
∣∣
E′)
‖u′′‖2 ≤ (1− ε1)ε22‖u′′‖2 ≤ ε22‖u‖2 ,

where the last inequality follows from the last statement of Lemma 5.2. We deduce

‖IdE −R‖ ≤ 1 + ε2 ≤ τ(ε2) ,
‖(IdE −R)−1‖ ≤ (1− ε2)−1 ≤ τ(ε2) ,

52



and for every ℓ ∈ N \ {0} , using the above general statement ii) ⇒ iii),

τ(ε2)
−1µℓ(B(IdE −R)) ≤ µℓ(B) ≤ µℓ(B(IdE −R))τ(ε2) .

Moreover, the operator B1 = B(1 − R) clearly sends E′ into F ′ , and also sends E′′ into F ′′ =
(F ′)⊥ according to

∀u ∈ E′′, BRu =

ℓ1∑

j=1

〈ψj , Bu〉ψj = ΠF ′Bu .

Since in addition E′ ⊕ E′′ is a ε1-orthogonal decomposition of E and F = F ′ ⊥
⊕F ′′ , a di-

rect application of b) (with ε2 = 0) says that the singular values of B1 : E → F and

B̃1 = ΠF ′B1

∣∣
E′

⊥
⊕ΠF ′′B1

∣∣
E′′ are related by

∀ℓ ∈ N \ {0} , τ(ε1)
−1/2µℓ(B̃1) ≤ µℓ(B1) ≤ µℓ(B̃1)τ(ε1)

1/2 .

We conclude with

ΠF ′B1

∣∣
E′ = ΠF ′ [B

∣∣
E′ −BR

∣∣
E′︸︷︷︸

=0

] = B
∣∣
E′ ;

ΠF ′′B1

∣∣
E′′ = ΠF ′′B

∣∣
E′′ −ΠF ′′BR

∣∣
E′′︸ ︷︷ ︸

=0

= ΠF ′′B
∣∣
E′′ .

Remark 5.5. 1) In the sequel, Propositions 5.3 and 5.4 will be used and combined with spaces
Eh, Fh, Gh , E′h, E′′h, F ′h, F ′′h , operators Bh , B̃h , and bases (ϕhj )j∈J and (ψhk )k∈K which
depend on a small parameter h > 0 and such that the hypotheses are satisfied with

lim
h→0

ε1(h) = lim
h→0

ε2(h) = 0 .

More generally, note that when N parameters ε1(h), . . . , εN(h) are involved and satisfy
0 ≤ εn(h) ≤ ̺(h) for n ∈ {1, . . . , N} with limh→0 ̺(h) = 0 , then for any α ≥ 0 , the
estimate

τ(ε1(h), . . . , εN (h))α = 1 +O(̺(h))

holds uniformly in the sense that there exist hα,N,̺, Cα,N > 0 independent of ε1, . . . , εN
such that

∀h ∈]0, h̺,N,α[ , τ(ε1(h), . . . , εN (h))α − 1 ≤ CN,α ̺(h) .

Several applications of the previous results in this setting will lead to estimates of the type

∀ℓ ∈ N \ {0} , µℓ(B
h) = µℓ(B̃

h)
(
1 +O(̺(h))

)
.

2) A case is especially easy to handle: when Eh, Fh, Gh are finite dimensional with dimen-
sion bounded by a common number nF . In this case, one can use any norm ‖ ‖n2

F
on

MnF ,nF (C) in order to check the O
(
ε1,2(h)

)
-orthonormality of the bases. The constants

in the O(̺(h))-estimates are then fixed when nF , the norm ‖ ‖n2
F

and possibly the above
N ∈ N and α ≥ 0 are fixed.
Additionally, we recall that in this case, ~d(Eh, Fh) = ~d(Fh, Eh) < 1 is equivalent to
~d(Eh, Fh) < 1 and dimEh = dimFh .

The following lemma will be useful in the sequel.
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Lemma 5.6. Let Bh : D(Bh) → H , D(Bh) ⊂ H , be a closed unbounded operator and assume
that the closed subspaces Eh, Fh, Gh and the operator Bh satisfy

• Eh ⊂ D(Bh) ;

• the restriction Bh
∣∣
Eh

is a left multiple of ΠFhB
h
∣∣
Eh

:

Eh
Bh //

Π
Fh
Bh
∣∣
Eh

""❊
❊❊

❊❊
❊❊

❊❊
H

Fh

Ch

OO ;

• the distance between Fh and Gh satisfies

[
~d(Fh, Gh) + ~d(Gh, Fh)

]
‖Ch‖ = O(̺(h)) with lim

h→0
̺(h) = 0 .

Then ΠGhB
h
∣∣
Eh

= (IdH + O(̺(h)))ΠFhB
h
∣∣
Eh

and the restriction Bh
∣∣
Eh

is also a left multiple

of ΠGhB
h
∣∣
Eh

:

Eh
Bh //

Π
Gh
Bh ""❊

❊❊
❊❊

❊❊
❊❊

H

Gh

C̃h

OO ;

with C̃h = Ch(IdH +O(̺(h))) . The roles of Fh and Gh are therefore symmetric.

Proof. Note first that the relation Bh
∣∣
Eh

= ChΠFhB
h
∣∣
Eh

implies

‖Bh
∣∣
Eh
‖ ≤ ‖Ch‖‖ΠFh‖‖Bh

∣∣
Eh
‖

and then ‖Ch‖ ≥ 1 (except when Bh
∣∣
Eh

= 0 , in which case the statement of Lemma 5.6 is

trivial). Consider now the difference in L(Eh;H):

ΠGhB
h
∣∣
Eh
−ΠGhΠFhB

h
∣∣
Eh

= (ΠGh −ΠGhΠFh)C
hΠFhB

h
∣∣
Eh
.

By introducing the operator

CGhFh = ΠGhΠFh + (1−ΠGh)(1 −ΠFh) = IdH +O(
̺(h)2

‖Ch‖2 ) = IdH +O(̺(h)2)

like in the proof of Proposition 5.3, we obtain

ΠGhB
h
∣∣
Eh

=
[
CGhFh + (ΠGh −ΠGhΠFh)C

h
]
ΠFhB

h
∣∣
Eh

= [IdH +O(̺(h))]ΠFhB
h
∣∣
Eh

.

We get ΠFhB
h
∣∣
Eh

= [IdH +O(̺(h))]−1ΠGhB
h
∣∣
Eh

and we take C̃h = Ch[IdH +O(̺(h))]−1 .

We now consider additive error terms which arise in our applications.

Proposition 5.7. Let Bh1 , B
h
2 : Eh → Fh be two compact operators parametrized by h > 0 , like

possibly the Hilbert spaces Eh, Fh . Fix ℓ0 ∈ N \ {0} and let ̺(h) > 0 satisfy limh→0 ̺(h) = 0 .

a) When ‖Bh2 −Bh1 ‖ = O(̺(h)) max
(
µℓ0(B

h
1 ), µℓ0(B

h
2 )
)
, the singular values are related by

∀ℓ ∈ {1, . . . , ℓ0} , µℓ(B
h
2 ) = µℓ(B

h
1 )
(
1 +O(̺(h))

)
.
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b) The two following statements are equivalent:

min
(
µℓ0+1(B

h
1 ), µℓ0+1(B

h
2 )
)
+ ‖Bh2 −Bh1 ‖ = O

(
̺(h)max

(
µℓ0(B

h
1 ), µℓ0(B

h
2 )
))

and max
(
µℓ0+1(B

h
1 ), µℓ0+1(B

h
2 )
)
+ ‖Bh2 −Bh1 ‖ = O

(
̺(h)min

(
µℓ0(B

h
1 ), µℓ0(B

h
2 )
))
.

Proof. The two results are simple consequences of the max-min principle.
a) Assume ‖Bh2 −Bh1 ‖ ≤ εµℓ0(Bh1 ) with ε < 1 . For ℓ ∈ {1, . . . , ℓ0} and V ⊂ Eh , dim V = ℓ− 1 ,
we write

∀u ∈ V ⊥ , ‖Bh1u‖ − εµℓ0(Bh1 )‖u‖ ≤ ‖Bh2u‖ ≤ ‖Bh1u‖+ εµℓ0(B
h
1 )‖u‖

and then, using µℓ0(B
h
1 ) ≤ µℓ(Bh1 ) ,

∀u ∈ V ⊥,
‖Bh2u‖
‖u‖ ≤ max

v∈V ⊥\{0}

‖Bh1 v‖
‖v‖ + εµℓ(B

h
1 )

‖Bh1u‖
‖u‖ − εµℓ(B

h
1 ) ≤ max

v∈V ⊥\{0}

‖Bh2 v‖
‖v‖ .

Therefore, for every ℓ ∈ {1, . . . , ℓ0} , we deduce

max
u∈V ⊥\{0}

‖Bh1u‖
‖u‖ − εµℓ(B

h
1 ) ≤ max

u∈V ⊥\{0}

‖Bh2u‖
‖u‖ ≤ max

u∈V ⊥\{0}

‖Bh1u‖
‖u‖ + εµℓ(B

h
1 )

for any subspace V such that dimV = ℓ− 1 . Continuing by taking the minimum w.r.t V finally
leads to

∀ℓ ∈ {1, . . . , ℓ0} , µℓ(B
h
1 )(1− ε) ≤ µℓ(B

h
2 ) ≤ (1 + ε)µℓ(B

h
1 ) .

The h-dependent assumption and the symmetry Bh1 ↔ Bh2 in the above proof yield the result.
b) First, since min ≤ max , the second condition obviously implies the first one. Moreover, the

first condition implies ‖Bh2 − Bh1 ‖ = O
(
̺(h)max

(
µℓ0(B

h
1 ), µℓ0(B

h
2 )
))

and we deduce from a)

max
(
µℓ0(B

h
1 ), µℓ0(B

h
2 )
)
= O

(
min

(
µℓ0(B

h
1 ), µℓ0(B

h
2 )
)
. We have then to show that the second

condition is implied by

min
(
µℓ0+1(B

h
1 ), µℓ0+1(B

h
2 )
)
+ ‖Bh2 −Bh1 ‖ = O

(
̺(h)min

(
µℓ0(B

h
1 ), µℓ0(B

h
2 )
))
. (68)

But assuming this and reasoning as in the proof of a) with V ⊂ Eh , dimV = ℓ0 , and using now
‖Bh2 −Bh1 ‖ = O

(
̺(h)µℓ0(B

h
1 )
)
, leads to

max
u∈V ⊥\{0}

‖Bh2u‖
‖u‖ = max

u∈V ⊥\{0}

‖Bh1u‖
‖u‖ +O

(
̺(h)µℓ0(B

h
1 )
)

and then, by taking the minimum w.r.t V , to

µℓ0+1(B
h
2 ) = µℓ0+1(B

h
1 ) +O

(
̺(h)µℓ0(B

h
1 )
)
.

It follows that

max
(
µℓ0+1(B

h
1 ), µℓ0+1(B

h
2 )
)
= min

(
µℓ0+1(B

h
1 ), µℓ0+1(B

h
2 )
)
+O

(
̺(h)µℓ0(B

h
1 )
)
.

Then, since µℓ0(B
h
1 ) = O

(
min

(
µℓ0(B

h
1 ), µℓ0(B

h
2 )
)
, (68) leads to

max
(
µℓ0+1(B

h
1 ), µℓ0+1(B

h
2 )
)
+ ‖Bh2 −Bh1 ‖ = O

(
̺(h)min

(
µℓ0(B

h
1 ), µℓ0(B

h
2 )
))
,

which concludes the proof.
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The final result of this section combines multiplicative and additive error estimates.

Proposition 5.8. Let (Bh, D(Bh)) be a densely defined closed operator in H . Let Eh , Fh ,
and Gh be finite dimensional subspaces of H and let ̺(h) > 0 satisfy limh→0 ̺(h) = 0 . Assume
that both Eh and Fh are contained in D(Bh) and that the space Eh admits the ̺(h)-orthogonal

decomposition Eh = E′h ⊕ E′′h , such that:

1. ΠFhB
h = BhΠFh on D(Bh) ;

2. ΠFhB
hΠFh has a fixed finite rank ℓ0 ∈ N ;

3. Bh
∣∣
E′h is a left multiple of ΠFhB

hΠFh
∣∣
E′h = ΠFhB

h
∣∣
E′h :

E′h Bh //

Π
Fh
BhΠ

Fh ""❋
❋❋

❋❋
❋❋

❋❋
H

Fh

Ch

OO

4. with the convention µ0(A) = +∞ for any compact operator A and when ℓh1 denotes the
rank of ΠGhB

h
∣∣
E′h , the following inequalities are satisfied:

~d(Eh, Fh) + ~d(Fh, Eh) + ‖Ch‖
(
~d(Fh, Gh) + ~d(Gh, Fh)

)
= O(̺(h)) , (69)

‖Bh
∣∣
E′′h‖

[
1

µℓh1 (ΠGhB
h
∣∣
E′h)

+
‖Ch‖(~d(Fh, Gh) + ~d(Gh, Fh))

max(µℓ0(ΠGhB
h
∣∣
Eh

), µℓ0(B
h
∣∣
Fh

))

]
= O(̺(h)). (70)

Then, the ℓ0 first singular values of ΠFhB
hΠFh and ΠGhB

hΠEh satisfy

∀ℓ ∈ {1, . . . , ℓ0} , µℓ(ΠGhB
hΠEh)︸ ︷︷ ︸

=µℓ(ΠGhB
h

∣∣
Eh

)

= µℓ(ΠFhB
hΠFh)︸ ︷︷ ︸

=µℓ(Bh
∣∣
Fh

)

(
1 +O(̺(h))

)
. (71)

Moreover, the ℓ0 + 1-th singular value of ΠGhB
hΠEh satisfies

µℓ0+1(ΠGhB
hΠEh)

µℓ0(ΠGhB
hΠEh)

=
µℓ0+1(ΠGhB

h
∣∣
Eh

)

µℓ0(ΠGhB
h
∣∣
Eh

)

h→0∼
µℓ0+1(ΠGhB

h
∣∣
Eh

)

µℓ0(B
h
∣∣
Fh

)
= O(̺(h)) . (72)

Proof. Since the statement is trivial when ℓ0 = 0 , we assume here that ℓ0 ≥ 1 . The assumptions
1. and 3. then imply ‖Ch‖ ≥ 1 because

‖Bh
∣∣
E′h‖ ≤ ‖Ch‖‖ΠFh‖‖Bh

∣∣
E′h‖

(except when Bh
∣∣
E′h = 0 , in which case one chooses Ch = ΠFh so that ‖Ch‖ = 1). Therefore,

the first estimate (69) of 4. implies dimEh = dimFh = dimGh < ∞ as well as ~d(Eh, Fh) =
~d(Fh, Eh) and ~d(Fh, Gh) = ~d(Gh, Fh) .
About dimensions, the assumptions 1. and 3. also imply

rank(ΠFhB
h
∣∣
E′h) = rank(Bh

∣∣
E′h) = ℓh1 ≤ ℓ0 .

This rank ℓh1 , which is not assumed to be independent of h , will be proved to be equal to
rank(ΠGhB

∣∣
E′h) .

Multiplicative estimates: By replacing Eh by E′h in Lemma 5.6, we get

ΠGhB
h
∣∣
E′h = [IdH +O(̺(h))]ΠFhB

h
∣∣
E′h
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and therefore

∀ℓ ∈
{
1, . . . , dimE′h} , µℓ(ΠGhB

h
∣∣
E′h) = µℓ(ΠFhB

hΠFh
∣∣
E′h)

(
1 +O(̺(h))

)
. (73)

In particular,

rank(ΠGhB
h
∣∣
E′h) = rank(ΠFhB

h
∣∣
E′h) = ℓh1 = rank(Bh

∣∣
E′h) .

An accurate information about the orthogonal projections on F ′h := RanΠFhB
h
∣∣
E′h and on

G′h := RanΠGhB
h
∣∣
E′h is achieved as follows. There exist two orthonormal systems (ϕhj )1≤j≤ℓh1

in E′h and (ψhj )1≤j≤ℓh1 in F ′h ⊂ Fh such that

∀j ∈
{
1, . . . , ℓh1

}
, ΠFhB

hϕhj = µhjψ
h
j , where µhj = µj(ΠFhB

h
∣∣
E′h) > 0 .

By computing

ψhj −
1

µhj
ΠGhB

hϕhj =
1

µhj

[
ΠFhB

hϕhj −ΠGhB
hϕhj

]

=
1

µhj
(ΠFh −ΠGh)(C

hΠFhB
hΠFhϕ

h
j )

= (ΠFh −ΠFhΠGh)C
hψhj + (ΠFhΠGh −ΠGh)C

hψhj ,

we obtain the estimates:

∀j ∈
{
1, . . . , ℓh1

}
, ‖ψhj −

1

µhj
ΠGhB

hϕhj ‖ ≤ ‖Ch‖
(
~d(Fh, Gh) + ~d(Gh, Fh)

)
= O(̺(h))︸ ︷︷ ︸

(69)

.

Since moreover rank ΠGhB
h
∣∣
E′h = dimG′h = ℓh1 ≤ ℓ0 , it follows that

(
1
µhj

ΠGhB
hϕhj

)
1≤j≤ℓh1

is an O
(
‖Ch‖

(
~d(Fh, Gh) + ~d(Gh, Fh)

))
-orthonormal basis of G′h (see Definition 5.1) and then

that
‖ΠF ′h −ΠG′h‖ = O

(
‖Ch‖

(
~d(Fh, Gh) + ~d(Gh, Fh)

))
= O(̺(h)).

By calling F ′′h the orthogonal of F ′h in Fh and G′′h the orthogonal of G′h in Gh , the equality

ΠF ′′h −ΠG′′h = (1 −ΠF ′h)ΠFh − (1−ΠG′h)ΠGh

= (1 −ΠF ′h)(ΠFh −ΠGhΠFh)− (ΠF ′h −ΠG′h)ΠGhΠFh

−(1−ΠG′h)(ΠGh −ΠGhΠFh)

now implies (using also ‖Ch‖ ≥ 1)

‖ΠF ′′h −ΠG′′h‖ = O
(
‖Ch‖

(
~d(Fh, Gh) + ~d(Gh, Fh)

))
= O(̺(h)) . (74)

The separation between the ℓh1 first singular values and the smaller ones is obtained by applying
Proposition 5.4-c) to B = ΠFhB

h
∣∣
Eh

: Eh → Fh and to B = ΠGhB
h
∣∣
Eh

: Eh → Gh with: the

̺(h)-orthogonal decomposition Eh = E′h ⊕ E′′h ,

µℓh1 (ΠFhB
h
∣∣
E′h) = µℓh1 (ΠGhB

h
∣∣
E′h)

(
1 +O(̺(h))

)
,

and
‖ΠFhBh

∣∣
E′′h‖

µℓh1 (ΠFhB
h
∣∣
E′h)

+
‖ΠGhBh

∣∣
E′′h‖

µℓh1 (ΠGhB
h
∣∣
E′h)

≤ C
‖Bh

∣∣
E′′h‖

µℓh1 (ΠGhB
h
∣∣
E′h)

=︸︷︷︸
(70)

O(̺(h)) .
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This implies that the singular values of ΠFhB
h
∣∣
Eh

and of ΠGhB
h
∣∣
Eh

satisfy

∀ℓ ∈
{
1, . . . , ℓh1

}
, µℓ(ΠFhB

h
∣∣
Eh

) = µℓ(ΠFhB
h
∣∣
E′h)

(
1 +O(̺(h))

)
, (75)

µℓ(ΠGhB
h
∣∣
Eh

) = µℓ(ΠGhB
h
∣∣
E′h)

(
1 +O(̺(h))

)
, (76)

and, for every k ≥ 1 ,

µℓh1+k(ΠFhB
h
∣∣
Eh

) = µk(ΠF ′′hBh
∣∣
E′′h)

(
1 +O(̺(h))

)
= O

(
µℓh1 (ΠFhB

h
∣∣
Eh

)̺(h)
)
, (77)

µℓh1+k(ΠGhB
h
∣∣
Eh

) = µk(ΠG′′hBh
∣∣
E′′h)

(
1 +O(̺(h))

)
= O

(
µℓh1 (ΠGhB

h
∣∣
Eh

)̺(h)
)
. (78)

Besides, using ~d(Eh, Fh)+~d(Fh, Eh) = O(̺(h)) and the commutation ΠFhB
h
∣∣
Eh

= ΠFhB
hΠFh

∣∣
Eh

,

a direct application of Proposition 5.3 with B = ΠFhB
h
∣∣
Fh

: Fh → Fh and B̃ = ΠFhB
hΠFh

∣∣
Eh

=

ΠFhB
h
∣∣
Eh

: Eh → Fh leads to:

∀ℓ ∈ N \ {0} , µℓ(ΠFhB
h
∣∣
Fh

) = µℓ(ΠFhB
h
∣∣
Eh

)
(
1 +O(̺(h)2)

)
. (79)

Additive estimates: When ℓ0 = ℓh1 , the statement of Proposition 5.8 follows from the equa-
tions (73) and (75)–(79) and, when ℓ0 > ℓh1 , these equations reduce the problem to the compar-
ison of the singular values µk , 1 ≤ k ≤ ℓ0 − ℓh1 , of the two operators

ΠG′′hBh
∣∣
E′′h and ΠF ′′hBh

∣∣
E′′h .

By (74) and (70), we know that

‖Bh
∣∣
E′′h‖‖ΠG′′h −ΠF ′′h‖

max(µℓ0−ℓh1 (ΠG′′hBh
∣∣
E′′h), µℓ0−ℓh1 (ΠF ′′hBh

∣∣
E′′h))

= O(̺(h)) .

The first result (71) is thus an application of Proposition 5.7-a) with

Bh1 = ΠF ′′hBh
∣∣
E′′h and Bh2 = ΠG′′hBh

∣∣
E′′h

while replacing ℓ0 by ℓ0 − ℓh1 .
Lastly, the definition of ℓ0 in 2. implies

min(µℓ0−ℓh1+1(ΠG′′hBh
∣∣
E′′h), µℓ0−ℓh1+1(ΠF ′′hBh

∣∣
E′′h)) = µℓ0−ℓh1+1(ΠF ′′hBh

∣∣
E′′h) = 0 .

The remaining statement (72) is then given by Proposition 5.7-b).

6 Accurate analysis with N “critical values”

This section is the core and the most technical part of our analysis. It combines: i) the expo-

nential decay estimates of eigenvectors solving ∆f,f−1([a,b]),hωh = λhωh , λh
h→0→ 0 , and all the

properties of solutions to df,hωh = 0 stated in Sections 2 and 3; ii) the information on local
problems, that is when ♯([a, b] ∩

{
c1, . . . , cNf

}
) = 1 , from Section 3; iii) the rough estimates

when ♯([a, b] ∩
{
c1, . . . , cNf

}
) = N of Section 4. Finally, the recurrence analysis with respect

to N is modelled on linear algebra lemmas about singular values given in Section 5. In the
first paragraph, we review and complete previous useful notations before stating a general result
which leads easily to Theorem 1.7, variations of which will be given afterwards. It is about the
construction of global quasimodes for ∆f,f−1([a,b]),h , and more precisely of a suitable basis of
widely extended solutions to df,hωh = 0 , which, contrarily to the eigenfunctions of ∆f,f−1([a,b]),h ,
provide a high flexibility when changing the geometrical domain, in particular the values a, b .
After specifying the framework in the first paragraph, we check in Subsection 6.2 the first step
of the recursive construction of such global quasimodes and presents the strategy of our iterative
method, developed in the other paragraphs.
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6.1 Assumptions, notations and main result

We assume Hypothesis 4.1 which is: The function f has a finite number of “critical values”,
c1 < . . . < cNf , according to Hypothesis 1.2 or Hypothesis 1.6, while Hypothesis 2.16 is assumed
for a general Lipschitz function f , and we choose

ηf ∈]0,
1

2
min

1<n≤Nf
|cn − cn−1|[ . (80)

Moreover, the values a, b , −∞ ≤ a < b ≤ +∞ , are not “critical values” of f .
Like in Sections 3 and 4, we use the the space W (f ba; ΛT

∗M) of Definition 2.3. We recall that
it coincides with W 1,2(f ba; ΛT

∗M) under Hypothesis 1.2, while we only know W (f ba; ΛT
∗M) ⊂

W 1,2
loc (f

b
a; ΛT

∗M) in general (when a, b 6∈
{
c1, . . . , cNf

}
). According to this remark, when E =

⊔Kk=1]ak, bk[ , ak, bk 6∈
{
c1, . . . , cNf

}
, the spaceW (f−1(E); ΛT ∗M) is nothing but the direct sum

⊕Kk=1W (f bkak ; ΛT
∗M) , which is included in W 1,2

loc (f
−1(E); ΛT ∗M) .

The set of “critical values” lying in [a, b] are relabelled according to

[a, b] ∩
{
c1, . . . , cNf

}
= {c̃1, . . . , c̃N} , a < c̃1 < . . . < c̃N < b .

The bar code associated with f is still denoted by B = B(f) = ([aα, bα[)α∈A . We keep the
notation A∗(a, b) , A∗

c(a, b) given in (52),(53), while the endpoints of the bars with a non trivial
intersection with ]a, b[ are partitionned into

J ∗(a, b) = X ∗(a, b) ⊔ Y∗(a, b) ⊔ Z∗(a, b) ,

where the definition of those sets are given in (54),(55),(56), and (57). Remember that an

element j ∈ J (p)(a, b) is a pair j = (α, c̃) with α ∈ A∗(a, b) and c̃ ∈ {c̃1, . . . , c̃N} , c̃ = x
(p)
α , y

(p)
α ,

or z
(p)
α , depending on wether:

• j ∈ X (p)(a, b) , which means α ∈ A(p)
c (a, b) and c̃ = x

(p)
α ,

• j ∈ Y(p)(a, b) , which means α ∈ A(p−1)
c (a, b) and c̃ = y

(p)
α ,

• or j ∈ Z(p)(a, b) , which means α ∈ A∗(a, b) \A∗
c(a, b) and c̃ = z

(p)
α .

Below are figures which summarize the three different cases.

α(p)

x
(p)
α y

(p+1)
α

a
+

b

+

c̃m

+

c̃n

+

•

Figure 9: A bar [x
(p)
α , y

(p+1)
α [= [c̃m, c̃n[ , α

(p) ∈ A(p)
c (a, b) .

There are two extreme points j = (α(p), c̃m) ∈ X (p)(a, b) and j′ = (α(p), c̃n) ∈ Y(p+1)(a, b) .

α(p)

α(p+1)

a
+

b

+

c̃ = z
(p)
α

+

•

Figure 10: An extreme point j = (α, c̃) ∈ Z(p)(a, b) .
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After restriction to [a, b] , this represents the two possible equivalent ways of having

j = (α∗, z(p)α ) ∈ Z(p)(a, b) .

We recall that

δ
(p)

[0,e−ε/h],[a,b],h
= 1[0,e−ε/h](∆

(p+1)

f,f−1([a,b]),h)d
(p)

f,f−1([a,b]),h1[0,e−ε/h](∆
(p)

f,f−1([a,b]),h)

and F
(p)

[0,e−ε/h],[a,b],h
= Ran 1[0,e−ε/h](∆

(p)
f,f−1([a,b]),h)

do not depend on ε ∈]0, ε0[ , provided that hε > 0 (h ∈]0, hε[) is chosen small enough when ε is
fixed. We then use the notation

δ
(p)
[0,õ(1)],[a,b],h = δ

(p)

[0,e−ε/h],[a,b],h
and F

(p)
[0,õ(1)],[a,b],h = F

(p)

[0,e−ε/h],[a,b],h
(81)

without mentioning ε > 0 .
The exponent (p) is forgotten when the direct sum w.r.t p ∈ {0, . . . , dimM} is considered.
The distance between vector spaces ~d(E,F ) is the one defined in Subsection 3.1 (see Defini-
tion 3.3) and used in Section 5. We also recall that for ε > 0 , an Õ(e−

ε
h )-orthonormal family

of vectors (ϕhℓ )1≤ℓ≤L in a Hilbert space H is a family such that |〈ϕhℓ , ϕhℓ′〉 − δℓ,ℓ′ | = Õ(e−
ε
h )

according to Definition 5.1.
With the family J ∗(a, b) of endpoints of bars with a non trivial intersection with ]a, b[ , we will
associate an õ(1)-orthonormal family of solutions to df,hωh = 0 in the proper range.

Definition 6.1. Under Hypothesis 4.1 and for δ1 ∈]0, ηf8 ] , let

Sδ1 := {c̃n − δ1, c̃n + δ1, 1 ≤ n ≤ N} . (82)

A family (ϕ∗,h
j )j∈J ∗(a,b) , ϕ

∗,h
j = ϕ

(p),h
j when j ∈ J (p)(a, b) , is called a δ1-family of quasimodes

if there exists γ :]0, h0[→]0,+∞[ with limh→0 γ(h) = 0 such that:

• (ϕ
(p),h
j )j∈J (p)(a,b) is a linearly independent family of D(d

(p)
f,f−1([a,b]),h) for all p ∈ {0, . . . , d} ;

• by setting j = (α, c̃) and Ihj = [x
(p)
α − δ1, y

(p+1)
α − γ(h)] = [c̃ − δ1, y

(p+1)
α − γ(h)] when

j ∈ X (p)(a, b) , and Ihj = [c̃− δ1, b] when j ∈ Y(p)(a, b) ∪ Z(p)(a, b) :

supp ϕ
(p),h
j ⊂ f−1

(
(Ihj + [0, γ(h)/2]) ∩ [a, b]

)
, (83)

‖e |f−c̃|
h ϕ

(p),h
j ‖W (f−1([a,b])\Sδ1) = Õ(1) , (84)

df,hϕ
(p),h
j ≡ 0 in f−1(Ihj ∩ [a, b]) and then in f−1([a, c̃− δ1] ∪ (Ihj ∩ [a, b])).(85)

For such a family of quasimodes, we will use the notation:

V(p),h = Span(ϕ
(p),h
j , j ∈ J (p)(a, b)) , Vh =

d
⊕
p=0
V(p),h .

The idea is that the quasimode associated with the endpoint j = (α, c̃) ∈ J ∗(a, b) is supported
in [c̃ − δ1, b] , decays exponentially away from c̃ , and solves df,hϕ

∗,h
j = 0 in a region essentially

covered by the bar indexed by α . Global quasimodes for df,h are constructed by climbing along
the values of f . The reason why W -estimates fail in a neighborhood of f−1(Sδ1) will appear in
the construction of such a family (see in particular Remark 6.11 about the values c̃n + δ1).
The following definition specifies how such quasimodes are truncated around the upper endpoints

y
(p+1)
α when j = (α, x

(p)
α ) ∈ X (p)(a, b) . This truncation operator preserves the spacesW (f−1(I))

for I ⊂ [a, b] and D(df,f−1([a,b]),h) with its boundary conditions.
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Definition 6.2. In the framework of Definition 6.1 and for δ2 ∈]0, ηf8 ] , let

χc̃n,δ2(x) = χ

(
f(x)− c̃n

δ2

)
(86)

for n ∈ {2, . . . , N} and a fixed χ ∈ C∞(R; [0, 1]) such that χ ≡ 1 on ] −∞,−2] and supp χ ⊂
]−∞,−1[ .
The operator Tδ2 is defined on Vh by

Tδ2ϕ
(p),h
j =

{
χ
y
(p+1)
α ,δ2

ϕ
(p),h
j if j = (α, x

(p)
α ) ∈ X (p)(a, b)

ϕ
(p),h
j if j ∈ Y(p)(a, b) ∪ Z(p)(a, b) .

(87)

Theorem 6.3. Assume Hypothesis 4.1 with ηf given by (80).

a) For any p ∈ {0, . . . , dimM} , the õ(1) non zero singular values of d
(p)
f,f−1([a,b]),h , that is the

non zero singular values of δ
(p)
[0,õ(1)],[a,b],h , can be labelled by the family

(
µhj
)
j∈X (p)(a,b)

(with

possible multiplicities) with

µhj
log∼ e−

y
(p+1)
α −x

(p)
α

h , j = (α, x(p)α ) ∈ X (p)(a, b) .

b) For any δ1 ∈]0, ηf8 ] , there exists a δ1-family (ϕ∗,h
j )j∈J ∗(a,b) of quasimodes in the sense of

Definition 6.1 which is Õ(e−
δ1
h )-orthonormal in L2(f ba) .

The vector space Vh spanned by those quasimodes satisfies:

∀p ∈ {0, . . . , dimM} , ~d(V(p),h, F
(p)
[0,õ(1)],[a,b],h) +

~d(F
(p)
[0,õ(1)],[a,b],h,V(p),h) = Õ(e−

δ1
h ) .

c) If Tδ2 is the truncation operator of Definition 6.2 for δ2 ∈]0, ηf8 ] , then the map d
(p)
f,f−1([a,b]),hTδ2 :

V(p),h → L2(f−1([a, b])) is a left multiple of δ
(p)
[0,õ(1)],[a,b],hTδ2 :

V(p),h
d
(p)

f,f−1([a,b]),h
Tδ2

//

δ
(p)
[0,õ(1)],[a,b],h︸ ︷︷ ︸

(81)

Tδ2
**❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯

L2(f−1([a, b]))

F
(p)
[0,õ(1)],[a,b],h

Ch

OO
(88)

with ‖Ch‖ = Õ(e
2δ2
h ) .

The proof will be done in several steps, by induction on the number of “critical values”
N . Because the graduation w.r.t p ∈ {0, . . . , dimM} is associated with an obvious orthogonal
decomposition of F[0,õ(1)],[a,b],h and δ[0,õ(1)],[a,b],h , and clear partitions of the sets of indices for

bars and endpoints, A(a, b) = ⊔dp=0A
(p)(a, b) , J (a, b) = ⊔dp=0J (p)(a, b) , etc., we can treat

globally F[0,õ(1)],[a,b],h and δ[0,õ(1),[a,b],h and forget the degree p .

6.2 Initialisation and outline of the recurrence

The result holds true for N = 1: According to Proposition 3.2, we know that J (a, b) =
Z(a, b) and that the õ(1)-eigenvalues of ∆f,f−1([a,b]),h , and therefore the õ(1)-singular values of
δ[0,õ(1)],[a,b],h , all vanish . This proves a). To prove b), it suffices to take an orthonormal basis

(ϕhj )j∈J (a,b) of ker(∆f,f−1([max(a,c̃1−δ1),b]),h) , extended by 0 on f c̃1−δ1a when a < c̃1 − δ1 . Note
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that in the latter case, the extended family (ϕhj )j∈J (a,b) is still included in D(df,f−1([a,b]),h) ,
and actually in ker(df,f−1([a,b]),h) . The exponential decay estimate (84) comes from the expo-

nential decay estimates on the ϕhj ∈ ker(∆f,f−1[max(a,c̃1−δ1),b],h) given by Proposition 2.13 or

Hypothesis 2.16 applied with Ω = f−1([max(a, c̃1− δ1), b]) , rh = 0 , λh = 0 , U = f−1({c̃1}) and
dAg(x, y) ≥ |f(x)− f(y)| . The distance between Vh and F[0,õ(1)],[a,b],h is also deduced from the

exponential decay estimates on the ϕhj ∈ ker(∆f,f−1([max(a,c̃1−δ1),b]),h) as we did in the proofs of
Propositions 4.2 and 4.3. The statement c) is obvious in this case because

Tδ2 = IdVh ,

df,f−1([a,b]),h

∣∣
Vh = 0 ,

and δ[0,õ(1)],[a,b],h
∣∣
Vh = Π[0,õ(1)],[a,b],hdf,f−1([a,b]),h

∣∣
Vh = 0 .

Strategy of the proof by induction:

1. Already while checking the initial step N = 1 or when proving e.g. Proposition 3.2 in
Subsection 3.2, it was convenient to work with different values of a and b . From this point
of view, the construction of δ1-quasimodes in the sense of Definition 6.1, which are some
specific solutions to df,hωh = 0 , is more flexible than working with spectral eigenvectors
of ∆f,f−1([a,b]),h . Note that even though the extension by 0 in fa of ϕ ∈ ker(df,f−1([a,b]),h)

does not belong to W (f ba′) for a′ < a , it belongs to ker(df,f−1([a′,b]),h) . This provides a

way to extend the quasimodes in the area of the lower values of f . The extension to f b
′

a

with b < b′ will be done with a repeated use of Proposition 3.9. Note for example that if
there is no “critical value” in [b, b′] , a solution to df,f−1([a,b]),hϕh = 0 , which satisfies some

exponential decay estimates of the type ‖e f(x)h ϕh‖W (fba)
≤ Õ(Ch) , can be “extended” to a

solution to df,f−1([a,b′]),hϕ̃h = 0 , with the same decay estimates in W (f b
′

a \ f−1({b − δ})
for some δ > 0 small enough. To prove this, it suffices to consider b as an artificial
new “critical value” c̃ and to apply Proposition 3.9-i) with a0, a, c̃1, b there replaced by
a, b− δ, c̃ = b, b′ . Note that with this extension procedure, ϕ̃h fails in general to belong to
W in a neighborhood of f−1({b − δ}) (see (84) in this connection). If there is a “critical
value” c̃n ∈]b, b′[ , then one has to study more carefully the orthogonality condition of
Proposition 3.9-ii).

2. Now Theorem 6.3 will be assumed to be true in the case of N “critical values” in [a, b] , we
can deduce several consequences. The aforementionned flexibility of a family of quasimodes
in Vh , as compared to a family of eigenvectors for the initial space F[0,õ(1)],[a,b],h , can be
completed by replacing the arrival space F[0,õ(1)],[a,b],h in the diagram (88) by a more flexible

approximation. Moreover, the Õ(e−
δ1
h )-orthogonality of the δ1-family of quasimodes can

be preserved while ensuring true orthogonality properties on the images df,hTδ2ϕ
h
j . This

will be done in Subsection 6.3. The corresponding results will be used in the rest of the
proof and for other constructions later.

3. Let us now explain how we pass from the case of N critical values c̃1 < · · · < c̃N to the
case of N + 1 critical values c̃1 < · · · < c̃N+1 in [a, b] . To do so, introduce a2 ∈]c̃1, c̃2[ and
b1 ∈]c̃N , c̃N+1[ , set a1 = a , b2 = b , and apply the result valid for N “critical values” to
a1 = a < c̃1 < . . . < c̃N < b1 and to a2 < c̃2 . . . < c̃N+1 < b2 = b . From the δ1-families
of quasimodes for the intervals [a1, b1] and [a2, b2] , we can extract a partial δ1-family of
quasimodes for [a, b] which satisfies the required properties for all bars of length strictly
smaller than c̃N+1 − c̃1 . This construction, and all the information coming from step N
in the intervals [a1, b1] and [a2, b2] , is collected in Subsection 6.4. After this, in Subsec-
tion 6.5, the construction of δ1-quasimodes associated with bars j = (α, xα) ∈ X (a, b) with
xα = c̃1 and yα = c̃N+1 must be specified. This leads to the definition of “intermediate δ1-
family of quasimodes” (see Definition 6.12) which, comparatively to Definition 6.1, does not
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yet elucidate the interaction with the local spectral problems around the “critical value”
c̃N+1 . This strategy is summarized in Figure 11 below. It is related to Mayer-Vietoris
type arguments in algebraic topology, but handling and propagating all the estimates on
exponentially small quantities requires some care. From this point of view, the inspiration
is also taken from the standard techniques for handling exponential decay estimates, and
several up and down inductions on n ∈ {1, . . . , N + 1} are used.

??

c̃N+1

+
a = a1
+

b = b2

+
c̃1

+
c̃2

+
c̃N

+
b1

+
a2
+

•

••

•
•

••
•

••

Figure 11: Positions of the bars while the interval [a, b] is covered by [a1, b1] ∪ [a2, b2] .

We will use the recurrence hypothesis at step N first in the interval ]a2, b2[ and then in
the interval ]a1, b1[ , where the corresponding proper bars (not equal to ]ai, bi[) are

collected in dashed rectangles. Quasimodes in ]a2, b2[ are extended by 0 in fa2a , while the
extension of quasimodes in ]a1, b1[ to f

b
b1

requires more care.

Once the latter “intermediate δ1-family of quasimodes” is constructed, it is used in order
to prove Theorem 6.3-a) in Subsection 6.6. Like in the proof of Proposition 3.2 for N =
1 , we have to play with different values of a, b such that a < c̃1 < . . . < c̃N+1 < b .

Using Proposition 4.5, we deduce firstly a lower bound r(h)
log∼ e−

c̃N+1−c̃1+max(δ1,δ3)

h when
a = c̃1 − δ1 and b = c̃N+1 + δ3 , and translate it in the various variations of the operator
δ[0,õ(1)],[a,b],hTδ2 that we have introduced. Secondly, we study the effect of changing a and
b while keeping N + 1 “critical values” in [a, b] as it was done in Subsection 3.3.2 for the
case of one “critical value” in [a, b] . Thirdly, and only after proving Theorem 6.3-a), we
can construct in Subsection 6.7 the δ1-family of quasimodes (ϕhj )j∈J (a,b) at step N + 1 ,
and check all the conditions stated in the items b) and c) of Theorem 6.3.

6.3 Consequences of Theorem 6.3 at step N

We assume in this section that Theorem 6.3 holds true at step N . We refer in particular to
the Definition 6.1 of δ1-quasimodes (ϕhj )j∈J (a,b) and of Vh = Span(ϕhj )j∈J (a,b) , and to the

Definition 6.2 of the truncation Tδ2 : Vh → D(df,f−1([a,b]),h) , for δ1, δ2 ∈]0, ηf8 ] .

While keeping the initial space Vh for df,f−1([a,b]),hTδ2 , we replace the arrival space F[0,õ(1)],[a,b],h ,

and therefore the left-multiplying projection Π[0,õ(1)],[a,b],h , by a more flexible space Gh and a
projection ΠGh . In view of Lemma 5.6 and of the general analysis of singular values led in
Section 5, consider

Gh = ker(∆f,Ω,h) and Fh = F[0,õ(1)],[a,b],h , (89)
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where ∆f,Ω,h is the operator introduced in (61) with

Ω =

N⊔

n=1

f−1([c̃n − ηf , c̃n + ηf ] ∩ [a, b]) . (90)

We recall that according to Proposition 4.3,

~d(Gh, Fh) + ~d(Fh, Gh) = Õ(e−
ηf
h )

and dimGh = dimFh .

The interest of the space Gh is that it is defined in terms of local spectral problems, actually
kernels of local Witten Laplacians, around the “critical values” c̃1, . . . , c̃N .

Proposition 6.4. Assume that Theorem 6.3 holds true at step N and let Gh be defined by (89).
The operator

ΠGhdf,f−1([a,b]),hTδ2 = ΠGhdf,hTδ2 : Vh → L2(Ω) ⊂ L2(f ba)

does not depend on δ2 ∈]0, ηf8 ] for h > 0 small enough. Namely, for two different choices
δ2, δ

′
2 ∈]0, ηf8 ] , there exists hδ2,δ′2 > 0 such that the equality ΠGhdf,hTδ2 = ΠGhdf,hTδ′2 holds for

all h ∈]0, hδ2,δ′2 [ .
Its singular values satisfy:

∀ℓ ∈ {1, . . . , dimFh} , µℓ(ΠGhdf,f−1([a,b]),hTδ2
∣∣
Vh) = µℓ(δ[0,õ(1)],[a,b],h)(1 + Õ(e−

δ1
h )) . (91)

Its kernel equals
ker(ΠGhdf,hTδ2) = Span(ϕhj , j ∈ Y(a, b) ∪ Z(a, b)) . (92)

In particular, when the non zero singular values of δ[0,õ(1)],[a,b],h are labelled as (µhj )j∈X (a,b)

with µhj
log∼ e−

yα−xα
h for j = (α, xα) , the same result holds for the δ2-independent operator

ΠGhdf,hTδ2 .

Proof. The Definition 6.1 of (ϕhj )j∈J (a,b) and the Definition 6.2 of Tδ2 give

df,hTδ2ϕ
h
j = df,hϕ

h
j = 0 if j ∈ Y(a, b) ∪ Z(a, b) ,

and

df,hTδ2ϕ
h
j = 0 in f−1([a, yα − 2δ2]) ∪ f−1([yα − δ2, b]) if j = (α, xα) ∈ X (a, b) .

We deduce firstly
ker(ΠGhdf,hTδ2) ⊃ Span(ϕhj , j ∈ Y(a, b) ∪ Z(a, b)) .

In the case j = (α, xα) ∈ X (a, b) , the equality ΠGhdf,hTδ2 = ΠGhdf,hTδ′2 for h > 0 small enough
is secondly a direct consequence of Proposition 3.9-i) applied around the “critical value” yα ,
owing to supp df,hTδ2ϕ

h
j ⊂ f−1(]yα − ηf , yα[) and to

ΠGhdf,hTδ2ϕ
h
j = Π{0},[yα−ηf ,yα+ηf ]∩[a,b],hdf,hTδ2ϕ

h
j .

The result (91) on singular values implies dimker(ΠGhdf,hTδ2) = ♯Y(a, b) ∪ Z(a, b) and yields
the equality (92). Let us now prove (91).
Consider the initial vector space Eh = Tδ2Vh = Span(Tδ2ϕ

h
j , j ∈ J (a, b)) and the mapping

Bh = df,f−1([a,b]),h : Eh → L2(Ω) ⊂ L2(f ba) . The distance to Vh is estimated by

~d(Eh,Vh) + ~d(Vh, Eh) = Õ(e−
ηf
h ) ≤ Õ(e−

δ1
h ) . (93)
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With the factorization (88) stated in Theorem 6.3-c) and ~d(Gh, Fh) + ~d(Fh, Gh) = Õ(e−
ηf
h )

with 2δ2 <
ηf
2 < ηf , we are exactly in the framework of Lemma 5.6 with ̺(h) = Õ(e

2δ2−ηf
h ) .

Therefore, df,f−1([a,b]),h

∣∣
Eh

is a left multiple of ΠGhdf,f−1([a,b]),h

∣∣
Eh

,

Eh
Bh //

Π
Gh
Bh $$❍

❍❍
❍❍

❍❍
❍❍

❍ L2(f ba)

Gh

C̃h

OO
(94)

with C̃h = Ch(IdL2(fba)
+ Õ(e

2δ2−ηf
h )) , and

ΠGhdf,f−1([a,b]),h

∣∣
Eh

= (IdL2(fba)
+ Õ(e

2δ2−ηf
h ))ΠFhdf,f−1([a,b],h)

∣∣
Eh︸ ︷︷ ︸

=δ[0,õ(1)],[a,b],hΠFh

∣∣
Eh

.

Using additionally Proposition 5.3 and the relation ~d(Eh, Fh) + ~d(Fh, Eh) = Õ(e−
δ1
h ) arising

from Theorem 6.3-b) and (93), this leads to

∀ℓ ∈ {1, . . . , dimFh} , µℓ(ΠGhdf,f−1([a,b]),h

∣∣
Eh

) = µℓ(δ[0,õ(1)],[a,b],h)(1 + r(h)) ,

where r(h) = max(Õ(e
2δ2−ηf

h ), Õ(e−
2δ1
h )) ≤ Õ(e−

δ1
h ) . The comparison (91) for ΠGhdf,hTδ2

∣∣
Vh

is then a consequence of

‖T ∗
δ2Tδ2 − IdVh‖+ ‖Tδ2T ∗

δ2 − IdEh‖ = Õ(e−
ηf
h ) = Õ(e−

δ1
h ) . (95)

Below are details about a useful block decomposition of the operator ΠGhdf,hTδ2 : Vh →
L2(Ω) . Of course, there is the orthogonal block decomposition with respect to the degre p ac-

cording to ΠGhd
(p)
f,hTδ2 : V(p),h → L2(Ω; Λp+1T ∗M) . But we consider here a block decomposition

according to the length of the bars, which correspond to clusters of singular values. Again, we
forget the degree p here. We need some notations. Let

Xn(a, b) = {j = (α, xα) ∈ X (a, b), yα = c̃n} , 2 ≤ n ≤ N , (96)

Xm,n(a, b) = {j = (α, xα) ∈ Xn(a, b) , xα = c̃m} , 1 ≤ m < n ≤ N , (97)

and consider the following Õ(e−
δ1
h )-orthogonal decompositions:

Vhm,n = Span(ϕhj , j ∈ Xm,n(a, b)) for 1 ≤ m < n ≤ N , (98)

Vhn =
n−1
⊕
m=1
Vhm,n = Span(ϕhj , j ∈ Xn(a, b)) for 2 < n ≤ N , (99)

Vh+ =
N
⊕
n=2
Vhn , (100)

Vh0 = Span(ϕhj , j ∈ Y(a, b) ∪ Z(a, b)) = ker(ΠGhdf,hTδ2
∣∣
Vh) , (101)

Vh = Vh+ ⊕ Vh0 , (102)

with ΠGhdf,hTδ2Vhn ⊂ ker(∆f,f−1([c̃n−ηf ,c̃n+ηf ]∩[a,b]),h) ,

while Gh =
⊥
⊕

n∈{1,...,N}
ker(∆f,f−1([c̃n−ηf ,c̃n+ηf ]∩[a,b]),h)︸ ︷︷ ︸

=:Ghn

. (103)
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Proposition 6.5. Under the assumptions of Proposition 6.4 and with the notations (98)–(103),
the operator ΠGhdf,hTδ2

∣∣
Vhm,n

: Vhm,n → Ghn is, for 1 ≤ m < n ≤ N , one to one, and, when

dimVhm,n 6= 0 , its singular values all satisfy µh
log∼ e−

c̃n−c̃m
h .

Moreover, the non zero singular values of ΠGhdf,hTδ2 : Vh → L2(Ω) (resp. of ΠGhndf,hTδ2
∣∣
Vhn

:

Vhn → L2(Ω) , where n ∈ {2, . . . , N} is fixed) are obtained by collecting all those non zero singular

values for 1 ≤ m < n ≤ N (resp. for 1 ≤ m < n) , with an Õ(e−
δ1
h ) relative error.

Proof. For every 1 ≤ m < n ≤ N such that Xm,n(a, b) 6= ∅ , the composition of the exponential
decay estimates on the ϕhj given in (84), j ∈ Xm,n(a, b) , and on the elements of any orthonormal

basis (ψhk )1≤k≤Kn of Ghn = ker(∆f,f−1([c̃n−ηf ,c̃n+ηf ]∩[a,b]),h) leads to

∀u ∈ Vhm,n , ‖ΠGhdf,hTδ2u‖ = Õ(e−
c̃n−c̃m

h )‖u‖ . (104)

Let us now prove by reductio ad absurdum that

∀ 1 ≤ m < n ≤ N such that Xm,n(a, b) 6= ∅ , ∀u ∈ Vhm,n , ‖u‖ = Õ(e
c̃n−c̃m

h )‖ΠGhdf,hTδ2u‖ .

Let us then assume that there exist ε1 > 0 , 1 ≤ m0 < n0 ≤ N , a strictly decreasing sequence
(hk)k∈N converging to 0 and, for every k ∈ N , uhk ∈ Vhkm0,n0

\ {0} such that

‖ΠGhkdf,f−1([a,b]),hkTδ2uhk‖ ≤ e
− c̃n0−c̃m0+ε1

hk ‖uhk‖ . (105)

Without restriction, we choose the pair (m0, n0) among the pairs for which (105) holds such that
λ0 := c̃n0 − c̃m0 is minimal. Set

ℓ := ♯ {(m,n) ∈ X (a, b) , c̃n − c̃m ≤ λ0} .

Theorem 6.3-a) says that the ℓ-th singular value of δ[0,õ(1)],[a,b],h and therefore, with (91), the

ℓ-th singular value of ΠGhdf,f−1[a,b],hTδ2
∣∣
Vh satisfy

lim
h→0
−h logµℓ(ΠGhdf,f−1([a,b]),hTδ2

∣∣
Vh) = lim

h→0
−h logµℓ(δ[0,õ(1)],[a,b],h) = λ0 .

By using in addition the Õ(e−
δ1
h )-orthogonal decomposition

Vh = Vh+ ⊕ Vh0 with Vh0 = ker(ΠGhdf,f−1([a,b]),hTδ2
∣∣
Vh) ,

applying Proposition 5.4-b) gives

lim
h→0
−h logµℓ(ΠGhdf,f−1([a,b]),hTδ2

∣∣
Vh+

) = lim
h→0
−h logµℓ(δ[0,õ(1)],[a,b],h) = λ0 .

Because Vh+ is finite dimensional, dimVh+ = ♯X (a, b) , the max-min principle implies

µℓ(ΠGhdf,hTδ2
∣∣
Vh+

) = min
dimW=♯X (a,b)−ℓ+1

max
v∈W\{0}

‖ΠGhdf,hTδ2v‖
‖v‖ .

We obtain a contradiction by considering

W =

(
⊕

c̃n−c̃m>λ0

Vhkm,n
)
⊕ Cuhk .

This ends the proof of the first statement.
By applying again Proposition 5.4-b)with nowB = ΠGhdf,hTδ2 acting on Vh+ , the singular values
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of ΠGhdf,hTδ2
∣∣
Vh+

are obtained, modulo some Õ(e−
δ1
h ) relative error, by collecting all the singular

values of ΠGhndf,hTδ2
∣∣
Vhn

, n ∈ {2, . . . , N} . Actually, Ghn ⊥ Ghn′ and Vhn and Vhn′ are Õ(e−
δ1
h )-

orthogonal for n 6= n′ . This reduces the problem to the computation of the singular values of
ΠGhndf,hTδ2

∣∣
Vhn

. For n ∈ {2, . . . , N} , we solve it by reverse induction on m ∈ {1, . . . , n− 1} by
considering ⊕m≤m′<n Vhm′,n . Simply apply Proposition 5.4-c) with

E′h = ⊕
m≤m′<n

Vhm,n , µdimE′h(ΠGhndf,hTδ2
∣∣
E′h)

log∼ e−
c̃n−c̃m

h ,

E′′h = Vhm−1,n , ‖ΠGhndf,hTδ2
∣∣
E′′h‖ = Õ(e−

c̃n−c̃m−1
h ) ≤ Õ(e−

c̃n−c̃m+2ηf
h ) ≤ Õ(e−

c̃n−c̃m+δ1
h ) ,

by starting from the first case when dimE′h 6= 0 . This implies that the non zero singular

values of ΠGhndf,hTδ2 : ⊕m−1≤m′<n Vhm′,n are obtained, modulo some Õ(e−
δ1
h ) relative error, by

collecting the non zero singular values of ΠGhndf,hTδ2
∣∣
Vh
m′,n

for m − 1 ≤ m′ < n . This ends the

proof of the second statement.

Proposition 6.6. Assume that Theorem 6.3 holds true at step N and let Gh be defined by (89).
There exists a basis (φhj )j∈J (a,b) of Vh such that the φhj ’s satisfy the same properties as the ϕhj ’s,
that is the ones of Definition 6.1 and of Theorem 6.3, as well as the additional following one:

Ψhj ⊥ Ψhj′ for j 6= j′ (106)

where Ψhj = ΠGhdf,hTδ2φ
h
j . (107)

In particular, according to Proposition 6.5, the singular values of ΠGhdf,hTδ2 : Vh → L2(Ω)

are given by the numbers ‖Ψhj ‖L2(1 + Õ(e−
δ1
h )) , j ∈ J (a, b) , where ‖Ψhj ‖L2

log∼ e−
yα−xα

h when
j = (α, xα) ∈ X (a, b) .

Proof. We keep φhj = ϕhj if j ∈ Y(a, b) ∪ Z(a, b) . Because Ghn ⊥ Ghn′ for n 6= n′ and

ΠGhdf,hTδ2Vhn ⊂ Ghn for 2 ≤ n ≤ N , it suffices to construct the family (φhj )j∈Xn(a,b) for any

n ∈ {2, . . . , N} . Take some fixed n ∈ {2, . . . , N} . While keeping the Õ(e−
δ1
h )-orthogonal

decomposition
Vhn = ⊕1≤m<n Vhm,n ,

the first result of Proposition 6.5 says that, for a fixed pair (m,n) , the Õ(e−
δ1
h )-orthonormal

basis (ϕhj )j∈Xm,n(a,b) can be replaced by an orthonormal one (ϕ̃hj )j∈Xm,n(a,b) such that

ΠGhndf,hTδ2ϕ̃
h
j ⊥ ΠGhndf,hTδ2 ϕ̃

h
j′ for j 6= j′, j, j′ ∈ Xm,n(a, b)

and ‖ΠGhndf,hTδ2ϕ̃
h
j ‖

log∼ e−
c̃n−c̃m

h for j ∈ Xm,n(a, b) .

Because the change of basis P hm,n ∈ L(Vhm,n) given by ϕ̃hj = P hm,nϕ
h
j satisfies

‖(P hm,n)∗P hm,n − IdhVm,n‖ = Õ(e−
δ1
h ) ,

the new family (ϕ̃hj )j∈Xm,n(a,b) keeps all the properties of the initial one (ϕhj )j∈Xm,n(a,b) . In

Theorem 6.3 at step N , nothing is changed when the ϕhj , j ∈ Xm,n(a, b) , are replaced by the

ϕ̃hj , j ∈ Xm,n(a, b) , and this can be done for all pairs (m,n) and with any initial guess of the

family (ϕhj )j∈J (a,b) .

Thus, it suffices to construct the family (φhj )j∈Xn(a,b) such that (106) and (107) hold when
j ∈ Xm1,n(a, b) , j

′ ∈ Xm2,n(a, b) , m1 6= m2 . Like at the end of the previous proof, we do it by
reverse induction on m ∈ {1, . . . , n− 1} .
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• For m = n− 1 , simply take φhj = ϕ̃hj and set

Wh
n−1,n = Span(φhj , h ∈ Xn−1,n(a, b)) = Vhn−1,n .

• Assume that the φhj ’s have been constructed for j ∈ Xm′,n(a, b) , for allm
′ ∈ {m, . . . , n− 1} ,

with Wh
m′,n = Span(φhj , j ∈ Xm′,n(a, b)) and the equality of the Õ(e−

δ1
h )-orthogonal de-

compositions
⊕

m≤m′<n
Wh
m′,n = ⊕

m≤m′<n
Vhm′,n .

Set, for j ∈ Xm−1,n(a, b) ,

ϕ̂hj = ϕhj −
∑

j′∈⊔m≤m′<n Xm′,n(a,b)

〈Ψhj′ ,ΠGhndf,hTδ2ϕhj 〉
‖Ψhj′‖2

φhj′ ,

and define
Wh
m−1,n := Span(ϕ̂hj , j ∈ Xm−1,n(a, b)) .

We have clearly

ΠGhndf,hTδ2ϕ̂
h
j ⊥ Span(Ψhj′ , j

′ ∈ Xm′,n(a, b),m ≤ m′ < n)

and

⊕
m−1≤m′<n

Vhm′,n =Wh
m−1,n ⊕

(
⊕

m≤m′<n
Vhm′,n

)
.

All the properties of Theorem 6.3 at step N are verified for the δ1-family of quasimodes
given by the ϕ̂hj , j ∈ Xm−1,n(a, b) , and the φhj , j ∈ Xm′,n(a, b) . The estimates on ϕ̂hj ,
j ∈ Xm−1,n(a, b) , are consequences of:

Ψhj′ = ΠGhndf,hφ
h
j′ ∈ ker(∆f,f−1([c̃n−ηf ,c̃n+ηf ]∩[a,b]),h) for j′ ∈ ⊔

m≤m′<n
Xm′,n(a, b) ,

where ‖Ψhj′‖L2
log∼ e−

c̃n−c̃
m′

h when j′ ∈ Xm′,n(a, b)

and
〈Ψhj′ ,ΠGhndf,hTδ2ϕhj 〉

‖Ψhj′‖2
= Õ(e

c̃n−c̃
m′

h )× Õ(e−
c̃n−c̃m−1

h ) = Õ(e−
c̃
m′−c̃m−1

h ) ,

‖e
|f−c̃

m′ |

h φhj′‖W (f−1([a,b])\Sδ1) = Õ(1) ,

c̃m′ − c̃m−1 ≥ 2ηf ≥ δ1 .
Hence, the vectors ϕ̂hj , j ∈ Xm−1,n(a, b) , satisfy

‖e
|f−c̃m−1|

h ϕ̂hj ‖W (f−1([a,b])\Sδ1) = Õ(1) .

Note in particular that the total space Vh is not changed, so the statement of Theorem 6.3-
b) and the factorization in Theorem 6.3-c) are obviously true.

Once we have the Õ(e−
δ1
h )-orthogonal decomposition

Vh+ =

(
⊕

m−1≤m′<n
Wh
m′,n

)
⊕
(

⊕
1≤m′<m−2

Vhm′,n

)
,

we just apply our first argument with Vhm−1,n now replaced by Wh
m−1,n , which permits

to replace the Õ(e−
δ1
h )-orthonormal basis (ϕ̂hj )j∈Xm−1,n(a,b) of Wh

m−1,n by an orthonormal

basis (ϕ̃hj )j∈Xm−1,n(a,b) such that

ΠGhndf,hTδ2ϕ̃
h
j ⊥ ΠGhndf,hTδ2ϕ̃

h
j′ for j 6= j′, j, j′ ∈ Xm−1,n(a, b) .

We finally define φhj = ϕ̃hj for j ∈ Xm−1,n(a, b) .
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6.4 N → N + 1: Collecting the information from step N

We assume that Theorem 6.3 holds at step N , i.e. when ♯([a, b] ∩
{
c1, . . . , cNf

}
) = N , and we

consider the case
[a, b] ∩

{
c1, . . . , cNf

}
= {c̃1, . . . , c̃N+1} .

Define
a1 = a , b1 = c̃N + ηf and a2 = c̃2 − ηf , b2 = b .

We can use Theorem 6.3 and its consequences given in Subsection 6.3 for

[a1, b1] ∩
{
c1, . . . , cNf

}
= {c̃1, . . . , c̃N} and [a2, b2] ∩

{
c1, . . . , cNf

}
= {c̃2, . . . , c̃N+1} .

Let us start with the interval [a2, b2] . Consider ∆f,Ω2,h
and let Gh2 and Fh2 be defined like Gh

and Fh in (90) and (89) while replacing (a, b) by (a2, b2) , with

Gh2 =
⊥
⊕

2≤n≤N+1
Gh2,n = ⊕

2≤n≤N+1
ker(∆f,f−1([c̃n−ηf ,c̃n+ηf ]∩[a,b]),h) .

For this interval [a2, b2] , the family of quasimodes (φh2,j)j∈J (a2,b2) is given by Proposition 6.6
with the orthogonality condition (106),(107), and we set

Wh
m,n(a2, b2) = Span(φh2,j , j ∈ Xm,n(a2, b2)) , 2 ≤ m < n ≤ N + 1 .

For the interval [a1, b1] , we use similar notations ∆f,Ω1,h
, Gh1 , F

h
1 with now

Gh1 =
⊥
⊕

1≤n≤N
Gh1,n = ⊕

1≤n≤N
ker(∆f,f−1([c̃n−ηf ,c̃n+ηf ]∩[a,b]),h) .

We start with a family of quasimodes

(ϕh0,j)j∈J (a1,b1) (108)

given by Theorem 6.3 and merge this family with (φh2,j)j∈J (a2,b2)∩J (a1,b1) , after considering the

restrictions φ2,j
∣∣
f−1([a2,b1])

extended by 0 in fa2a1=a , according to the following procedure:

ϕh1,j = φh2,j if j ∈ (α, c̃) ∈ J (a1, b1) , c̃ ≥ c̃2 ,
ϕh1,j = ϕh0,j if j ∈ (α, c̃1) ∈ Z(a1, b1) ,

ϕh1,j = ϕh0,j −
∑

j′∈X (a2,b2)∩X (a1,b1)

〈Ψh2,j′ ,ΠGh2 df,hTδ2ϕ
h
0,j〉

‖Ψh2,j′‖2
φh2,j′ if j = (α, c̃1) ∈ X (a1, b1) ,

with Ψh2,j′ = ΠGh2 df,hTδ2φ
h
2,j′ = ΠGh1 df,hTδ2ϕ

h
1,j′ for j′ ∈ X (a2, b2) ∩ X (a1, b1) ,

where we recall that j = (α, c̃) ∈ X (a2, b2) ∩ X (a1, b1) means c̃2 ≤ xα < yα ≤ c̃N .

Remark 6.7. Assume that γ1(h), (ϕ
h
1,j)j∈J (a1,b1) and γ2(h), (ϕ

h
2,j)j∈J (a2,b2) are given by Theo-

rem 6.3 and Definition 6.1 at step N , respectively in [a1, b1] and in [a2, b2] . Let us then define
γ(h) := max(γ1(h), γ2(h)) and, for i ∈ {1, 2} ,

ϕ̃hi,j :=

{
ϕhi,j when j ∈ Y(ai, bi) ∪ Z(ai, bi) ,
χ
y
(p+1)
α ,γ(h)

ϕhi,j when j = (α, x
(p)
α ) ∈ X (p)(ai, bi) , p ∈ {0, . . . , N − 1} ,

where χ
y
(p+1)
α ,γ(h)

is defined by (86) in Definition 6.2. Then, the families (ϕ̃h1,j)j∈J (a1,b1) and

(ϕ̃h2,j)j∈J (a2,b2) both satisfy the properties of Theorem 6.3 and Definition 6.1, respectively in
[a1, b1] and in [a2, b2] , but now with the same γ(h) . Hence, we will assume here that the prop-
erties of the families (φh2,j)j∈J (a2,b2) and (ϕh0,j)j∈J (a1,b1) are satisfied with the same γ(h) .
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The spaces generated by those quasimodes are denoted by

Vh(a1, b1) = Span(ϕh1,j , j ∈ J (a1, b1)) and Vh(a2, b2) = Span(φh2,j , j ∈ J (a2, b2)) ,

and the same rule applies for Vhm,n , Vhn , 1 ≤ m < n ≤ N + 1 , Vh+ , Vh0 defined in (98)–(101),

while writingWh
m,n(a2, b2) instead of Vhm,n(a2, b2) refers to the additional orthogonality property

of Proposition 6.6.

Proposition 6.8. The family (ϕh1,j)j∈J (a1,b1) satisfies all the properties of Theorem 6.3 at step

N . Moreover, the family (φ1,j)j∈J (a1,b1) deduced from (ϕh1,j)j∈J (a1,b1) in Proposition 6.6 can be
constructed such that

∀j ∈ X (a1, b1) ∩ X (a2, b2) , φh1,j = φh2,j .

Proof. By construction (and Remark 6.7), the family (ϕh1,j)j∈J (a1,b1) is a Õ(e−
δ1
h )-orthonormal

δ1-family of quasimodes, and Gh1,n = Gh2,n for 2 ≤ n ≤ N and

~d(Span(ϕh0,j , j ∈ J (a1, b1)), Fh1 ) + ~d(Fh1 , Span(ϕ
h
0,j , j ∈ J (a1, b1)) = Õ(e−

δ1
h ) ,

~d(Vh(a2, b2), Fh2 ) + ~d(Fh2 ,Vh(a2, b2)) = Õ(e−
δ1
h ) ,

~d(Fh1 , G
h
1 ) +

~d(Gh1 , F
h
1 ) = Õ(e−

ηf
h ) ≤ Õ(e−

δ1
h ) ,

and ~d(Fh2 , G
h
2 ) +

~d(Gh2 , F
h
2 ) = Õ(e−

ηf
h ) ≤ Õ(e−

δ1
h )

ensure the validity of the last statement of b) in Theorem 6.3, that is

~d(Vh(a1, b1), Fh1 ) + ~d(Fh1 ,Vh(a1, b1)) = Õ(e−
δ1
h ) .

The exponential decay estimates on the ϕh1,j , j = (α, c̃1) ∈ X (a1, b1) , are actually obtained like
in the proof of Proposition 6.6 by noticing that

∀j ∈ X1,n(a1, b1) , ϕh1,j = ϕh0,j −
∑

j′∈ ⊔
2≤m′<n≤N

Xm′,n(a2, b2)

〈Ψh2,j′ ,ΠGh2,ndf,hTδ2ϕ
h
0,j〉

‖Ψh2,j′‖2
φh2,j′ ,

where Gh1,n = Gh2,n for 3 ≤ n ≤ N and

Ψ2,j′ = ΠGh2,ndf,hTδ2φ
h
2,j′ = ΠGh1,ndf,hTδ2ϕ

h
1,j′ for j′ ∈ Xm′,n(a1, b1) , 2 ≤ m′ < n ≤ N .

We still have to check the factorization of Theorem 6.3-c), namely

df,f−1([a1,b1])hTδ2
∣∣
Vh(a1,b1) = ChΠFh1 df,f−1([a1,b1]),hTδ2

∣∣
Vh(a1,b1) with ‖Ch‖ = Õ(e

2δ2
h ) .

We will do it by first considering the operator ΠGh1 df,hTδ2 .

From the properties of the ϕh1,j , j ∈ J (a1, b1) , we already know that (see indeed (104))

‖ΠGh1 df,hTδ2
∣∣
Vhm,n(a1,b1)

‖ = Õ(e−
c̃n−c̃m

h ) and Vh0 (a1, b1) ⊂ ker(df,hTδ2) .

We now check that ΠGh1 df,hTδ2
∣∣
Vhm,n(a1,b1)

is one to one and that its singular values, which thus

do not vanish, all satisfy µh
log∼ e−

c̃n−c̃m
h for every 1 ≤ m < n ≤ N such that Xm,n(a1, b1) 6= ∅:

• Since the vectors Ψh2,j = ΠGh1 df,hTδ2φ
h
2,j = ΠGh2 df,hTδ2φ

h
2,j are, according to Proposition 6.6

applied in [a2, b2] , mutually orthogonal with ‖Ψh2,j‖
log∼ e−

c̃n−c̃m
h when j ∈ Xm,n(a1, b1) ,

2 ≤ m < n ≤ N , the result holds for m ≥ 2 .
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• Case m = 1: as in the proof of Proposition 6.5, assume by reductio ad absurdum that there
exist 2 ≤ n ≤ N , a strictly decreasing sequence (hk)k∈N converging to 0 and, for every
k ∈ N , uhk ∈ Vhk1,n(a1, b1) \ {0} such that

‖Π
G
hk
1

df,hkTδ2uhk‖ = õ(e
− c̃n−c̃1

hk )‖uhk‖ ,

and let n0 ∈ {2, . . .N} be the smallest n such that the above holds. Consider then

E′′hk = (Cuhk)⊕ Vhk0 (a1, b1)⊕
(

⊕
c̃n−c̃m>c̃n0−c̃1

Vhkm,n(a1, b1)
)
,

so that dimVhk(a1, b1)− dim(E′′hk) = ♯

(
⊔

c̃n−c̃m≤c̃n0−c̃1
Xm,n(a1, b1)

)
− 1 =: ℓ0 − 1 .

Owing to the exponential decay estimates on the quasimodes, we obtain

‖df,hkTδ2
∣∣
E′′hk

‖ = Õ(e
− c̃n0−c̃1−2δ2

hk ) (109)

and (see (104))

‖Π
G
hk
1

df,hkTδ2
∣∣
E′′hk

‖ = õ(e
− c̃n0−c̃1

hk ) .

Since moreover ‖ΠFh1 −ΠFh1 ΠGh1 ‖ = Õ(e−
ηf
h ) , we deduce ‖Π

F
hk
1

df,hkTδ2
∣∣
E′′hk

‖ = õ(e
− c̃n0−c̃1

hk )

and then, applying the max-min principle as in the proof of Proposition 6.5 with here
W = E′′hk ,

µℓ0(ΠFhk1

df,hkTδ2
∣∣
Vhk (a1,b1)) = õ(e

− c̃n0−c̃1
hk ) .

Hence, since Tδ2 is Õ(e−
δ1
h )-unitary (see (95)) and ~d(Fh1 , Tδ2Vh(a1, b1))+~d(Tδ2Vh(a1, b1), Fh1 ) =

Õ(e−
δ1
h ) (see (93)), it follows from Proposition 5.3 that

µℓ0(Π[0,õ(1)],[a1,b1],hkdf,f−1([a1,b1]),hk) = õ(e
− c̃n0−c̃1

hk ) with ℓ0 = ♯

(
⊔

c̃n−c̃m≤c̃n0−c̃1
Xm,n(a1, b1)

)
,

in contradiction with Theorem 6.3-a) in [a1, b1] .

Because the spaces Vhm,n(a1, b1) have mutually orthogonal images by ΠGh1 df,hTδ2 , i.e.

ΠGh1 df,hTδ2V
h
m1,n1

(a1, b1) ⊥ ΠGh1 df,hTδ2V
h
m2,n2

(a1, b1) for (m1, n1) 6= (m2, n2) ,

we can conclude like at the end of the proof of Proposition 6.6 that there exists a basis (φh1,j)j∈J (a1,b1)

such that (106) and (107) hold, and in which nothing needs to be changed when j ∈ X (a2, b2) .
It follows from the above analysis that ΠGh1 df,hTδ2

∣∣
Vh+(a1,b1)

is one to one, and the factorization

df,hTδ2 = C̃hΠGh1 df,hTδ2 is then satisfied with C̃h : Gh1 → L2(f b1a1 ) defined by C̃h = 0 on the

orthogonal complement of ΠGh1 df,hTδ2
(
Vh+(a1, b1)

)
in Gh1 and

∀j ∈ X (a1, b1) , C̃hΨh1,j = df,hTδ2φ
h
1,j .

Moreover, the relation ‖C̃h‖ = Õ(e
2δ2
h ) follows from the orthogonality of the family (Ψh1,j)j∈X (a1,b1)

and from ‖Ψh1,j‖
log∼ e

yα−xα
h and ‖df,hTδ2φh1,j‖ = Õ(e−

yα−xα−2δ2
h ) for j = (α, c̃) ∈ X (a1, b1) (see

(109)).
Finally, applying the symmetric version of Lemma 5.6, that is exchanging Fh and Gh , yields
the factorization df,hTδ2 = ChΠFh1 df,hTδ2 : Vh(a1, b1)→ L2(f b1a1 ) stated in Theorem 6.3-c).
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We have now spaces Wh
m,n(a1, b1) , 1 ≤ m < n ≤ N , and Wh

m,n(a2, b2) , 2 ≤ m < n ≤ N +1 ,
such that

Wh
m,n(a1, b1) =Wh

m,n(a2, b2) when 2 ≤ m < n ≤ N .

We now work in the interval [a, b] and we consider ∆f,Ω,h , G
h , and Fh according to (90) and

(89), after replacing N by N + 1 and {c̃1, . . . , c̃N} by {c̃1, . . . , c̃N+1} . We set

Wh
m,n(a, b) =

{ Wh
m,n(a2, b2) = Span(φh2,j , j ∈ Xm,n(a2, b2)) for 2 ≤ m < n ≤ N + 1 ,
Wh

1,n(a1, b1) = Span(φh1,j , j ∈ X1,n(a1, b1)) for 1 = m < n ≤ N ,
(110)

V ′h
0 (a, b) = Span(φh2,j , j ∈ Y(a2, b2) ∪ Z(a2, b2)) , (111)

and V ′h(a, b) = ( ⊕
0<n−m≤N−1

Wh
m,n(a, b))

︸ ︷︷ ︸
V′h

+

⊕V ′h
0 . (112)

Accordingly, we introduce

J ′
+(a, b) = X (a2, b2) ⊔ ( ⊔

2<n≤N
X1,n(a1, b1)) = ⊔

0<n−m≤N−1
Xm,n(a, b) , (113)

J ′
0(a, b) = Y(a2, b2) ⊔ Z(a2, b2) and J ′(a, b) = J ′

+(a, b) ⊔ J ′
0(a, b) , (114)

ϕhj = φhj =





φh2,j if j = (α, c̃) ∈ J ′
+(a, b) , c̃2 ≤ c̃ ,

φh2,j if j ∈ J ′
0(a, b) ,

φh1,j if j = (α, c̃1) ∈ J ′
+(a, b) .

(115)

In the perspective of applying Proposition 5.8, we now consider the space E′h = Tδ2V ′h .

Proposition 6.9. With the notation (112), consider E′h = Tδ2V ′h(a, b) , E′h
0 = Tδ2V ′h

0 (a, b) ,
and let Gh be defined by (89) with N replaced by N + 1 . The operator ΠGhdf,f−1([a,b])h

∣∣
E′h

satisfies

rank (ΠGhdf,h
∣∣
E′h) = ♯J ′

+(a, b) =: ℓ1

and ker(ΠGhdf,f−1([a,b])h

∣∣
E′h) = E′h

0 ,

and its non zero singular values can be written (µhj )j∈J ′
+(a,b) with

µhj
log∼ e−

yα−xα
h for every j = (α, xα) ∈ J ′

+(a, b) .

In particular, its ℓ1-th singular value satisfies

e−
max(c̃N+1−c̃2,c̃N−c̃1)

h = Õ
(
µℓ1(ΠGhdf,f−1([a,b]),h

∣∣
E′h)

)
.

Moreover, the operator df,f−1([a,b]),h

∣∣
E′h is a left multiple of ΠGhdf,f−1([a,b]),h

∣∣
E′h :

E′h
df,f−1([a,b]),h //

Π
Gh
df,f−1([a,b]),h

**❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱ L2(f−1([a, b]))

Gh

C̃h

OO

with ‖C̃h‖ = Õ(e
2δ2
h ) .

Finally, the same results hold when Gh is replaced by Fh = F[0,õ(1)],[a,b],h .
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Proof. The basis (φhj )j∈J ′(a,b) of V ′h(a, b) defined in (115) (note that the inclusion J ′(a, b) ⊂
J (a, b) is strict in general) has been constructed so that it is a partial δ1-family of quasimodes
in the sense of Definition 6.1, with the additional orthogonality property (106),(107). Moreover,
we know that (see indeed Proposition 6.6)

‖Ψhj ‖ = ‖ΠGhdf,f−1([a,b]),hTδ2φ
h
j ‖L2

log∼ e−
yα−xα

h when j = (α, xα) ∈ J ′
+(a, b)(116)

and Ψhj = ΠGhdf,hTδ2φ
h
j = 0 when j ∈ J ′

0(a, b) . (117)

Again, with (see (95))

‖Tδ2T ∗
δ2 − IdE′h‖+ ‖T ∗

δ2Tδ2 − IdVh‖ = Õ(e−
ηf
h ) ,

this proves the results about the rank, the kernel, and the singular values of ΠGhdf,f−1([a,b]),h

∣∣
E′h .

Moreover, reasoning with the orthogonality of the family (Ψhj )j∈J ′(a,b) and (116),(117), like at
the end of the proof of Proposition 6.8, leads to the factorization

C̃hΠGhdf,f−1([a,b]),hTδ2
∣∣
V′h(a,b)

= df,f−1([a,b]),hTδ2
∣∣
V′h(a,b)

with ‖C̃h‖ = Õ(e
2δ2
h ) . We conclude with the invertibility of Tδ2 : V ′h(a, b)→ E′h .

Finally, replacing Gh by Fh simply relies on Lemma 5.6 used as we did around (94).

6.5 N → N + 1: Handling the bars containing [c̃1, c̃N+1[

We continue in the framework of the previous paragraph with

[a, b] ∩
{
c1, . . . , cNf

}
= {c̃1, . . . , c̃N+1}

and
a1 = a , b1 = c̃N + ηf , a2 = c̃2 − ηf , b2 = b .

We use the partition
J (a, b) = J ′(a, b) ⊔ J ′′(a, b) ,

where J ′(a, b) is defined in (114) and

J ′′(a, b) = {j = (α, c̃1) ∈ X (a, b) , yα = c̃N+1} ⊔ {j = (α, c̃1) ∈ Z(a, b)} (118)

= {j = (α, c̃1) ∈ Z(a1, b1)} = J (a1, b1) \ (J (a1, b1) ∩ J ′(a, b)) .

If we remember that (α, c̃) ∈ Z(a, b) can be represented by the bar [c̃, b[ , the set J ′′(a, b) actually
collects the lower endpoints (which are multiple copies of c̃1) of bars containing [c̃1, c̃N+1[ . Thus,
the partition of J (a, b) and the identifications of J ′′(a, b) are clear. In the preceding section, we
started with a δ1-family of quasimodes (ϕh0,j)j∈J (a1,b1) in the interval [a1, b1] = [a, c̃N + ηf ] (see

(108)), and only used for the construction of E′h in Proposition 6.9, among the corresponding
j ∈ J (a1, b1) , the indexes j ∈ J (a1, b1) ∩ J ′(a, b) (see (115)). We now use the vectors ϕh0,j for
j ∈ J ′′(a, b) .

Proposition 6.10. The vectors ϕh0,j , j ∈ J ′′(a, b) , introduced in (108), where b1 = c̃N + ηf ,

can be “extended” to f−1([a, b2]) into vectors ϕhj ∈ D(df,f−1([a,b2]),h) such that ϕhj
∣∣
f
c̃N+δ1
a

=

ϕh0,j
∣∣
f
c̃N+δ1
a

and such that all the properties of Definition 6.1 hold on the interval [a, b] = [a1, b2]

with Ihj = [c̃1 − δ1, c̃N+1 − γ′′(h)] , limh→0 γ
′′(h) = 0 .

Proof. For j ∈ J ′′(a, b) , j has the form j = (α, c̃1) ∈ Z(a1, b1) and the vector ϕh0,j then satisfies

the support condition (83) (that is more precisely supp ϕh0,j ⊂ f−1([c̃1 − δ1, b1] ∩ [a1, b1])),
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the exponential decay estimate (84) with a, b replaced by a1 = a, b1 = c̃N + ηf , and ϕh0,j ∈
ker(df,f−1([a1,b1]),h) . For any γ ∈]0, ηf/2[ , we consider the domain [c̃N + δ1, c̃N+1 − γ] and we
consider c̃N + ηf as a new artificial “critical value”, for which we know

ker(∆f,f−1([c̃N+δ1,c̃N+1−γ]),h) = {0} .

We then apply Proposition 3.9-ii) with a0, a, c̃1, b there replaced here by c̃1, c̃N + δ1, c̃N +
ηf , c̃N+1 − γ and ωh replaced by ϕh0,j . This provides us a new ω̃j,h ∈ D(df,f−1([a,c̃N+1−γ]),h)

which satisfies (83)–(85), now on [a, c̃N+1 − γ] with Ihj = [c̃1 − δ1, c̃N+1 − γ] . With the cut-off
χc̃N+1,γ defined like in Definition 6.2 , set

ϕγ,hj = χcN+1,γω̃j,h ∈ D(df,f−1([a,b2]),h) .

It does satisfy, on the interval [a, b2] , the conditions (83)–(85) with Ihj and γ(h) there replaced
by [a, c̃N+1 − 2γ] and 2γ .

For n ∈ N , take γ = 1
n+1 . The estimate Bh = Õ(Ah) implies Bh ≤ e

1
(n+1)hAh for h ∈]0, hn[ ,

and (hn)n∈N can be chosen to be strictly decreasing. We then adjust γ′′(h) = 2γ = 2
n+1 for

h ∈ [hn+1, hn[ as we did at the end of the proof of Proposition 3.8. This ends the proof.

Remark 6.11. In the construction of Proposition 3.9-ii), we used the extension by 0 , here on
f c̃N+δ1
a , of

d∗f,f−1([c̃N+δ1,c̃N+1−γ]),h(∆f,f−1([c̃N+δ1,c̃N+1−γ]),h)
−1(hdχh ∧ ϕh0,j) .

Because of this, the point c̃N + δ1 must be included in the set Sδ1 introduced in Definition 6.1.

When the family (ϕhj )j∈J ′′(a,b) is given by Proposition 6.10, the operator Tδ2 is defined on

Span(ϕhj , j ∈ J ′′(a, b)) by

∀j ∈ J ′′(a, b), Tδ2ϕ
h
j = χc̃N+1,δ2ϕ

h
j ,

like in Definition 6.2 when j ∈ X (a, b) . Moreover, following the procedure of Remark 6.7, we can
assume without loss of generality that γ′′(h) , given by Proposition 6.10, equals γ(h) , considered
in Section 6.4 (see Remark 6.7). Now, the orthogonalization process of Proposition 6.6 can be
continued by setting

∀j ∈ J ′′(a, b), ϕ̂hj = ϕhj −
∑

j′∈ ⊔
2≤m′≤N

Xm′,N+1(a, b)

〈Ψh2,j′ ,ΠGh2,N+1
df,hTδ2ϕ

h
j 〉

‖Ψh2,j′‖2
φh2,j′ , (119)

where φh2,j′ = φhj′ (see (115)) and ΠGh2,N+1
= ΠGhN+1

. Moreover, without knowing the sin-

gular values of ΠGhN+1
df,hTδ2

∣∣
Span(ϕ̂hj ,j∈J ′′(a,b))

, we can replace the basis (ϕ̂hj )j∈J′′(a,b) by an

orthonormal basis (φhj )j∈J ′′(a,b) such that ΠGhN+1
df,hTδ2φ

h
j = Ψhj , with Ψhj ⊥ Ψhj′ when j 6= j′ ,

j, j′ ∈ J ′′(a, b) , without changing its characteristic properties.
The construction of the new quasimode basis at step N + 1 is almost achieved, except that
the family (ϕhj )j∈J (a,b) is not exactly a δ1-family of quasimodes in the sense of Definition 6.1.
In fact, we have not distinguished the endpoints of bars j ∈ X1,N+1(a, b) from the endpoints
j = (α, c̃1) ∈ Z(a, b) in (118). For this reason, we prefer to introduce a different notation.

Definition 6.12. The family (ϕ̃hj )j∈J (a,b) , where we keep the notation ϕhj = ϕ̃hj for j ∈ J ′(a, b) ,
is called an intermediate δ1-family of quasimodes if the following conditions are satisfied:
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1. It is Õ(e−
δ1
h )-orthonormal like in Theorem 6.3 and all the properties of δ1-quasimodes in

Definition 6.1 are verified, with the only difference that Ihj = [c̃1 − δ1, c̃N+1 − γ(h)] for

all j ∈ J ′′(a, b) . For such a family, we set Ṽh(a, b) = Span(ϕ̃hj , j ∈ J (a, b)) , and the

operator Tδ2 : Ṽh(a, b) → D(df,f−1([a,b]),h) keeps the same definition Tδ2 ϕ̃
h
j = Tδ2ϕ

h
j as in

Definition 6.2 for j ∈ J ′(a, b) , while

Tδ2ϕ̃
h
j = χc̃N+1,δ2ϕ̃

h
j for j ∈ J ′′(a, b) .

2. The space Ṽh(a, b) is Õ(e−
δ1
h )-close to Fh = F[0,õ(1)],[a,b],h:

~d(Ṽh(a, b), F[0,õ(1)],[a,b],h) + ~d(F[0,õ(1)],[a,b],h, Ṽh(a, b)) = Õ(e−
δ1
h ) .

3. When V ′h(a, b) = Span(ϕhj , j ∈ J ′(a, b)) , V ′h
0 (a, b) = Span(ϕhj , j ∈ J ′

0(a, b)) , V ′h
+ (a, b) =

Span(ϕhj , j ∈ J ′
+(a, b)) , all the properties of Proposition 6.9 hold true.

If Gh is defined like in (89), we use the notation (φ̃hj )j∈J (a,b) and φ
h
j = φ̃hj for j ∈ J ′(a, b) when

the following additional orthogonality property holds:

Ψ̃hj ⊥ Ψ̃hj′ for j 6= j′ (120)

with Ψ̃hj = ΠGhdf,hTδ2 φ̃
h
j . (121)

When 1 ≤ m < n ≤ N + 1 and c̃n − c̃m < c̃N+1 − c̃1 , the corresponding spaces will be denoted

Vhm,n(a, b) = Span(ϕhj , j ∈ Xm,n(a, b)) , Wh
m,n(a, b) = Span(φhj , j ∈ Xm,n(a, b)) ,

while

Ṽh1,N+1(a, b) = Span(ϕ̃hj , j ∈ J ′′(a, b)) , W̃h
1,N+1(a, b) = Span(φ̃hj , j ∈ J ′′(a, b)) .

Our construction, and especially Proposition 6.10, provides such a family (ϕ̃hj )j∈J (a,b) . More

precisely, according to (119) and the lines below, and since Ghn ⊥ Ghn′ for 1 ≤ n < n′ ≤ N + 1 ,

our construction actually provides a family (φ̃hj )j∈J (a,b) , that is satisfying in addition (120) and
(121). Note that, like in Proposition 6.4, the operator

ΠGhdf,hTδ2 : Vh(a, b)→ L2(f ba)

does not depend on δ2 ∈]0, ηf [ .
In the remaining steps, we will consider various values of a and b and the above properties, espe-
cially the ones involving Gh and GhN+1 = ker(∆f,f−1([c̃N+1−ηf ,min(b,c̃N+1+ηf )]),h) , which depend
on b . More precisely, an intermediate δ1-family of quasimodes in the sense of Definition 6.12,
and constructed for the pair a < b , will have to be conveniently adapted for another pair a′ < b′

so that it satisfies Definition 6.12 for this new pair.

6.6 Lower bound for non zero singular values at step N + 1

This paragraph will end with the proof of Theorem 6.3-a) at step N + 1 . We are in the case

{
c1, . . . , cNf

}
∩ [a, b] =

{
c1, . . . , cNf

}
∩]a, b[= {c̃1, . . . , c̃N+1} . (122)

The notations J ′
+(a, b) , J ′

0(a, b) , J ′(a, b) , and J ′′(a, b) are the ones introduced in (113),

(114), and (118), and the spaces Vhm,n(a, b) , Wh
m,n(a, b) , c̃n − c̃m < c̃N+1 − c̃1 , Ṽh1,N+1(a, b) ,

W̃h
1,N+1(a, b) , V ′h

0 (a, b) , V ′h
+ (a, b) , V ′h(a, b) , are the ones of Definition 6.12. We set

ℓ0 := ♯X (a, b) = ♯Ac(a, b) = rank δ[0,õ(1)],[a,b],h ,
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where the last equality was proved in Proposition 4.4 and ♯Ac(a, b) = ♯X (a, b) since the number
of bars α such that in a < xα < yα < b equals the number of their lower endpoints.
Meanwhile, we set

ℓ1 := ℓ0 − ♯X1,N+1(a, b) = ♯ {j = (α, xα) ∈ X (a, b), yα − xα < c̃N+1 − c̃1} = dimV ′h
+ (a, b) .

Proposition 6.13. Consider the case c̃1 − δ1 ≤ a < c̃1 , c̃N+1 < b ≤ c̃N+1 + δ3 , and as-
sume δ1, δ2, δ3 ∈]0, ηf8 ] . Let Gh be given by (89), define V ′h(a, b) , Ṽh1,N+1(a, b) , and Tδ2 like in
Definition 6.12, and consider

Eh := Tδ2 Ṽh(a, b) = Tδ2 [V ′h(a, b)⊕ Ṽh1,N+1(a, b)] .

Then, the ℓ0-th singular value of ΠGhdf,h
∣∣
Eh

is bounded from below by

e−
c̃N+1−c̃1+max(δ1,δ3)

h ≤ e−
max(b−c̃1,c̃N+1−a)

h = Õ(µℓ0(ΠGhdf,h
∣∣
Eh

)) .

Proof. With our choice c̃1 − δ1 ≤ a < c̃1 and c̃N+1 < b ≤ c̃N+1 + δ3 , Proposition 4.5 says

e−
c̃N+1−c̃1+max(δ1,δ3)

h ≤ e−
max(b−c̃1,c̃N+1−a)

h = Õ
(
µℓ0(δ[0,õ(1)],[a,b],h)

)
, (123)

with δ[0,õ(1)],[a,b],h = ΠFhdf,f−1([a,b]),h

∣∣
Fh
,

where we recall Fh = F[0,õ(1)],[a,b],h .
Write

E′h = Tδ2V ′h(a, b) and E′′h = Tδ2 Ṽh1,N+1(a, b) .

The assumed exponential decay and the definition of Tδ2 in Definition 6.12 yield

~d(Eh, Ṽh(a, b)) + ~d(Ṽh(a, b), Eh) = Õ(e−
ηf
h ) ≤ Õ(e−

δ1
h )

and therefore
~d(Fh, Eh) + ~d(Eh, Fh) = Õ(e−

δ1
h ) .

Moreover, the decomposition Eh = E′h ⊕ E′′h is Õ(e−
δ1
h )-orthogonal and we know that

Eh ⊂ D(df,f−1([a,b],h)) , df,f−1([a,b]),h

∣∣
Eh

= df,h
∣∣
Eh

and ~d(Fh, Gh) + ~d(Gh, Fh) = Õ(e−
ηf
h ) .

In addition, Proposition 6.9, whose properties are ensured by the condition 3 of Definition 6.12,
provides the factorization

df,f−1([a,b],h)

∣∣
E′h = ChΠFhdf,f−1([a,b]),h

∣∣
E′h

with ‖Ch‖ = Õ(e
2δ2
h ) and then ‖Ch‖

[
~d(Fh, Gh) + ~d(Gh, Fh)

]
= Õ(e

2δ2−ηf
h ) ≤ Õ(e−

δ1
h ) .

So, Hypotheses 1,2,3, and the inequality (69) of Hypothesis 4 in Proposition 5.8 are satisfied

with Bh = df,f−1([a,b]),h and ̺(h) = Õ(e−
δ1
h ) when δ1, δ2, δ3 ∈]0, ηf8 ] . Moreover, we know from

Proposition 6.9 that

rank(ΠGhdf,f−1([a,b]),h

∣∣
E′h) = ℓ1 = dimV ′h

+ (a, b) = ♯J ′
+(a, b)

and e−
max(c̃N−c̃1,c̃N+1−c̃2)

h = Õ(µℓ1(ΠGhdf,f−1([a,b],h)

∣∣
E′h) ,

with max(c̃N − c̃1, c̃N+1 − c̃2) ≤ c̃N+1 − c̃1 − 2ηf .
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With Bh = df,f−1([a,b]),h , the upper bound ‖df,f−1([a,b],h)

∣∣
E′′h‖ = Õ(e−

c̃N+1−c̃1−2δ2
h ) (see (109)),

and (123), the inequality (70) of Hypothesis 4 is deduced from

‖Bh
∣∣
E′′h‖

[
1

µℓ1(ΠGhB
h
∣∣
E′h)

+
‖Ch‖(~d(Fh, Gh) + ~d(Gh, Fh))

max(µℓ0(ΠGhB
h
∣∣
Eh

), µℓ0(B
h
∣∣
Fh

))

]

= Õ(e−
c̃N+1−c̃1−2δ2

h )×
[
Õ(e

c̃N+1−c̃1−2ηf
h ) +

Õ(e
2δ2−ηf

h )

µℓ0(B
h
∣∣
Fh

)
︸ ︷︷ ︸
see (123)

]

= Õ(e−
ηf
h ) + Õ(e

4δ2+max(δ1 ,δ3)−ηf
h ) = Õ(e−

δ1
h ) ,

if δ1, δ2, δ3 ∈]0, ηf8 ] .
The first result of Proposition 5.8 then implies

∀ℓ ∈ {1, . . . , ℓ0} , µℓ(ΠGhdf,f−1([a,b]),h

∣∣
Eh

) = µℓ(δ[0,õ(1)],[a,b],h)(1 + Õ(e−δ1/h)) ,

which yields in particular (see (123))

e−
max(b−c̃1,c̃N+1−a)

h = Õ(µℓ0(ΠGhdf,f−1([a,b]),h

∣∣
Eh

)) .

In the spirit of the proof of Proposition 3.2, and in particular of Step 3 in Subsection 3.2, we
transfer our estimates from [c̃1 − δ1, c̃N+1 + δ3] to a generally wider interval [a, b] .

Proposition 6.14. Assume δ1, δ2 ∈]0, ηf8 ] , let a, b satisfy (122), and let Gh be defined by (89).
There exists an intermediate δ1-family of quasimodes in the sense of Definition 6.12 such that

e−
c̃N+1−c̃1+δ1

h = Õ(µℓ0(ΠGhdf,h
∣∣
Eh

)) with ℓ0 = ♯X (a, b) ,

holds true by defining Eh = Tδ2 Ṽh(a, b) = Tδ2 Span(ϕ̃
h
j , j ∈ J (a, b)) .

Proof. Let δ1, δ2 ∈]0, ηf8 ] . When c̃1 − δ1 ≤ a < c̃1 and c̃N+1 < b ≤ c̃N+1 + δ1 , the statement of
Proposition 6.14 is an immediate consequence of Proposition 6.13. Moreover, when a < c̃1 − δ1
and c̃N+1 < b ≤ c̃N+1+ δ1 , the statement of Proposition 6.14 simply follows after extending the
quasimodes by 0 on fa

′

a . We thus focus on the case b > c̃N+1+ δ1 . Let then δ3 ∈]δ1, ηf8 ] be such
that b′ := c̃N+1 + δ3 < b and set a′ := max(c̃1 − δ1, a) .
We start from an intermediate δ1-family of quasimodes (φ̃hj )j∈J (a′,b′) , for the interval [a′, b′] ,
with the orthogonality property (120),(121). When a < c̃1 − δ1 = a′ , these quasimodes are
extended by 0 on fa

′

a . We will use the spaces

Eh(a′, b′) = Tδ2V ′h
0 (a′, b′)⊕

(
⊕

1≤n−m≤N−1
Tδ2Wh

m,n(a
′, b′)

)

︸ ︷︷ ︸
E′h(a′,b′)

⊕Tδ2W̃h
1,N+1(a

′, b′)
︸ ︷︷ ︸

E′′h(a′,b′)

and, for (ā, b̄) = (a′, b′) or (ā, b̄) = (a, b) ,

Gh(ā, b̄) =
⊥
⊕

1≤n≤N+1
ker(∆f,f−1([c̃n−ηf ,c̃n+ηf ]∩[ā,b̄],h)︸ ︷︷ ︸

Ghn(ā,b̄)

.
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According to (104) and to Propositions 6.9 and 6.13, we know that

Tδ2V ′h
0 (a′, b′) ⊂ ker(ΠGh(a′,b′)df,h

∣∣
Eh(a′,b′)

) ,

‖ΠGh(a′,b′)df,h
∣∣
E′′h(a′,b′)

‖ = Õ(e−
c̃N+1−c̃1

h ) ,

and e−
c̃N+1−c̃1+max(δ1,δ3)

h = Õ(µℓ0(ΠGh(a′,b′)df,h
∣∣
Eh(a′,b′)

)) .

Comparing the singular values of ΠGh(a′,b′)df,hTδ2
∣∣
Vh(a′,b′) and of ΠGh(a′,b′)df,h

∣∣
Eh(a′,b′)

is straight-

forward owing to

‖Tδ2T ∗
δ2 − IdEh(a′,b′)‖+ ‖T ∗

δ2Tδ2 − IdVh(a′,b′)‖ = Õ(e−
ηf
h ) .

Meanwhile, the spaces ΠGh(a′,b′)df,h(Tδ2Wh
m,n(a

′, b′)) are mutually orthogonal and orthogonal

to ΠGh(a′,b′)df,h(Tδ2W̃1,N+1(a
′, b′)) , thanks to the orthogonality property (120),(121). Ow-

ing to Proposition 5.4-b), the non zero singular values of ΠGh(a′,b′)df,h
∣∣
Eh(a′,b′)

are then ob-

tained by collecting the ones of ΠGhn(a′,b′)df,h
∣∣
Tδ2Wh

m,n(a
′,b′)

, 1 ≤ n − m ≤ N − 1 , and of

ΠGhN+1(a
′,b′)df,h

∣∣
Tδ2W̃h

1,N+1(a
′,b′)

.

Moreover, since the family (φ̃hj )j∈J ′(a′,b′) satisfies Definition 6.12, and thus the statement of

Proposition 6.9, the singular values of ΠGhn(a′,b′)df,hTδ2
∣∣
Wh
m,n(a

′,b′)
satisfy µh

log∼ e−
c̃n−c̃m

h when

n−m < N−1 (see indeed (116)), while we know that the ones of ΠGhN+1(a
′,b′)df,hTδ2

∣∣
W̃h

1,N+1(a
′,b′)

satisfy, for ℓ ≤ ♯X1,N+1(a
′, b′) = ♯X1,N+1(a, b) ,

e−
c̃N+1−c̃1+max(δ1,δ3)

h = Õ(µℓ(ΠGhN+1
df,hTδ2

∣∣
W̃h

1,N+1(a
′,b′)

)) = Õ(e−
c̃N+1−c̃1

h ) .

Let us now construct the family (ϕ̃hj )j∈J (a,b) for the interval [a, b] .

• For the j = (α, c̃N+1) ∈ J ′
0(a, b) , we take an orthonormal basis (ϕ̃hj )j=(α,c̃N+1)∈J ′

0(a,b)
of

ker(∆f,f−1([c̃N+1−δ1,b]),h) (extended by 0 on f
c̃N+1−δ1
a ) .

• For j = (α, c̃) ∈ J ′
0(a, b) with c̃ < c̃N+1 , we “extend” the quasimode φ̃hj as a solution to

df,hϕ̃
h
j = 0 in [a, b] , as we did in Proposition 6.10 by referring to Proposition 3.9-ii), with

the new artificial “critical value” b′ = c̃N+1+ δ3 > c̃N+1+ δ1 , in the interval [c̃N+1+ δ1, b] .

• For j ∈ Xm,n(a, b) with 1 ≤ m < n ≤ N , we simply keep ϕ̃hj = φ̃hj .

• For the j = (α, xα) ∈ X (a, b) such that yα = c̃N+1 and the j = (α, c̃1) ∈ Z(a, b) , the
construction is detailed below after comparing, for m0 ∈ {1, . . . , N} , the two maps

ΠGhN+1(a
′,b′)df,hTδ2

∣∣
V hm0,N+1

and ΠGhN+1(a,b)
df,hTδ2

∣∣
V hm0,N+1

= ΠGhN+1(a
′,b)df,hTδ2

∣∣
V hm0,N+1

,

with

V hm0,N+1 =

(
⊕

max{2,m0}≤m<N+1
Wh
m,N+1(a

′, b′)

)
⊕W̃h

1,N+1(a
′, b′)

︸ ︷︷ ︸
if m0=1

.

We recall that

dimWh
m,N+1(a

′, b′) = ♯Xm,N+1(ā, b̄) when 2 ≤ m < N + 1

and dim W̃h
1,N+1(a

′, b′) = ♯X1,N+1(ā, b̄) ⊔ ♯
{
j = (α, c̃1) ∈ Z(ā, b̄)

}
,

where (ā, b̄) = (a′, b′) or (ā, b̄) = (a, b) , and we set, for m0 ∈ {1, . . .N} ,

Jm0,N+1 =

(
⊔

m0≤m<N+1
Xm,N+1(a, b)

)
⊔{j = (α, c̃1) ∈ Z(a, b)}︸ ︷︷ ︸

if m0=1

.

78



Since the Ψ̃hj = ΠGhN+1(a
′,b′)df,hTδ2 φ̃

h
j , j ∈ Jm0,N+1 , are mutually orthogonal and owing to the

information on the singular values, there exists an orthonormal basis (ψk)1≤k≤dimGhN+1(a
′,b′) of

GhN+1(a
′, b′) such that the matrix

Mh =
(
〈ψk , ΠGhN+1(a

′,b′)df,hTδ2 φ̃
h
j 〉
)
1≤k≤dimGhN+1(a

′,b′) , j∈Jm0,N+1

=
(
〈ψk , df,hTδ2 φ̃hj 〉

)
1≤k≤dimGhN+1(a

′,b′) , j∈Jm0,N+1

has the following block diagonal structure:

• When m0 > 1:

Mh =

(
Dh

0

)
, Dh = diag(λhj , j ∈ Jm0,N+1) ,

where λhj
log∼ e−

c̃N+1−xα
h for j = (α, xα) ∈ Jm0,N+1 .

• When m0 = 1:

Mh =

(
Dh 0
0 Rh

)
, Dh = diag(λhj , j = (α, xα) ∈ J1,N+1, xα ≥ c̃2) ,

where λhj
log∼ e−

c̃N+1−xα
h for j = (α, xα) ∈ J1,N+1, xα ≥ c̃2 ,

and ‖Rh‖ = Õ(e−
c̃N+1−c̃1

h ) , (124)

while, for ℓ′0 = ♯
(
J1,N+1 ∩ X (a, b)

)
, the ℓ′0-th singular value is bounded from below by

e−
c̃N+1−c̃1+max(δ1,δ3)

h = Õ(µℓ′0(M
h)) .

Proposition 3.9-iii) provides an isomorphism Ah : GhN+1(a, b) → GhN+1(a
′, b′) = GhN+1(a, b

′)
such that

∥∥∥A∗
hAh − IdGhN+1(a,b)

∥∥∥+ ‖AhA∗
h − IdGhN+1(a

′,b′)‖ = Õ(e−
δ3
h )

∀j = (α, c̃) ∈ Jm0,N+1, ∀ψ ∈ GhN+1(a, b) ,

〈df,hTδ2φhj , ψ −Ahψ〉 = Õ(e−
c̃N+1−c̃+2δ3

h )‖ψ‖ . (125)

By using the Õ(e−
δ1
h )-orthonormal basis (φ̃hj )j∈Jm0,N+1 of V

h
m0,N+1 and the Õ(e−

δ3
h )-orthonormal

basis (A−1
h ψhk )1≤k≤dimGhN+1(a,b)

of GhN+1(a, b) , the singular values of the matrix

M ′h =
(
〈A−1

h ψhk , df,hTδ2φ
h
j 〉
)
1≤k≤dimGhN+1(a,b) , j∈Jm0,N+1

coincide modulo a Õ(e−
min(δ1,δ3)

h )-relative error with the ones of ΠGh(a,b)df,hTδ2
∣∣
V hm0,N+1

accord-

ing to Proposition 5.4-a). With the above inequality (125), the j-th columns of M ′h and of

Mh , for j = (α, xα) ∈ Jm0,N+1 , xα ≥ c̃2 , differ by a Õ(λhj × e−
2δ3
h ) . When m0 = 1 and

j = (α, c̃1) ∈ J1,N+1 , the j-th columns of M ′h and of Mh differ by a Õ(e−
c̃N+1−c̃1+2δ3

h ) error.
Hence, we can write

M ′h = (Id + Õ(e−
2δ3
h ))Mh+Õ(e−

c̃N+1−c̃1+2δ3
h )︸ ︷︷ ︸

if m0=1

.
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When m0 > 1 , the singular values of M ′h coincide with the ones of M ′′h := (Id + Õ(e−
2δ3
h ))Mh

with a Õ(e−
2δ3
h )-relative error.

When m0 = 1 , the ℓ′0-th singular value of M ′′h := (Id + Õ(e−
2δ3
h ))Mh satisfies

e−
c̃N+1−c̃1+max(δ1,δ3)

h = Õ(µℓ′0(M
′′h)) .

Hence, we get

M ′h =M ′′h + Õ(e−
2δ3−max(δ1,δ3)

h µℓ′0(M
′′h)) .

Since δ1 < δ3 , Proposition 5.7 implies:

∀ℓ ∈ {1, . . . , ℓ′0} , µℓ(M
′h) = µℓ(M

′′h)(1 + Õ(e−
δ1
h )) .

We have thus proved that for all m0 ∈ {1, . . .N}:

∀ℓ ∈ {1, . . . ,min(♯Jm0,N+1, ℓ
′
0)} ,

µℓ(ΠGhN+1(a,b)
df,hTδ2

∣∣
V hm0,N+1

) = µℓ(ΠGhN+1(a
′,b′)df,hTδ2

∣∣
V hm0,N+1

)(1 + Õ(e−
δ1
h )) .

In particular, since

∀δ3 ∈]δ1,min(
ηf
8
, b− c̃N+1)[ , e−

c̃N+1−c̃1+δ3
h = Õ(µℓ′0(ΠGhN+1(a,b)

df,hTδ2
∣∣
V h1,N+1

)) ,

and the right-hand side in the latter equality does not depend on δ3 , we get

e−
c̃N+1−c̃1+δ1

h = Õ(µℓ′0(ΠGhN+1(a,b)
df,hTδ2

∣∣
V h1,N+1

)) . (126)

We now finish the presentation of our quasimodes (ϕ̃hj )j∈J1,N+1 . Like in the proof of Propo-
sition 6.6, we construct by reverse induction from m0 = N to m0 = 1 , starting from the
family (φ̃hj )j∈J1,N+1 , a basis (ϕ̃hj )j∈Jm0,N+1 of V hm0,N+1 and an orthonormal basis of GhN+1(a, b) ,

independent of m0 , such that the matrix of ΠGhN+1(a,b)
df,hTδ2

∣∣
V hm0,N+1

in these bases is di-

agonal (add possibly lines or columns of zeros to make it square). Since this process pre-
serves the flag (V hm0,N+1)1≤m0<N+1 , the support condition and the exponential decay estimates

are valid for this new basis of V h1,N+1 . The Õ(e−
δ1
h )-orthonormality of the full new family

(ϕ̃hj )j∈J (a,b) and the Õ(e−
δ1
h )-proximity to F[0,õ(1)],[a,b],h hold true, especially with our choice for

j = (α, c̃N+1) ∈ Z(a, b) . This proves the conditions 1 and 2 of Definition 6.12. For the third
condition, we notice that the spaces V ′h

+ (a, b) and V ′h
+ (a′, b′) are equal, like the spaces Ghn(a, b)

and Ghn(a
′, b′) when 2 ≤ n ≤ N , while Tδ2 is not changed . Moreover, in the case n = N + 1 ,

the above orthogonalization process until V h2,N+1 and the asymptotics of the singular values of

ΠGhN+1(a,b)
df,hTδ2

∣∣
V h2,N+1

finish the verification of the properties stated in Proposition 6.9 for

E′h = Tδ2V ′h(a, b) with Gh = Gh(a, b) .
Finally, it then follows from (124) and (126) that

µℓ0(ΠGh(a,b)df,h
∣∣
Tδ2Vh(a,b)=Eh

) = Õ(e−
c̃N+1−c̃1

h ) (127)

and e−
c̃N+1−c̃1+δ1

h = Õ(µℓ0(ΠGhN+1(a,b)
df,h

∣∣
Tδ2Vh(a,b)=Eh

)) . (128)

Remark 6.15. Although we used the notation (ϕ̃hj )j∈J (a,b) , notice that we obtain at the end of

the proof an intermediate δ1-family of quasimodes (φ̃hj )j∈J (a,b) which satisfies the orthogonality
property (120),(121) in the interval [a, b] . It was actually more important in the proof to put the
stress on this property for the initial family given for the interval [a′, b′] = [c̃1 − δ1, c̃N+1 + δ3] .
However, the orthogonalization process can always be carried out afterwards.
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Proof of Theorem 6.3-a). Let a, b satisfy (122) and take δ1, δ2 ∈]0, ηf8 ] . We reconsider the proof
of Proposition 6.13 for the pair (a, b) with the new lower bound of Proposition 6.14:

e−
c̃N+1−c̃1+δ1

h = Õ(µℓ0(ΠGhdf,h
∣∣
Eh

)) with ℓ0 = ♯X (a, b) .

We then set Eh = E′h ⊕ E′′h ,

E′h = Tδ2V ′h(a, b) , E′′h = Tδ2 Ṽh1,N+1(a, b) ,

where V ′h(a, b) and Ṽh1,N+1(a, b) are associated with the intermediate δ1-family of quasimodes

(ϕ̃hj )j∈J (a,b) provided by Proposition 6.14. In particular, the verification of the inequality (70)
in Proposition 5.8 now becomes:

‖Bh
∣∣
E′′h‖

[
1

µℓ1(ΠGhB
h
∣∣
E′h)

+
‖Ch‖(~d(Fh, Gh) + ~d(Gh, Fh))

max(µℓ0(ΠGhB
h
∣∣
Eh

), µℓ0(B
h
∣∣
Fh

))

]

= Õ(e−
c̃N+1−c̃1−2δ2

h )×
[
Õ(e

c̃N+1−c̃1−2ηf
h ) + Õ(e

2δ2−ηf
h )× Õ(e

c̃N+1−c̃1+δ1
h )

]

= Õ(e−
ηf
h ) + Õ(e

4δ2+δ1−ηf
h ) = Õ(e−

δ1
h ) ,

with δ1, δ2 ≤ ηf
8 .

The conclusion of Proposition 5.8 is then

∀ℓ ∈ {1, . . . , ℓ0} , µℓ(δ[0,õ(1)],[a,b],h) = µℓ(ΠGhdf,f−1([a,b]),h

∣∣
Eh

)(1 + Õ(e−
δ1
h )) ,

and µℓ0+1(ΠGhdf,f−1([a,b]),h

∣∣
Eh

) = Õ(e−
δ1
h )µℓ0(δ[0,õ(1)],[a,b],h) .

In particular, we obtain

e−
c̃N+1−c̃1+δ1

h = Õ(µℓ0(δ[0,õ(1)],[a,b],h))

and therefore, since the right-hand side of the latter equality does not depend on δ1 ,

e−
c̃N+1−c̃1

h = Õ(µℓ0(δ[0,õ(1)],[a,b],h)) .

Using in addition (127) (together with Proposition 6.9) leads to the statement of Theorem 6.3-a)
at step N + 1 .

We also proved

µℓ0+1(ΠGhdf,f−1([a,b]),h

∣∣
Eh

) = Õ(e−
δ1
h )µℓ0(δ[0,õ(1)],[a,b],h) = Õ(e−

c̃N+1−c̃1+δ1
h ) . (129)

Moreover, according to the comments made around (119), one can choose the intermediate δ1-
family (φ̃hj )j∈J (a,b) such that the orthogonality property (120),(121) holds, and then such that

‖Ψ̃hj ‖
log∼ e−

yα−xα
h for every j = (α, xα) ∈ X (a, b) . (130)

6.7 Construction of the family (ϕh
j )j∈J (a,b) at step N + 1

We now end the proof of Theorem 6.3 at step N+1 by finishing the construction of the δ1-family
of quasimodes (ϕhj )j∈J (a,b) . The statements b) and c) in Theorem 6.3 will be easily checked at
the end.
Let a, b satisfy (122), let Gh be defined by (89), and let δ1, δ2 ∈]0, ηf8 ] . We start with an inter-
mediate δ1-family of quasimodes for the interval [a, b] which satisfies the orthogonality condition
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(120),(121) and the estimates (129) and (130).
We first work in the interval [a′, b] with a′ = max(a, c̃1 − δ1) . Note that, since the quasi-
modes are all supported in [a′, b] and Ghn(a, b) = Ghn(a

′, b) for every 2 ≤ n ≤ N + 1 , the family
(φ̃hj )j∈J (a,b)=J (a′,b) is still, for the interval [a

′, b] , an intermediate δ1-family of quasimodes which
satisfies the orthogonality condition (120),(121) and the estimates (129) and (130).
The quasimodes (ϕhj )j∈J (a′,b) are not changed, i.e.

ϕhj = φ̃hj ,

when

j ∈ J ′
0(a

′, b) = Y(a′, b) ⊔ {j = (α, c̃) ∈ Z(a′, b), c̃ > c̃1}
or j ∈ X (a′, b) = ⊔

1≤m<n≤N+1
Xm,n(a′, b) .

We must now construct the remaining quasimodes ϕhj , j = (α, c̃1) ∈ Z(a′, b) , in order to ensure

ϕhj ∈ ker(df,f−1([a′,b]),h) for every j = (α, c̃1) ∈ Z(a′, b) ,

while we only know for the moment that, for those j , (129) implies

‖Ψ̃hj ‖ = ‖ΠGhdf,hTδ2 φ̃hj ‖ = Õ(e−
c̃N+1−c̃1+δ1

h ) .

We recall that those quasimodes φ̃hj , j = (α, c̃1) ∈ Z(a′, b) , were until now considered in the

space W̃h
1,N+1(a

′, b) , together with the quasimodes φ̃hj , j ∈ X1,N+1(a
′, b) . Let us also recall that

the rank of δ[0,õ(1)][a′,b],h satisfies (see Proposition 4.4):

rank δ[0,õ(1)],[a′,b],h = ℓ0 = ♯X (a′, b) . (131)

Proposition 6.16. For j = (α, c̃1) ∈ Z(a′, b) , where a′ = max(a, c̃1 − δ1) , there exists
(αhj,j′ )j′∈X (a′,b) such that

φ̃hj −
∑

j′∈X (a′,b)

αhj,j′

‖Ψ̃hj′‖
φ̃hj′

belongs to ker(δ[0,õ(1)],[a′,b],hTδ2) with, for every j′ ∈ X (a′, b) ,

αhj,j′ = Õ(e−
c̃N+1−c̃1+δ1

h ) .

Proof. For every j′ ∈ X (a′, b) , we set

ψhj′ :=
Ψ̃hj′

‖Ψ̃hj′‖
,

so that, when j′ = (α, xα) ∈ X (a′, b) ,

ΠGhdf,hTδ2 φ̃
h
j′ = ‖Ψ̃hj′‖ψhj′ , ‖Ψ̃hj′‖

log∼ e−
yα−xα

h

and (ψhj′ )j′∈X (a′,b) is an orthonormal system in Gh .
By writing, for j′ ∈ X (a′, b) ,

δ[0,õ(1)],[a′,b],hTδ2 φ̃
h
j′ = ΠFhdf,hTδ2 φ̃

h
j′

= ΠGhdf,hTδ2 φ̃
h
j′ − (ΠGh −ΠFhΠGh)df,hTδ2 φ̃

h
j′

+ (ΠFh −ΠFhΠGh)df,hTδ2 φ̃
h
j′ (132)
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with Fh = F[0,õ(1)],[a′,b],h , ~d(F
h, Gh) + ~d(Gh, Fh) = Õ(e−

ηf
h ) , and (see (109))

‖df,hTδ2 φ̃hj′‖ = ‖Ψ̃hj′‖Õ(e
2δ2
h ),

we deduce from (132) that the family made of the

θhj′ =
δ[0,õ(1)],[a′,b],hTδ2 φ̃

h
j′

‖Ψ̃hj′‖
, j′ ∈ X (a′, b) ,

defines an Õ(e−
δ1
h )-orthornormal system of Rh := Ran δ[0,õ(1)],[a′,b],h . Owing to (131), the family

(θhj′ )j′∈X (a′,b) is thus an Õ(e−
δ1
h )-orthonormal basis of Rh . Denoting now by (θ̂hj′ )j′∈X (a′,b) the

dual basis of (θhj′)j′∈X (a′,b) in R
h , that is the unique family satisfying

∀ j′1, j′2 ∈ X (a′, b) , θ̂hj′1 ∈ Rh and 〈θ̂j′1 , θj′2〉 = δj′1,j′2 ,

the family (θ̂hj′ )j′∈X (a′,b) is also an Õ(e−
δ1
h )-orthonormal basis of Rh and the orthogonal projec-

tion on Rh is given by

∀u ∈ Fh , ΠRhu =
∑

j′∈X (a′,b)

〈θ̂hj′ , u〉θj′ =
∑

j′∈X (a′,b)

〈θ̂hj′ , u〉
‖Ψ̃hj′‖

δ[0,õ(1)],[a′,b],hTδ2 φ̃
h
j′ .

For j = (α, c̃1) ∈ Z(a′, b) , the same decomposition as (132) with now ‖Ψ̃hj ‖ = Õ(e−
c̃N+1−c̃1+δ1

h )

and ‖df,hTδ2 φ̃hj ‖ = Õ(e−
c̃N+1−c̃1−2δ2

h ) leads to

‖δ[0,õ(1)],[a′,b],hTδ2 φ̃hj ‖ = Õ(e−
c̃N+1−c̃1+δ1

h ) .

The statement of Proposition 6.16 follows easily by taking, for every j = (α, c̃1) ∈ Z(a′, b) and
j′ ∈ X (a′, b) ,

αhj,j′ = 〈θ̂hj′ , δ[0,õ(1)],[a′,b],hTδ2 φ̃hj 〉 .

The following statement finishes the proof of Theorem 6.3.

Proposition 6.17. Assume that a, b satisfy (122), let δ1, δ2 ∈]0, ηf8 ] , and set a′ = max(a, c̃1 −
δ1) . The family (ϕhj )j∈J (a,b) defined by

ϕhj = φ̃hj when j ∈ X (a, b) ⊔ Y(a, b) ⊔ {(α, c̃) ∈ Z(a, b) , c̃ > c̃1}

and

ϕhj = 1fb
a′
×Π[0,õ(1)],[a′,b],hTδ2

(
φ̃hj −

∑

j′∈X (a,b)

αhj,j′

‖Ψ̃hj′‖
φ̃hj′
)

when j = (α, c̃1) ∈ Z(a, b) ,

where the coefficients αhj,j′ are given by Proposition 6.16, fulfills all the conditions of Theorem 6.3
at step N + 1 .

Proof. We use here the notations a′ = max(a, c̃1 − δ1) and, in order to avoid confusions,

W̃h(a, b) = Span(φ̃hj , j ∈ J (a, b))
and W̃h

+(a, b) = Span(φ̃hj , j ∈ X (a, b)) ,
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where (φ̃hj )j∈J (a,b) is the intermediate δ1-family of quasimodes we started with.

From the estimates αhj,j′ = Õ(e−
c̃N+1−c̃1+δ1

h ) (see Proposition 6.16) and ‖Ψ̃hj′‖
log∼ e−

yα−xα
h for

j = (α, c̃1) ∈ Z(a, b) and j′ = (α, xα) ∈ X (a, b) , we deduce that

∀ j = (α, c̃1) ∈ Z(a, b) ,
∥∥∥

∑

j′∈X (a,b)

αhj,j′

‖Ψ̃hj′‖
φ̃hj′
∥∥∥
L2

= Õ(e−
δ1
h ) .

Since in addition ~d(F[0,õ(1)],[a′,b],h, W̃h(a, b)) + ~d(W̃h(a, b), F[0,õ(1)],[a′,b],h) = Õ(e−
δ1
h ) , it follows

that
‖ϕhj − φ̃hj ‖ = Õ(e−

δ1
h ) for j = (α, c̃1) ∈ Z(a, b) ,

and the family (ϕhj )j∈J (a,b) is thus Õ(e−
δ1
h )-orthonormal. Moreover, the exponential decay

estimates on the φ̃hj′ , j
′ ∈ X (a, b) , lead to

∀ j = (α, c̃1) ∈ Z(a, b) ,
∥∥∥e

|f−c̃1|
h

( ∑

j′∈X (a,b)

αhj,j′

‖Ψ̃hj′‖
φ̃hj′
)∥∥∥

W (f−1([a′,b]\Sδ1)
= Õ(e−

δ1
h ) .

This implies, together with Proposition 4.7, the required exponential decay estimates on the ϕhj ,
j = (α, c̃1) ∈ Z(a, b) . Besides, Proposition 6.16 gives

df,hΠ[0,õ(1)],[a′,b],hTδ2

(
φ̃hj −

∑

j′∈X (a,b)

αhj,j′

‖Ψ̃hj′‖
φ̃hj

)
= δ[0,õ(1)],[a′,b],hTδ2

(
φ̃hj −

∑

j′∈X (a,b)

αhj,j′

‖Ψ̃hj′‖
φ̃hj

)
= 0 .

All those properties are preserved after extending those quasimodes by 0 on fa
′

a when a < a′ .
Therefore, the family (ϕhj )j∈J (a,b) satisfies all the conditions of Definition 6.1 and is thus a

Õ(e−
δ1
h )-orthonormal δ1-family of quasimodes. Since in addition

~d(F[0,õ(1)],[a′,b],h, F[0,õ(1)],[a,b],h) + ~d(F[0,õ(1)],[a,b],h, F[0,õ(1)],[a′,b],h) = Õ(e−
δ1
h ) ,

the statement b) of Theorem 6.3 is also satisfied.
It only remains to check the factorization stated in Theorem 6.3-c). Since

df,hTδ2ϕ
h
j = df,hϕ

h
j = 0 for every j 6∈ X (a, b) ,

it suffices to prove the existence of Ch such that

Vh+(a, b) = W̃h
+(a, b)

df,f−1([a,b]),hTδ2 //

Π[0,õ(1)],[a,b],hdf,hTδ2 ++❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲

L2(f−1([a, b]))

F[0,õ(1)],[a,b],h

Ch

OO

with ‖Ch‖ = Õ(e
2δ2
h ) . Since ΠGhdf,hTδ2 φ̃

h
j = Ψ̃hj with ‖Ψ̃hj ‖

log∼ e−
yα−xα

h when j = (α, xα) ∈
X (a, b) with the orthogonality property (120),(121), reasoning as at the ends of the proofs of
Propositions 6.8 and 6.9, we obtain the diagram

Vh+(a, b) = W̃h
+(a, b)

df,f−1([a,b]),hTδ2 //

Π
Gh
df,hTδ2

++❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲
L2(f−1([a, b]))

Gh

C̃h

OO
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with ‖C̃h‖ = Õ(e
2δ2
h ) . We conclude by applying Lemma 5.6 with Bh = df,f−1([a,b]),hTδ2 ,

Fh = F[0,õ(1)],[a,b],h , and

~d(Fh, Gh) + ~d(Gh, Fh) = Õ(e−
ηf
h ) .

7 Corollaries of Theorem 6.3

The statement or Theorem 6.3 is much more flexible than its illustrative statement, Theorem 1.7,
given in the introduction. Actually, even its proof, and especially the intermediate propositions
of Subsection 6.3, have easily derived consequences which are listed here. Subsection 7.1 reviews
consequences on the eigenvalues and eigenvectors of the Witten Laplacian ∆f,f−1([a,b]),h when f
is fixed. Subsection 7.2 studies how the logarithms of the singular values of df,f−1([a,b]),h vary
when f is changed. It contains a generalization of Corollary 1.8. Remember that Theorem 6.3
is proved under Hypothesis 4.1 which gathers Hypothesis 1.2 or (Hypothesis 1.6 and Hypothe-
sis 2.16) for a more general Lipschitz function f . Hypothesis 1.2 or Hypothesis 1.6 ensure that
f has finitely many “critical values” c1 < . . . < cNf .

When a, b 6∈
{
c1, . . . , cNf

}
, ∆f,f−1([a,b]),h is the self-adjoint Witten Laplacian in f ba , with Dirich-

let boundary conditions on f−1({a}) and Neumann boundary conditions on f−1({b}) , according
to Section 2.
Finally, the bar code associated with f , under Hypothesis 1.2 or Hypothesis 1.6 (see Subsec-
tion 8.3.1), is B(f) = ([aα, bα[)α∈A , defined in Subsection 4.1 and in Appendix B. The restricted
bar code B(f ; a, b) , and the set of endpoints J (a, b) , X (a, b) , Y(a, b) , Z(a, b) , all graded ac-
cording to the degree p ∈ {0, . . . , d} , are the ones introduced in Subsection 4.1.

7.1 Spectral results

The first result generalizes Theorem 1.7.

Theorem 7.1. Assume Hypothesis 1.2 or (Hypothesis 1.6 and Hypothesis 2.16) for a more
general Lipschitz function f . Let a, b 6∈

{
c1, . . . , cNf

}
with a < b and let ∆f,f−1([a,b]),h =

⊕dp=0 ∆
(p)
f,f−1([a,b]),h be defined like in Proposition 2.8 with Nt = f−1({a}) and Nn = f−1({b}) .

The number of õ(1)-eigenvalues of ∆
(p)

f,f−1([a,b]),h equals ♯J (p)(a, b) , while

dimker(∆f,f−1([a,b]),h) = β(p)(f b, fa) = ♯Z(p)(a, b) .

Moreover, the non zero õ(1)-eigenvalues of ∆
(p)
f,f−1([a,b]),h counted with multiplicity can be labelled

λ
(p)
α (h) , α ∈ A(p)

c (a, b) ⊔ A(p−1)
c (a, b) , with

λ(p)α (h)
log∼ e−2

y∗+1
α −x∗α

h , α ∈ A(p)
c (a, b) ⊔A(p−1)

c (a, b) .

With the usual supersymmetric argument which was already recalled in Proposition 4.4, it
is a straightforward consequence of Theorem 6.3-a).
The above result can be completed by some information on the eigenvectors. We start with the
link between the singular values of δf,f−1([a,b]),h , and their approximation via the introduction of
a basis made of quasimodes, and the spectral elements of the operator δ∗[0,õ(1)],[a,b]),hδ[0,õ(1)],[a,b]),h .
The spectral elements of

Π[0,õ(1)],[a,b],h∆f,f−1([a,b]),h = δ∗[0,õ(1)],[a,b]),hδ[0,õ(1)],[a,b]),h + δ[0,õ(1)],[a,b]),hδ
∗
[0,õ(1)],[a,b]),h

will be described afterwards by referring to Hodge decomposition and to duality.
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Proposition 7.2. Keep the same assumptions as in Theorem 7.1 and define ηf > 0 like

in Hypothesis 4.1. Let δ
(p)
[0,õ(1)],[a,b],h denote the restriction of df,f−1([a,b]),h to F

(p)
[0,õ(1)],[a,b],h ,

δ
(p)
[0,õ(1)],[a,b],h : F

(p)
[0,õ(1)],[a,b],h → F

(p+1)
[0,õ(1)],[a,b],h , according to (81), and set

L(p) =
{
b(p+1)
α − a(p)α , α ∈ A(p)

c (a, b)
}
,

δf = min(
ηf
8
,
|ℓ− ℓ′|

8
, ℓ 6= ℓ′ ∈ L(p)) > 0 .

Take the δ1-family of quasimodes (ϕhj )j∈J (a,b) given by Theorem 6.3 with δ1 =
ηf
8 (and with any

δ2 ∈]0, ηf8 ]) and define, for ℓ ∈ L(p) ,

U (p),h
ℓ := Span

(
ϕhj , j = (α, x(p)α ) ∈ X (p)(a, b) , y(p+1)

α − x(p)α = ℓ
)
,

and
U (p),h
+∞ := Span(ϕhj , j ∈ Y(p)(a, b) ⊔ Z(p)(a, b)) .

Then, for every ℓ ∈ L(p) ⊔ {+∞} and p ∈ {0, . . . d} , the distance between U (p),h
ℓ and ¿ F

(p),h
ℓ is

estimated by

~d(U (p),h
ℓ , F

(p),h
ℓ ) + ~d(F

(p),h
ℓ ,U (p),h

ℓ ) = Õ(e−
δf
h ) ,

where F
(p),h
ℓ ⊂ F (p)

[0,õ(1)],[a,b],h ⊂ L2(f ba; Λ
pT ∗M) is the spectral subspace of δ

(p),∗
[0,õ(1)],[a,b],hδ

(p)
[0,õ(1)],[a,b],h

for the spectral range [e−2
ℓ+δf
h , e−2

ℓ−δf
h ] .

Proof. With our choice δ1 =
ηf
8 , the basis (ϕhj )j∈J (p)(a,b) is a Õ(e−

ηf
8h )-orthonormal family such

that, according to Theorem 6.3-b) and to the definition of Tδ2 (see Definition 6.2),

∀j ∈ J (p)(a, b), ‖Π[0,õ(1)],[a,b],hTδ2ϕ
h
j − ϕhj ‖ = Õ(e−

ηf
8h ) . (133)

For j ∈ Y(p)(a, b) ⊔ Z(p)(a, b) , the equality

δ[0,õ(1)],[a,b],hΠ[0,õ(1)],[a,b],hTδ2ϕ
h
j = Π[0,õ(1)],[a,b],hdf,hϕ

h
j = 0

then implies that (Π[0,õ(1)],[a,b],hTδ2ϕ
h
j )j∈Y(p)(a,b)⊔Z(p)(a,b) is a Õ(e−

ηf
8h )-orthonormal basis of

ker(δ
(p)
[0,õ(1)],[a,b],h) = F

(p),h
+∞ .

This leads to the result for ℓ = +∞ and initializes the decreasing induction with respect to ℓ .
Assume now that for all ℓ > ℓ0 in L(p) , we have proved

~d(U (p),h
ℓ , F

(p),h
ℓ ) + ~d(F

(p),h
ℓ ,U (p),h

ℓ ) = Õ(e−
δf
h ) .

Let us check that it is still true for ℓ = ℓ0 . Like in Subsection 6.3, we introduce Gh defined by
(89),(90), Ghn = ker(∆f,f−1([c̃n−ηf ,c̃n+ηf ]∩[a,b]),h) defined in (103), and the spaces Vhm,n defined
in (98) by

V(p),h
m,n = Span(ϕhj , j ∈ X (p)

m,n(a, b)) .

In particular, we have

U (p),h
ℓ0

= ⊕
c̃n−c̃m=ℓ0

V(p),h
m,n ,

while ΠGh,(p+1)d
(p)
f,hTδ2(V

(p),h
m,n ) ⊂ G

h,(p+1)
n with G

h,(p+1)
n ⊥ G

h,(p+1)
n′ for n 6= n′ . From Propo-

sition 6.4, we know that the mapping ΠGh,(p+1)d
(p)
f,hTδ2 : U (p),h

ℓ0
→ Gh,(p+1) does not depend
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on δ2 ∈]0, ηf8 ] , while Proposition 6.5 and Proposition 5.4-b) ensure that it is one to one with

(only non zero) singular values all satisfying µh
log∼ e−

ℓ0
h . Moreover, following the analysis

made in the proof of Proposition 6.4, the factorization (94) holds with here Eh = Tδ2U (p),h
ℓ0

,

Bh = d
(p)
f,f−1([a,b]),h , and ‖C̃h‖ = Õ(e

2δ2
h ) . Hence, using Lemma 5.6 with the relation

~d(Gh,(p+1), F
(p+1)
[0,õ(1)],[a,b],h) +

~d(F
(p+1)
[0,õ(1)],[a,b],h, G

h,(p+1)) = Õ(e−
ηf
h )

leads to

ΠGh,(p+1)d
(p)
f,f−1([a,b]),h

∣∣
Eh

= (IdL2(fba)
+ Õ(e

2δ2−ηf
h ))Π[0,õ(1)],[a,b],hd

(p)
f,f−1([a,b],h)

∣∣
Eh︸ ︷︷ ︸

=δ
(p)

[0,õ(1)],[a,b],h

∣∣
Eh

.

Thus, since Tδ2 : U (p),h
ℓ0

→ Eh is Õ(e−
ηf
h )-unitary, the operator δ

(p)
[0,õ(1)],[a,b],h : Tδ2U (p),h

ℓ0
→

F
(p+1)
[0,õ(1)],[a,b],h is, as ΠGh,(p+1)d

(p)
f,hTδ2 : U (p),h

ℓ0
→ Gh,(p+1) , one to one with singular values all

logarithmically equivalent to e−
ℓ0
h . In particular, for all j = (α, x

(p)
α ) ∈ X (p)(a, b) such that

y
(p+1)
α − x(p)α = ℓ0 , we must have

‖δ(p)[0,õ(1)],[a,b],hΠ[0,õ(1)],[a,b],hTδ2ϕ
h
j ‖

log∼ e−
ℓ0
h .

From the previous estimates, the new family of vectors (uhj ) defined by

uhj = (1−
∑

ℓ>ℓ0

Π
F

(p),h
ℓ

)Π[0,õ(1)],[a,b],hTδ2ϕ
h
j

and indexed by j = (α, x
(p)
α ) ∈ X (p)(a, b) , y

(p+1)
α − x(p)α = ℓ0 satisfies

〈uhj , δ∗,(p)[0,õ(1)],[a,b],hδ
(p)
[0,õ(1)],[a,b],hu

h
j 〉

log∼ e−2
ℓ0
h , (134)

uhj ⊥ Ran 1
[0,e−2

ℓ0+δf
h [

(δ
∗,(p)
[0,õ(1)],[a,b],hδ

(p)
[0,õ(1)],[a,b],h) , (135)

and ‖uhj − ϕhj ‖ = Õ(e−
δf
h ) . (136)

Note that (134) and (135) follow easily from the definition of the family (uhj ) , while (136), which

also implies the Õ(e−
δf
h )-orthonormality of the family (uhj ) , follows from (133) together with

the estimate, for ℓ > ℓ0 and j = (α, x
(p)
α ) ∈ X (p)(a, b) , y

(p+1)
α − x(p)α = ℓ0 ,

Π
F

(p),h
ℓ

ϕhj =
(
Π
F

(p),h
ℓ

−Π
F

(p),h
ℓ

ΠU(p),h
ℓ

)
ϕhj +Π

F
(p),h
ℓ

ΠU(p),h
ℓ

ϕhj

= Õ(e−
δf
h ) + Õ(e−

ηf
8h ) ≤ Õ(e−

δf
h ) ,

where the last line follows from the induction hypothesis and from the Õ(e−
ηf
8h )-orthonormality

of the family (ϕhj )j∈J (p)(a,b) . The relations (134) and (136) imply that the vector

vhj = 1
[0,e−2

ℓ0−δf
h ]

(δ
∗,(p)
[0,õ(1)],[a,b],hδ

(p)
[0,õ(1)],[a,b],h)u

h
j

satisfies

‖vhj − uhj ‖ = Õ(e−
δf
h ) and thus ‖vhj − ϕhj ‖ = Õ(e−

δf
h ) ,

while (135) yields

vhj ∈ F (p),h
ℓ0

.
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Hence, we have proved ~d(U (p),h
ℓ0

, F
(p),h
ℓ0

) = Õ(e−
δf
h ) and thus, using

dimU (p),h
ℓ0

= ♯
{
j = (α, x(p)α ) ∈ X (p)(a, b) , y(p+1)

α − x(p)α = ℓ0

}
= dimF

(p),h
ℓ0

,

implies ~d(F
(p),h
ℓ0

,U (p),h
ℓ0

) + ~d(U (p),h
ℓ0

, F
(p),h
ℓ0

) = Õ(e−
δf
h ) . This ends the proof of Proposition 7.2.

Now quasimodes have been constructed for df,f−1([a,b]),h , the dual version can be given.
Remember that

d∗f,h = (−1)deg ⋆−1 e
f
h (hd)e−

f
h ⋆

and the construction of δ1-quasimodes for d∗f,f−1([a,b],h) is equivalent to the construction of δ1-
quasimodes for d−f,(−f)−1([−b,−a]),h , where the fiber bundle ΛT

∗M is replaced by ΛT ∗M ⊗orM .
Accordingly, the degree p is changed into d − p , the order of critical values is reversed and, in
the interval [a, b] , the role of lower and upper endpoints in the sets X ∗(a, b) and Y∗(a, b) are
interchanged.

Definition 7.3. Under Hypothesis 4.1 and with δ1 ∈]0, ηf8 ] , a dual δ1-family of quasimodes

denoted by

(
ϕ̂∗,h
j

)

j∈J (a,b)

is defined like the family
(
ϕ∗,h
j

)
j∈J (a,b)

in Definition 6.1 after re-

placing:

• df,f−1([a,b]),h by d∗f,f−1([a,b]),h ,

• Ihj = [x
(p)
α − δ1, y(p+1)

α − γ(h)] when j = (α, x
(p)
α ) ∈ X (p)(a, b) by

Îhj = [x(p−1)
α + γ(h), y(p)α + δ1] when j = (α, y(p)α ) ∈ Y(p)(a, b) ,

• and Ihj = [c̃− δ1, b] when j = (α, c̃) ∈ Y(p)(a, b) ⊔ Z(p)(a, b) by

Îhj = [a, c̃+ δ1] when j = (α, c̃) ∈ X (p)(a, b) ⊔ Z(p)(a, b) .

Finally, the truncation operator Tδ2 introduced for δ2 ∈]0, ηf8 ] in Definition 6.2 has to be replaced

by T̂δ2 defined by

T̂δ2
̂
ϕ
(p),h
j =





̂χ
x
(p−1)
α ,δ2

̂
ϕ
(p),h
j if j = (α, y

(p)
α ) ∈ Y(p)(a, b)

̂
ϕ
(p),h
j if j ∈ X (p)(a, b) ∪ Z(p)(a, b) ,

where χ̂c̃,δ2(x) = χ̂

(
f(x)− c̃

δ2

)
,

for a fixed χ̂ ∈ C∞(R; [0, 1]) such that χ̂ ≡ 1 on [2,+∞[ and supp χ̂ ⊂]1,+∞[ .

Theorem 7.4. Like in Theorem 7.1, assume Hypothesis 1.2 or (Hypothesis 1.6 and Hypoth-
esis 2.16) for a more general f , which is equivalent to Hypothesis 4.1 when the definition of

ηf > 0 is added. Let a, b 6∈
{
c1, . . . , cNf

}
and let ∆f,f−1([a,b]),h = ⊕dp=0 ∆

(p)
f,f−1([a,b]),h be defined

like in Proposition 2.8 with Nt = f−1({a}) and Nn = f−1({b}) . We set, like in Proposition 7.2,

L(p) =
{
b(p+1)
α − a(p)α , α ∈ A(p)

c (a, b)
}

and δf = min(
ηf
8
,
|ℓ− ℓ′|

8
, ℓ 6= ℓ′ ∈ L(p)) > 0 .
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The δ1-family of quasimodes (ϕ∗,h
j )j∈J (a,b) is given by Theorem 6.3 with δ1 =

ηf
8 , and its dual

version (ϕ̂∗,h
j )j∈J (a,b) by Definition 7.3. For ℓ ∈ L(p) , we define lastly

U (p),h

ℓ := U (p),h
ℓ ⊕Û (p),h

ℓ ,

where U (p),h
ℓ = Span

(
ϕhj , j = (α, x(p)α ) ∈ X (p)(a, b) , y(p+1)

α − x(p)α = ℓ
)

and Û (p),h
ℓ = Span

(
ϕ̂hj , j = (α, y(p)α ) ∈ Y(p)(a, b) , y(p)α − x(p−1)

α = ℓ
)
.

Then, for every ℓ ∈ L(p) , the space U (p),h

ℓ is close to F
(p)

[e−2
ℓ+δf
h ,e2

ℓ−δf
h ],[a,b],h

according to

~d

(
U (p),h

ℓ , F
(p)

[e−2
ℓ+δf
h ,e2

ℓ−δf
h ],[a,b],h

)
+ ~d

(
F

(p)

[e−2
ℓ+δf
h ,e2

ℓ−δf
h ],[a,b],h

,U (p),h

ℓ

)
= Õ(e−

δf
h ) .

Proof. Let us first recall the relation

∆
(p)

f,f−1([a,b]),hΠ
(p)
[0,õ(1)],[a,b],h = δ

(p−1)

[0, ˜o(1)],[a,b],h
δ
(p−1),∗
[0,õ(1)],[a,b],h︸ ︷︷ ︸

A

+ δ
(p),∗
[0,õ(1)],[a,b],hδ

(p)
[0,õ(1)],[a,b],h︸ ︷︷ ︸

B

,

where A and B are self-adjoint and satisfy AB = BA = 0 . We deduce from this observation
and from the Hodge decomposition that, for λh 6= 0 , λh = õ(1) ,

ker(∆f,f−1([a,b]),h − λh) = ker(A− λh)
⊥
⊕ ker(B − λh) .

Moreover Proposition 7.2 says

~d(U (p),h
ℓ , F

(p),h
ℓ ) + ~d(F

(p),h
ℓ ,U (p),h

ℓ ) = Õ(e−
δf
h ) ,

where

F
(p)
ℓ =

⊥
⊕

e−2
ℓ+δf
h ≤λh≤e−2

ℓ−δf
h

ker(B − λh) .

The proximity of Û (p),h
ℓ to ⊕⊥

e−2
ℓ+δf
h ≤λh≤e−2

ℓ−δf
h

ker(A− λh) is the dual version.

Remark 7.5. The last result about the eigenvectors of ∆f,f−1([a,b]),h arouses several comments.

• When there is a single bar α ∈ A(p)
c (a, b) with length ℓ , then ∆

(p)
f,f−1([a,b]),h (resp. ∆

(p+1),h
f,f−1([a,b]),h)

has one eigenvector associated with the eigenvalue λh
log∼ e−

2ℓ
h localized around f−1(x

(p)
α )

(resp. f−1(y
(p+1)
α )) and Õ(e−

δf
h )-close to the corresponding quasimode ϕ

(p),h
j (resp.

̂
ϕ
(p+1),h
j )

with j = (α, x
(p)
α ) ∈ X (p)(a, b) (resp. j = (α, y

(p+1)
α ) ∈ Y(p+1)(a, b)).

• Once we have approximated the eigenvectors associated with the non zero eigenvalues by the

quasimodes ϕhj or ϕ̂hj , one can recover an approximate description of ker(∆f,f−1([a,b]),h)

by considering a basis of Span(ϕhj , j ∈ Y(a, b) ⊔ Z(a, b)) whose elements are Õ(e−
δ1
h )-

orthogonal to all the ϕ̂hj′ , j
′ ∈ Y(a, b) .

• Actually, the description of the eigenvectors with a Õ(e−
δf
h ) error in the L2-norm is much

less precise than what we were able to do with the quasimodes ϕ∗,h
j , with a wide range

control of the exponential decay estimates. We also know from the proof of Theorem 6.3,
and this is again illustrated in the proof of Proposition 7.2, that working with the family
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of quasimodes (ϕhj )j∈J (a,b) is much more flexible and informative than working with the
eigenvectors of ∆f,f−1([a,b]),h . Note specifically, in the proof of Proposition 7.2, the use of

the orthogonality Ghn ⊥ Ghn′ for n 6= n′ in the separation of the different exponential scales
associated with the different lengths of bars. This really relies on the fact that Gh is made
of kernels of separated local problems. Such an exact property is completely lost if we use
instead the full spectral space F[0,õ(1)],[a,b],h .

• From the modeling interpretation, it is interesting to note that the quasimodes (ϕhj )j∈J (a,b)

carry the same heuristic as the true eigenvectors for small times although they do not belong

to D(∆f,f−1([a,b]),h) . For simplicity, assume that there is a single bar α ∈ A(p)
c (a, b) with

length ℓ . Then ϕhj , j = (α, xα) ∈ X (a, b) , satisfies

‖e−t∆f,f−1([a,b],h)ϕhj − e−tλhϕhj ‖ = ‖(e−t∆f,f−1([a,b],h) − e−tλh)(ϕhj − uh)‖

≤ 2‖ϕhj − uh‖ = Õ(e−
δf
h ) ,

where uh is the unitary eigenvector associated with the eigenvalue λh
log∼ e−2 ℓh . In particu-

lar, e−t∆f,f−1([a,b]),hϕhj ∼ e−tλhϕhj makes sense for times longer than the lifetime 1
λh

log∼ e2
ℓ
h

of the metastable state uh as h→ 0 .

7.2 Stability theorem

The following stability theorem, of which a simple version, Corollary 1.8, was given in the
introduction, is a direct consequence of Theorem 7.1 and of the topological stability result

dbot(B(f),B(g)) ≤ ‖f − g‖C0

recalled in Appendix B.3.

Theorem 7.6. In the framework of Theorem 7.1, namely Hypothesis 1.2, or (Hypothesis 1.6
and Hypothesis 2.16) for a more general Lipschitz function f , and a, b 6∈ {c1, . . . , cNf } , set

ℓmin := min
(
{yα − xα, α ∈ Ac(a, b)} ∪ {|cn − b|, |cn − a|, 1 ≤ n ≤ Nf}

)
,

where Ac(a, b) = Ac(f ; a, b) is the set defined in (53) for the function f , that is indexing the bars
of f with two endpoints in ]a, b[ .
Let moreover g be any other function satisfying Hypothesis 1.2, or (Hypothesis 1.6 and Hypoth-
esis 2.16), as well as

‖g − f‖C0 <
ℓmin
4

,

and such that a, b do not belong to the set {c′1, . . . , c′Ng} made of its “critical values”.

Then, the Õ(e−
ℓmin
h ) non zero eigenvalues of ∆

(p)
g,g−1([a,b]),h can be labelled

λ(p)α (g;h) , α ∈ A(p)
c (a, b) ⊔ A(p−1)

c (a, b) ,

with, for every α ∈ A(p)
c (a, b) ⊔A(p−1)

c (a, b) ,

ℓmin < 2(y∗+1
α − x∗α)− 4‖g − f‖C0 ≤ lim

h→0
−h log(λ(p)α (g, h)) ≤ 2(y∗+1

α − x∗α) + 4‖g − f‖C0 .

Meanwhile, for f = f or f = g , the dimension dimker(∆
(p)

f ,f−1([a,b]),h) equals β(p)(f b, fa) , and

thus

dim ker(∆
(p)
f,f−1([a,b]),h) = ker(∆

(p)
g,g−1([a,b]),h) if and only if β(p)(f b, fa) = β(p)(gb, ga) .
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Proof. After possibly adding empty bars, the bar codes associated with f and g can be written
B(f) = ([aα, bα[)α∈A and B(g) = ([cα, dα[)α∈A , where

max {|aα − cα|, |dα − bα| , α ∈ A, bα < +∞} ≤ dbot(B(g),B(f)) ≤ ‖g − f‖C0 <
ℓmin
4

.

The definition

ℓmin := min({yα − xα, α ∈ Ac(f ; a, b)} ∪ {|cn − a|, |cn − b|, 1 ≤ n ≤ Nf})

implies that the number of bars α ∈ Ac(g; a, b) such that yα − xα > ℓmin
2 , for the function

g , is in bijection with the whole set of bars Ac(f ; a, b) for the function f , which is made by
assumption of bars not smaller than ℓmin . The other potential bars of Ac(g; a, b) have a length
strictly smaller than ℓmin

2 .

Moreover, for α ∈ Ac(a, b) , the expression of limh→0−h logλ(p)α (h) given in Theorem 7.1, respec-

tively applied with g and f , provides the inequalities for the Õ(e−
2(ℓmin/2)

h ) non zero eigenvalues
of ∆g,g−1([a,b]),h .
Finally, the last statement of Theorem 7.6 is a direct consequence of the comments made in the
second item of Remark 2.9.

8 Generalizations

Our proofs are definitely done under Hypothesis 1.2, while, for a more general Lipschitz func-
tion f , consequences of Hypothesis 1.6 have not yet been checked and the exponential decay
estimates of Propositions 2.13 and 2.15 have simply been replaced by assumptions.
This framework was chosen in order to put the stress on the essentially one-dimensional analysis
on R ⊃ f(M) . Once this is well understood, it is rather easy to adapt the analysis and the
results in order to consider more general domains, manifolds, or Lipschitz functions f . The first
generalizations will be presented for the sake of simplicity in the framework of Hypothesis 1.2.
Additionally, we will check that Hypothesis 1.6 and Hypothesis 2.16 hold true under the simple
assumption that f is a subanalytic Lipschitz function (see Hypothesis 1.3), which describes, in
some sense, a wider class of functions than Hypothesis 1.2 in a real analytic geometry.

8.1 More general domains

It is not difficult to adapt all the analysis to some simple cases when the geometrical domain Ω
differs from f−1([a, b]) by tamed deformations of ∂Ω .

Proposition 8.1. Let (M, g) be a compact Riemannian manifold and let f satisfy Hypothesis 1.2.
If there exist m0, n0 ∈ {1, . . . , Nf} such that m0 < n0 and the boundary of the domain Ω =
Ω ⊔Nt ⊔Nn satisfies

f(Nt) ⊂]cm0 , cm0+1[ , f(Nn) ⊂]cn0 , cn0+1[ ,

and
∂f

∂n

∣∣
Nt
< 0 ,

∂f

∂n

∣∣
Nn

> 0 .

then all the results or Theorem 6.3 hold true with c̃1 = cm0+1 , c̃N = cn0 when ηf is chosen in
the interval

0 < ηf <
1

2
min

1<n≤Nf
cn − cn−1 ,

and ηf < min
x∈Nt

(cm0+1 − f(x)) , ηf < min
x∈Nn

(f(x)− cn0) .
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Proof. All the proof of Theorem 6.3 relies on the construction of the δ1-family of quasimodes
(ϕhj )j∈J (a,b) when Ω = f−1([a, b]) . We fix a = cm0+1−ηf = c̃1−ηf and b = cn0 +ηf = c̃N +ηf .

Because the gradient lines provide a homotopy between the pairs (Ω, Nt) and (f−1([a, b]), f−1 {a}) ,
the bar code for f in Ω relatively to Nt can be identified with B(f ; [a, b]) . Now, the quasimodes
(ϕhj )j∈J (a,b) are extended by 0 in fa ∩Ω and, when j ∈ Y(a, b)∪Z(a, b), they are “extended” in
fb ∩ Ω as

χϕhj − d∗f,f−1([cn0+δ1,+∞[∩Ω),h
(∆f,f−1([cn0+δ1,+∞[∩Ω),h)

−1(hdχ ∧ ϕhj ) ,

like in Proposition 3.9-ii), with δ1 ∈]0, ηf8 ], χ ∈ C∞(M ; [0, 1]), χ ≡ 1 in f b−ηf/2 , χ ≡ 0 in
fb−ηf/4, and where Dirichlet (resp. Neumann) boundary conditions are put on f−1({cn0 + δ1})
(resp. on Nn), for the domain f−1([cn0 + δ1,+∞[∩Ω)

Remark 8.2. Another interesting case is when the Neumann boundary conditions on N = Nn,
where ∂f

∂n > 0, are replaced by Dirichlet boundary conditions. Then, generalized critical values
corresponding to critical values of f

∣∣
N

appear following what is known for a Morse function f (see
e.g. [ChLi, HeNi, Lep1, LeNi, Lau]). As a topological tool, bar codes make sense for boundary
manifolds. But the analysis has to be reconsidered from the beginning, especially by introducing
mixed Dirichlet-Neumann problems along the upper boundary of Ω∩f≤t. We do not develop this
point here (see however [DLLN1] where such conditions are considered).

8.2 More general manifolds

The following generalization aims at including the particular case when M = Rd is not compact
and the gradient of f dos not vanish outside a compact set. More specifically, we assume

Hypothesis 8.3. Let (M, g) be a complete Riemannian manifold and assume f ∈ C∞(M ;R)
for the sake of simplicity. We suppose that there exist −∞ < a0 < b0 < +∞ and κ > 0 such
that

• K0 = f−1([a0, b0]) is compact,

• for all x ∈M \K0 , |∇f(x)| ≥ κ,
• f has a finite number of critical values c1, . . . , cNf in [a0, b0] which belong to ]a0, b0[.

Under this assumption, the definition of the bar code B(f) = ([a∗α, b
∗+1
α [)α∈A is essentially

the same as in the compact case, except that bars with a∗α = −∞ and b∗+1
α ∈ R are possible,

according to the topology of f t as t → −∞ . In such a case, b∗+1
α ∈ Z∗+1(a, b) for all a, b ∈

[−∞,+∞] \
{
c1, . . . , cNf

}
such that a < b∗+1

α < b .
The domain f−1([a, b]) ⊂ M is actually f−1([a, b]∩] − ∞,+∞[) when a = −∞ or b = +∞.
Accordingly, ∆f,f−1([a,b]),h , df,f−1([a,b]),h, and d

∗
f,f−1([a,b]),h do not include boundary conditions

on the infinite end in the definition of their domains.

Proposition 8.4. Under Hypothesis 8.3, all the results of Theorem 6.3 still hold.

Proof. The completeness of the manifold ensures that the scalar Laplacian is essentially self-
adjoint on C∞0 (M). Adapting the proof of Simader’s theorem ensures that ∆f,h is essen-
tially self-adjoint on M and that ∆f,f−1([a,b]),h is essentially self-adjoint on the subspace of
C∞0 (f−1([a, b]); ΛT ∗M) containing the boundary conditions, of Dirichlet type on f−1({a}) when
−∞ < a and of Neumann type on f−1({b}) when b < +∞ .
Agmon estimates and the compactness of K0 = f−1([a0, b0]) with |∇f | ≥ κ > 0 in M \ K0

implies that the solutions to ∆f,f−1([a,b]),hωh = λhωh with λh → 0 as h→ 0 must satisfy

‖e
κdg(x,K0)

h ωh‖W 1,2 ≤ Õ(1) .

One can then localize the analysis of exponentially small eigenvalues to K ′
0 = f−1([a0−1, b0+1]),

which amounts to the case of a compact manifold treated in Theorem 6.3.

92



8.3 More general Lipschitz functions

We consider more accurately the situation of a general Lipschitz function f , while the analysis
was presented under conjectural assumption. As a first step we recall in Subsection 8.3.1 how
Hypothesis 1.6 implies Hypothesis B.1 of Appendix B and therefore provides a finite bar code
Bf .
Once this is clarified we prove that Hypothesis 1.6 and Hypothesis 2.16 are satisfied when f is
a subanalytic Lipschitz function, after the suitable specification of the “critical values” , c1 <
. . . < cNf . It relies on the stratification of the subanalytic graph of f , of which the properties
are recalled in Subsection 8.3.2. A variation of Agmon distance will also be constructed after
solving the Hamilton-Jacobi equation |∇′ϕ| = |∇′f | , where ∇′ concerns only tangential partial
derivatives in some tubular neighoborhoods of every stratum. From this point of view, the
analysis of this Lipschitz subanalytic case, via a stratification technique, takes some inspiration
from [GeNi]. Finally in Subsubsection 8.3.3, Hypothesis 2.16 is checked to hold true, via some
partition of unity adapted with the stratification.

8.3.1 Hypothesis 1.6 and consequences

The manifold M is assumed to be compact without boundary although it could be extended to
more general cases like in Subsection 8.2.
Let us first define the critical values of a Lipschitz function f or more exactly, its contrary.

Definition 8.5. When f : M → R is a Lipschitz function a value a is not a critical value
if for any x0 ∈ f−1({a}) there exists a neighborhood Ux0 of x0 and a local coordinate system
x = (x1, x′) ∈ R× Rd−1 and a constant Cx0 > 0 such that

∀x = (x1, x′), y = (y1, x′) ∈ Ux0 ,
1

Cx0

|x1 − y1| ≤ |f(x1, x′)− f(y1, x′)| . (137)

A critical value a ∈ f(M) ⊂ R is a point where the above property fails.

Since the function f is continuous, the local condition condition (137) can be replaced by

∀x = (x1, x′), y = (y1, x′) ∈ Ux0 ,
1

Cx0

(x1 − y1) ≤ f(x1, x′)− f(y1, x′) when x1 > y1 .

Hypothesis 1.6 simply says that the Lipschitz function f has a finite number of critical values.
But the set

{
c1, . . . , cNf

}
of Hypothesis 1.6 may be strictly larger that the set of critical values

as defined above, and this a reason why the values c1, . . . , cNf were called “critical values”. Ac-
tually this flexibility is especially usefull when we consider subanalytic Lipschitz functions below.

The above definition ensures that the implicit functions theorem in the Lipschitz case can be
applied locally around x ∈ f−1({a, b}) with the following straightforward consequences for the
domain f ba when a, b are not “critical values”:

i) f ba is a strongly Lipschitz domain ofM according to the terminology of [GMM], meaning that
it is locally the hypograph of a Lipschitz function in the proper coordinate system.

ii) f ba = f−1([a, b]) .

iii) When a = −∞ , f b with c < b < c′ and no critical values in ]c, c′[ , is homotopic to Ω a C∞
domain with ∂Ω ⊂ f c′c .

The last statement can be checked by using finitely many local homotopies in coordinate systems,
but one could also use the global construction of a smooth transverse vector field as proposed in
[Ver]-Theorem 1.12-vi).
The above three properties were used in our analysis. In particular the finiteness of Nf and iii)
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appear in Hypothesis B.1 which allows the introduction of a finite bar code Bf . The properties
i) and ii) are used in the definition of ∆f,f−1([a,b]),h according to Proposition 2.8

Critical points and values can actually be defined in a coordinate free way, in terms of the
standard notion in non smooth analysis of Clarke’s generalized gradient and Clarke’s critical
points: In Rd or locally in a coordinate system in M , a Lipschitz function admits a differential
df(x) almost every where by Rademacher’s theorem and the domain Dom(df) is the set of x
where df(x) exists. Clarke’s generalized gradient at x then equals the closed convex set

∂◦f(x) = co
{
ζ ∈ Rd , ∃(xn)n∈N ∈ Dom(df)N , lim

n→∞
xn = x and lim

n→∞
df(xn) = ζ

}

where co denotes the convex hull . A Clarke critical point x is a point where 0 ⊂ ∂◦f(x)
and a Clarke critical value of f is a value a where f−1({a}) contains a critical points. In the
case of subanalytic Lipschitz functions which will be considered more specificaly in the other
paragraphs, this definition actually coincides with the wavefront naturally introduced in [DeLe].
Staying at the local level the local condition (137) for x0 ∈ f−1 {a} , actually means that for all
x ∈ Dom(df) ∩ Ux0 , df(x) lies in the intersection of some closed salient (ζ 6= 0 and −ζ cannot
both belong to it) convex cone Cx0 with a shell Sx0 =

{
ζ ∈ Rd , r < |ζ| ≤ R

}
, 0 < r < R < +∞ .

This writing is equivalent to the fact that for all x ∈ f−1({a}) , Clarke’s generalized gradient is
included in the intersection of a salient convex cone and a closed shell. This property is indepen-
dent of the coordinate system and of the metric if we replace the differential df by the gradient
∇f .

Even in the subanalytic setting, those critical values (according to Definition 8.5 or Clarke)
may overestimate what the intuition and even the final result would retain. Warga’s example
carefully analyzed in [CzRi] ,

f(x1, x2) = ||x1|+ x2|+ 1

2
x1 ,

with the level curves in the picture below, satisfies the above consequences i),ii) and iii) for any
value b ∈ R although 0 is a critical value of f . Note also that 0 will be a critical value of non
well chosen regularizations of f and we refer to [CzRi] for a thorough discussion of this point.

x
1

x
2

Figure 12: Level curves of Warga’s function f(x1, x2) = ||x1|+ x2|+ 1
2x

1 .
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Actually in the subanalytic setting an even larger, but still finite, set of values
{
c1, . . . , cNf

}

will be introduced in order to verify the second assumption, Hypothesis 2.16, used in our analysis.

8.3.2 Stratification of Lipschitz subanalytic functions

According to [BDLS] a Lipschitz subanalytic function has a finite number of critical values and
Hypothesis 1.6 holds true. We also recalled in the previous paragraph that Clarke’s gradient co-
incides with the wavefront set of subanalytic Lipschitz functions introduced in [DeLe]. However
such a notion of gradient or wavefront above a point x ∈ M , is a wide closed convex set which
contains all the convex combinations of limits of neighboring gradients without discriminating
the information which can be deduced from the stratified structure. We specify the correspond-
ing constructions when f is a real subanalytic Lipschitz function on a real analytic compact
Riemannian manifold M according to Hypothesis 1.3.
Let us first remind the basic notions about subanalytic sets and functions. We refer the reader to
the founding articles [Hardt][Hiro] and to [Loja][BiMi] for a panoramic or historical presentation.
A part but not all of the material, presented or recalled here, may be found in [DeLe] for the
specific case of subanalytic Lipschitz functions.

Review of subanalytic notions and results:

• In the real analytic category, the class of subanalytic sets is the one which contains the
semianalytic sets, characterized by real analytic equations or inequalities, and which is
stable by finite set operations (finite union, finite intersection and complement) and by
proper real analytic projections. The name “subanalytic” was introduced by Hironaka
and Hardt used the name “analytic shadow” in [Hardt] although they finally happened to
describe the same class (see [Loja]).

• Any subanalytic set E of a real analytic manifold X admits a stratification, that is a locally
finite partition in real analytic connected submanifold of X called strata E = ⊔S∈S S such
that S ∩ S′ 6= ∅ , S 6= S′ , implies S ⊂ ∂S′ with dimS < dimS′ , or equivalently because S
is a partition, S ∩ ∂S′ 6= ∅ , S 6= S′ implies S ⊂ ∂S′ with dimS < dimS′ .
Such a stratification can always be refined in order to satisfy Whitney’s local condition B
which reads in Rn or in a coordinate system:

(
(xn)n∈N ∈ (S′)N , lim

n→∞
xn = x ∈ S ⊂ S′

)
⇒ (TxS ⊂ lim

n→∞
TxnS

′).

When C is a locally finite family of subanalytic sets, the stratification S can also be chosen
in order to be compatible with C , which means that for all S ∈ S and C ∈ C , either
S ∩ C = ∅ or S ⊂ C .

• A subanalytic function X → Y is a function of which the graph is a subanalytic set of
X × Y .

• When f : X → Y is a real analytic mapping, a stratification of f is made of two stratifica-
tions S of X and F of Y such that

∀S ∈ S , f(S) ∈ F , rank (f
∣∣
S
) = dim f(S) .

• Corollary 4.4 of [Hardt] assumes that f : X → Y is real analytic and C and D are two
locally finite families of subanalytic sets of X and Y and Ω is a subanalytic open set such
that f

∣∣
Ω

is proper. It then says that there exists a stratification (S,F) of f
∣∣
Ω

which is
compatible with C and D .

• Famous Hironaka’s desinguralisation theorem says that any compact subanalytic set is the
image of a compact real analytic manifold with same dimension by a real analytic mapping.
We will not use it specifically.
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When f : M → R is a Lipschitz subanalytic function we consider the two projections p1 :
M × R → M and p2 : M × R → R . From Hardt’s result we know that there is a stratification
of p2 : M × R → R which is compatible with C = graph (f) ⊔ (M × R \ graph (f)) and D = R .
From this we deduce that there is a stratification S̃ of graph (f) and a finite number of points{
c1, . . . cNf

}
∈ R such that all S̃ ∈ S̃ satisfies

• either p2 is constantly equal to some cn along S̃ ;

• or there exists n such that p2(S̃) =]cn, cn+1[ and rank (p2
∣∣
S̃
) = 1 .

Definition 8.6. For such a stratification of graph (f) , strata corresponding to the first case will
be called horizontal strata.

Because f is a Lipschitz function the projection p1 : M × R → M makes a diffeomorphism

from S̃ to S = p1(S̃) which is a submanifold of M . The family S =
{
p1(S̃), S̃ ∈ S̃

}
is now a

stratification of M . When S̃ is a horizontal stratum, then f
∣∣
S
is constant along S = p1(S̃) . On

the contrary when S̃ is not horizontal f
∣∣
S
is a real analytic function with no critical point on

S = p1(S̃) .
Whitney’s condition B also has a nice interpretation. It simply says in a local coordinate system
(which allows the local identification of TyM with Rd around any point x ∈M)

(
(xn)n∈N ∈ (S′)N, lim

n→∞
xn = x

)
⇒
(
∀T ∈ TxS ∼ Rd , lim

n→∞
(d(f

∣∣
S′)xn [T ] = d(f

∣∣
S
)x[T ]

)
.

With the Riemannian structure it can be expressed in terms of gradients. More exactly for
any relatively compact open subset ωS of the stratum S , and for ε ∈]0, εωS [ , εωS > 0 small
enough, the exponential map exp(x, t) = expx(t) ∈M for (x, t) ∈ TM is a diffeomorphism from
{(x, t) ∈ NωS , |t| < ε} , where NωS is the normal fiber bundle over ωS , to its range TωS ,ε ⊂
{x ∈M,d(x, ωS) < ε} , that we call a tubular neighborhood of ωS . We refer the reader to [Lee]
where tubular neighborhoods of closed submanifold are introduced in this way and [Lan] for
further details and generalizations with more general pseudo Riemannian structures. Another
presentation using the embedding of M in some RNM is given in [Hirs]. Such a tubular neigh-
borhood TωS ,ε ⊂ M is an open subset of the fiber bundle πS : NωS → ωS and is endowed with
the metric g defined on M . Therefore the tangent bundle TxTωS ,ε = TxM for x ∈ TωS ,ε , has an
orthonomormal decomposition TxM = T Vx M ⊕⊥ THx M where T Vx M = ker(dπS) ∼ NπS(x)ωS .
For x ∈ TωS ,ε and t ∈ TxM = TxTωS ,ε we define ΠSt as the horizontal component of t in this de-
composition. For x ∈ TωS,ε , the function fS(x) = f(πSx) is a real analytic function of x ∈ TωS ,ε .
Because f is a regular function along a stratum S′ ∈ S its gradient along S′ (with the metric
induced by g) is denoted ∇S′f . With those notations the previous property can be written

(
(xn)n∈N ∈ (S′ ∩ TωS ,ε)N , lim

n→∞
xn = x ∈ ωS

)
⇒
(
lim
n→∞

|ΠS∇S′f(xn)−∇fS(xn)| = 0
)
.

Let us summarize our notations:

• ωS is a relatively compact open set of the stratum S .

• TωS ,ε is a tubular neighborhood of ωS diffeomorphic to {(x, t) ∈ NωS, |t| < ε} . It will be
convenient to extend the notation to ε = 0 with the large inequality and ωS = S , namely
TS,0 = S , which makes sense as S = lim supε→0 TωS,ε,ε where ωS,ε relatively compact in S
is well chosen when ε > 0 is small .

• When S′ is a stratum∇S′f is the gradient of f along S′ and for x ∈ S′∩TωS ,ε , ΠS∇S′f(x) is
the horizontal component of ∇S′f(x) in the orthogonal decomposition TxM = T Vx TωS ,ε⊕⊥

THx TωS ,ε .
• Finally in TωS ,ε , which is diffeomorphic to a subset ofNωS , one defines the regular function
fS(x) = f(πSx) where πS is the natural projection πS : NωS → ωS .
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x •

πS(x)
+

∇S′f(x)

ΠS∇S′f(x)

THx TωS ,ε

T Vx TωS ,ε

ωS ⊂ S
TωS ,ε

Figure 13: Picture of the projections πS and ΠS when x ∈ TωS ,ε ∩ S′.

With the compactness of ωS in S , Whitney ’s condition B actually implies the following
uniform convergence result.

Lemma 8.7. Fix the relatively compact open set ωS of the stratum S and let TωS ,ε denote the
tubular neighborhood defined for ε > 0 small enough. Then the quantities

max
S′∈S

sup
x∈TωS,ε∩S′

|ΠS∇S′f(x)−∇fS(x)|

and
sup

x∈TωS,ε
|∇fS(x)−∇fS(πSx)| ,

tend to 0 as ε→ 0+ .

Proof. Ad absurdum if there is a sequence (xn)n∈N such that |ΠS∇S′f(xn)−∇fS(xn)| ≥ η > 0
while xn ∈ TωS , 1n ∩ S

′ , then by the compactness of ωS and the finiteness of S , we can assume

that S′ is fixed and that limn→∞ xn = x ∈ ωS . The lower bound |ΠS∇S′f(xn) − ∇fS(xn)| ≥
η > 0 while limn→∞ |∇fS(xn) − ∇fS(x)| = 0 , ∇fS(x) = ∇Sf(x) , then contradicts Whitney’s
condition B.
Finally the last convergence is a consequence of the uniform continuity of ∇fS which can be
defined on a compact neighborhood of TωS ,ε for ε ∈]0, εS [ , εS > 0 small enough.

Proposition 8.8. When f is a Lipschitz subanalytic function on M , Hypothesis 1.6 is satified
with c1, . . . , cNf ∈ R being the values associated with horizontal strata in the stratification of
graph(f) ⊂M × R described above.

Proof. Let x0 ∈ M \ f−1(
{
c1, . . . , cNf

}
) . It belongs to a stratum S ∈ S and we can find

a relatively compact open set ωS ⊂ S such that x0 ∈ ωS ⊂ S . The function fS is a real
analytic-function defined in the tubular open TωS ,ε for ε ∈]0, εx0 [ with εx0 > 0 small enough.
For y ∈ TωS ,ε ∩ S′ , with S′ ∈ S , dimS′ = d , we write

∇fS(y).∇f(y) = |ΠS∇f(y)|2 − (∇fS(y)−ΠS∇f(y)) .∇f(y)

and

∣∣∇fS(y).∇f(y)− |∇fS(x0)|2
∣∣ ≤

∣∣|ΠS∇f(y)|2 − |∇fS(x0)|2
∣∣+Mf |ΠS∇f(y)−∇fS(y)| .
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We know that |∇fS(x0)| > 0 because S cannot be an horizontal stratum. By Lemma 8.7,

ε ∈]0, εx0 [ can be chosen such that the right-hand side is smaller than 1
2 |∇fS(x0)|

2
for all

S′ ∈ S , such that dimS′ = d and x0 ∈ S ∩ S′ . We have found a tubular neighborhood Ux0 of
x0 and a coordinate system (x1, . . . , xd) around x0 by taking x1 = fS(x) such that

∀S′ ∈ S , dimS′ = d , ∀x ∈ Ux0 ∩ S′ , ∂x1f(x) ≥
1

Cx0

.

This neighborhood Ux0 can then be reduced to

Ux0 =
{
x = (x1, x′) = (x1, x2, . . . , xd) , |x1 − x10| < δ , |x′| < δ

}

for some δ > 0 . The set E = Ux0\(∪dimS′=dS
′∩Ux0) has measure 0 and∇f(x) is well defined for

all x ∈ Ux0\E . By Fubini’s theorem the set of x′ , |x′| < δ , such that
{
(x1, x′) , |x1 − x10| < δ

}
∩E

has a non zero one dimensional measure, has Lebesgue’s measure 0 and we can write for almost
all x′ , |x′| < δ

∀x1, y1 ∈]x10 − δ, x10 + δ[ , f(x1, x′)− f(y1, x′) =
∫ 1

0

(x1 − y1)∂x1f(x1 + t(y1 − x1)) dt

where the integrand is well defined for almost every t ∈ [0, 1] and bounded from below by
1
Cx0

(x1 − y1) when x1 > y1 . The continuity of f then implies

∀(x1, x′), (y1, x′) ∈ Ux0 ,
1

Cx0

|x1 − y1| ≤ |f(x1, x′)− f(y1, x′)| .

We will use open coverings of f−1([a, b]) when [a, b]♯
{
c1, . . . , cNf

}
= ∅ , made of tubes TωS ,εS

with εωS > 0 . They will be constructed by induction on the dimensions of the strata. They
will be associated with a family of parameters (ε1, . . . , εd) , with εωS = εdimS . In the induction
process we authorize εdimS = 0 for m < dimS ≤ d , in which case ωS = S for every stratum S
of dimension dimS > m .

Definition 8.9. Let a < b belong to R and set S[a,b] =
{
S ∈ S , S ∩ f−1([a, b]) 6= ∅

}
. A tubular

covering of f−1([a, b]) contains two data, a family (ε0, ε1, . . . , εd) ∈ [0,+∞[d+1 and for every
S ∈ S[a,b] , a subset ωS of S which is either open and relatively compact in S if εdimS > 0 or
equal to S if εdimS = 0 such that for all m ≤ d

f−1([a, b]) ∩
(

∪
S∈S[a,b],dimS≤m

S

)
⊂ ∪

S∈S[a,b],dimS≤m
TωS ,εdimS

, (138)

TωS1 ,εm′ ∩ TωS2 ,εm′ = ∅ if S1 6= S2 , dimS1 = dimS2 = m′ ≤ m. (139)

Such a tubular covering is said ε-adapted for ε ∈]0, 1] , if for any S, S′ ∈ S[a,b] ,

sup
x∈TωS,εdimS

∩S′

|ΠS∇S′f(x)−∇fS(x)| ≤ ε , (140)

and
sup

x∈TωS,εdimS

|∇fS(x)−∇fS(πSx)| ≤ ε . (141)

Such a covering is clearly an open covering when all the εi’s are positive.
We will sumarize those situations by speaking of a (possibly “an ε-adapted”)(possibly “open”)
tubular covering (TωS ,,εS )S∈S[a,b]

associated with the parameters (ε0, . . . , εd) .
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Figure 14: A schematic example of an open covering: The stratification is on the
left-hand side made of two triangles, the edges and the vertices; the open tubular
covering with positive values for ε0, ε1, ε2 is on the right-hand side. The outside of
the two triangles is forgotten or one can compactify by identifying opposite external
edges

A trivial example is given by (ε0, ε1, . . . , εd) = (0, . . . , 0) and ωS = S for all S ∈ S[a,b] .
When S[a,b] contains no stratum of dimension m , any value εm ≥ 0 can be used in the above
definitions. When all the parameters εm , 0 ≤ m ≤ d , are positive, this provides an open covering
of f−1([a, b]) . Note that when εm = 0 and ωS = S for dimS = m , the condition x ∈ TωS ,εm ∩S′

actually implies x ∈ S = S′ so that the condition (140) is void for strata S of dimension m .
As a consequence, if (TωS ,εdimS

)S∈S[a,b]
is a (resp. an ε-adapted) tubular covering of f−1([a, b])

associated with the parameters (ε0, . . . , εd) , then for any m replacing εm′ by 0 for m′ > m ,
ωS by S if dimS > m , εm by ε′m ∈]0, εm] and leaving the other data, ωS for dimS ≤ m ,
ε0, . . . , εm−1 , unchanged give another (resp. ε-adapted) tubular covering.
The following proposition implements the induction which leads to the construction of families
of ε-adapted open tubular coverings of f−1([a, b]) , especially when [a, b] contains no “critical
value”.

Proposition 8.10. Assume first f−1([a, b])∩
{
c1, . . . , cNf

}
= ∅ where c1, . . . cNf are values of f

associated with horizontal strata. Then S[a,b] contains no 0-dimensional stratum and there exists
a (resp. an ε-adapted) tubular covering associated with (ε0, 0, . . . , 0) for any ε0 > 0 .
Assume that there exists a (resp. an ε-adapted) tubular covering associated with the parameters
(ε0, . . . , εm−1, 0, . . . , 0) for 1 ≤ m ≤ d with ε0 > 0, . . . , εm−1 > 0 , then there exists ε0m > 0
and for any S ∈ S[a,b] , dimS = m , a subset ωS ⊂ S open and relatively compact S such that
for all εm ∈]0, ε0m] , the family (TωS ,εdimS

)S∈S[a,b]
associated with (ε0, . . . , εm, 0, . . . , 0) and ωS

unchanged if dimS ≤ m− 1 , is another (resp. ε-adapted) tubular covering of f−1([a, b]) .

Proof. Because S[a,b] contains no stratum of dimension 0 a tubular covering is given by ωS = S
where all S ∈ S[a,b] satisfy dimS ≥ 1 and any value of ε0 > 0 makes sense.
Additionally every S ∈ S[a,b] of dimension 1 satisfies ∇Sf(x) 6= 0 for every x ∈ S∩f−1([a, b]) and
hence f−1([a, b]) ∩ S is a compact subset of S . We can choose ωS open and relatively compact
in S such that ωS ∩ f−1([a, b]) is a neighborhood in S of S ∩ f−1([a, b]) . This is done for every
S ∈ S[a,b] such that dimS = 1 . We can then choose ε1 > 0 such that ε1 <

1
2dg(ωS1 , ωS2) for any

S1, S2 ∈ S[a,b] , dimS1 = dimS2 = 1 , in order to ensure TωS1 ,ε1
∩ TωS2 ,ε1

= ∅ for S1 6= S2 .
Assume now that the result holds for a given m , 1 ≤ m ≤ d . For dimS ≤ m , the set TωS ,εdimS

is
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an open set and ∪S∈S[a,b],dimS≤m TωS ,εdimS
is an of K[a,b],m = f−1([a, b])∩ (∪S∈S[a,b],dimS≤m S) .

Consider the compact subset K[a,b],m+1 = f−1([a, b])∩ (∪S∈S[a,b],dimS=m+1 S) . It is a a compact
set and so is K[a,b],m+1 \ (∪S∈S[a,b],dimS≤m TωS ,εdimS

) which by the definition of the stratification
S can be decomposed into ∪S∈S[a,b],dimS=m+1KS where KS is a compact subset of S . We
choose for ωS , S ∈ S[a,b] , dimS = m + 1 , a relatively compact neighborhood of KS and
then fix εm+1 > 0 small enough such that TωS1 ,εm+1 ∩ TωS2 ,εm+1 = ∅ for any S1, S2 ∈ S[a,b] ,
dimS1 = dimS2 = m+ 1 like in the case m+ 1 = 1 .
Following this induction and by assuming that (TωS ,S)S∈S[a,b]

is an ε-adapted tubular covering

associated with (ε0, . . . , εm, 0, . . . , 0) , ε0 . . . εm > 0 , ε0m+1 > 0 can be chosen such that

sup
x∈T

ωS,ε
0
m+1

∩S′

|ΠS∇S′f(x)−∇fS(x)| ≤ ε

and
sup

x∈T
ωS,ε

0
m+1

|∇fS(x) −∇fS(πSx)| ≤ ε ,

for all S ∈ S[a,b] , dimS = m+ 1 , and all S′ ∈ S[a,b] . This still holds if ε0m+1 is replaced by any
εm+1 ∈]0, ε0m+1] , without changing the ωS , and this ends the proof.

Definition 8.11. Assume f−1([a, b])∩
{
c1, . . . , cNf

}
= ∅ and let (TωS ,εdimS

)S∈S[a,b]
be a tubular

covering associated with the parameters (ε0, ε1, . . . , εd) ∈ [0,+∞[d+1 . The functions F̃(ε0,...,εd)

and F(ε0,...,εd) are defined on f−1([a, b]) by

F̃(ε0,...,εd)(x) = min
x∈TωS,εdimS

∩S′
|ΠS∇S′f(x)| , (142)

F(ε0,...,εd)(x) = min
x∈TωS,εdimS

|∇fS(x)| , (143)

where the minima are taken over S, S′ ∈ S[a,b] .
On f−1([a, b])× f−1([a, b]) the functions G̃(ε0,...,εd) and G(ε0,...,εd) are given by

G(ε0,...,εd)(x, y) = inf
γ ∈ C1([0, 1]; f−1([a, b]))
γ(0) = x ; γ(1) = y

∫ 1

0

F(ε0,...,εd)(γ(t))|γ′(t)| dt (144)

with the same definition for G̃(ε0,...,εd) .

Before proving some results about those functions let us list some simple properties:

• Because S[a,b] is a finite collections of mesurable sets, the functions F̃(ε0,...,εd) and F(ε0,εd)

are measurable and the functions G̃(ε0,...,εd) and G(ε0,...,εd) are well defined.

• When ε1 = . . . = εd = 0 , the functions F̃(0,...,0) and F(0,...,0) are equal to

F̃(0,...,0)(x) = F(0,...,0)(x) =
∑

x∈S
1S(x)|∇Sf(x)| ,

which is a lower semicontinuous function on f−1([a, b]) due to Whitney’s condition B and
|ΠS∇S′f(x)| ≤ |∇S′f(x)| for x ∈ S′ close enough to S ⊂ ∂S′ .

• Because f is a Lipschitz function, the function F̃(ε0,...,εd) and F(ε0,...,εd) are uniformly
bounded by Mf = 1 + ‖∇f‖L∞ when ε ≤ 1 because of |ΠS∇S′f(x)| ≤ |∇S′f(x)| ≤
‖f‖W 1,∞ and (140) . Therefore the functions G̃(ε0,...,εd) and Gε0,...,εd) are Mf -Lipschitz
pseudodistances on f−1([a, b])× f−1([a, b]) .
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• When (TωS ,εdimS
)S∈S[a,b]

is an ε-adapted tubular covering of f−1([a, b]) , then

∑

x∈f−1([a,b])

∣∣∣F̃(ε0,...,εd)(x)− F(ε0,...,εd)(x)
∣∣∣ ≤ ε

and hence

sup
(x,y)∈f−1([a,b])

∣∣∣G̃(ε0,...,εd)(x, y)−G(ε0,...,εd)(x, y)
∣∣∣ ≤ ε× diam(f−1([a, b])) ,

where diam is the diameter for the metric g .

• Let (TωS ,εdimS
)S∈S[a,b]

be a tubular covering of f−1([a, b]) associated with the parameters
(ε0, . . . , εm, 0, . . . , 0) with ε0 . . . εm > 0 , 1 ≤ m ≤ d . For any ε′m ∈]0, εm] , one gets another
tubular covering of f−1([a, b]) while keeping all the other data unchanged and for ε′m = 0
simply change ωS into S when dimS = m . Then the functions H(ε0,...,ε′m,0,...,0)

, with

H = F̃ , F, G̃, G , are well defined for any ε′m ∈ [0, εm] and they are decreasing with respect
to ε′m , i.e. increase as ε′m decays.

Lemma 8.12. In the framework of Definition 8.11, the function F0,...,0(x) = F̃(0,...,0)(x) is
lower semi-continuous bounded by Mf = 1 + ‖∇f‖L∞ and bounded from below by a positive

constant ma,b,f > 0 . The function G̃(0,...,0)(x, y) = G(0,...,0)(x, y) is a pseudodistance (fullfilling
the symmetry and the triangular inequality) which satisfies

∀x, y ∈ f−1([a, b]) , |f(x)− f(y)| ≤ G(0,...,0)(x, y) ≤Mfdg(x, y) ,

where dg is the geodesic distance between x and y in the metric g .

Proof. We already noticed that F(0,...,0) = F̃(0,...,0) is a lower semicontinuous function, bounded
by ‖∇f‖L∞ . Since f−1([a, b]) contains no horizontal stratum

F(0,...,0)(x) =
∑

S∈S[a,b]

1S(x)|∇Sf(x)|

does not vanish. The achieved minimum ma,b,f on the compact set f−1([a, b]) must be positive.
With the estimate F(0,...,0)(x) ≤ Mf for all x ∈ f−1([a, b]) , the fact that G(0,...,0)(x, y) defines
a pseudodistance with the upper bound G(0,...,0)(x, y) ≤ Mfdg(x, y) is standard. For the lower
bound because M -valued real analytic functions are dense in C1([0, 1];M) , the function G(0,...,0)

can be defined as

G(0,...,0)(x, y) = inf
γ ∈ Cω([0, 1]; f−1([a, b]))
γ(0) = x ; γ(1) = y

∫ 1

0

F(0,...,0)(γ(t))|γ′(t)| dt .

Let γ : [0, 1]→ f−1([a, b]) ⊂M be a real analytic function such that

G(0,...,0)(x, y) + η ≥
∫ 1

0

F(0,...,0)(γ(t))|γ′(t)| dt ≥ G(0,...,0)(x, y) .

By using the recalled Hardt’s result in [Hardt] about the stratification of real analytic mapping,
now applied to γ from [0, 1] with the trivial stratification to M with the stratification S , there
exists a stratification of [0, 1] , that is a finite partition into open intervals and points [0, 1] =
⊔I∈II such that for any I ∈ I there exists SI ∈ S such that γ(I) ⊂ SI . Hence there exist
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N ∈ N , 0 = t0 < t1 < . . . < tN = 1 and for any 1 ≤ n ≤ N a stratum Sn ∈ S[a,b] such that
γ(]tn−1, tn[) ⊂ Sn . We deduce

∫ 1

0

F(0,...,0)(γ(t))|γ′(t)| dt =
N∑

n=1

∫ tn

tn−1

|∇Snf(γ(t))||γ′(t)| dt

≥
N∑

n=1

|f(γ(tn))− f(γ(tn−1))| ≥ |f(x)− f(y)| .

We have proved for all η > 0 the lower bound

G(0,...,0)(x, y) + η ≥ |f(x)− f(y)| ,

which ends the proof.

Proposition 8.13. Assume that [a, b]∩
{
c1, . . . , cNf

}
= ∅ . For any ε ∈]0, 1[ there exist param-

eters (ε0, . . . , εd) ∈]0,+∞[d+1 and an ε-adapted open tubular covering (TωS ,εdimS
)S∈S[a,b]

associ-
ated with the parameters (ε0, . . . , εd) , such that the function G(ε0,...,εd) defined in Definition 8.11
satisfies the uniform estimates:

∀x, y ∈ f−1([a, b]) , |f(x)− f(y)| − ε ≤ G(ε0,...,εd)(x, y) ≤Mfdg(x, y) (145)

where Mf = 1 + ‖∇f‖L∞ and dg is the geodesic distance on (M, g) .
For any ε′ ∈]0, 1[ , this tubular covering can be chosen, after taking ε > 0 small enough, such
that

∀S ∈ S[a,b] ,∇f(x).∇fS(x) − (1− ε′)|∇fS(x)|2 for a.e. x ∈ TωS ,εdimS
, (146)

and

∀S, S′ ∈ S[a,b] , ∀x ∈ TωS,εdimS
∩ S′ , |∇fS(x)| ≥

mf,a,b

2
, |ΠS∇S′f(x)| ≥ mf,a,b

2
, (147)

where mf,a,b > 0 was introduced in Lemma 8.12.

Proof. The diameter diam(f−1([a, b])) for the geodesic distance on (M, g) is denoted by

∆a,b,f = diam(f−1([a, b])) .

The proof is made by induction on m , where m is the maximal number such that ε0 . . . εm > 0 ,
while playing with the two functions G̃(ε0,...,εm,0,...,0) and G(ε0,...,εm,0,...,0) .
More precisely we will prove that for 0 ≤ m ≤ d , there exists (ε0, . . . , εm) ∈]0,+∞[m+1 and
an ε

d(2∆a,b,f+1) -adapted tubular covering (TωS ,εdimS
)S∈S([a,b]) associated with the parameters

(ε0, . . . , εm, 0, . . . , 0) such that

|f(x)− f(y)| − mε

d
≤ G(ε0,...,εm,0,...,0)(x, y) .

Notice that “ ε
d(2∆a,b,f+1) -adapted” is stronger than “ε-adapted”.

The statement is clearly true for m = 0 because our assumption says that S[a,b] contains no

0-dimensional stratum and G(ε0,0,...,0) = G̃(ε0,0,...,0) does not depend on ε0 ∈ [0,+∞[ , while the
lower bound G(0,...,0)(x, y) ≥ |f(x)−f(y)| was proved in Lemma 8.12. Note additionally that the
tubular covering (TωS ,εdimS

)S∈S[a,b]
, TωS ,0 = S for S ∈ S[a,b] is an ε

d(2∆a,b,f+1) -adapted tubular

covering of f−1([a, b]) .
Assume now that we have found (ε0, . . . , εm) ∈]0,+∞[m+1 and an ε

d(2∆a,b,f+1) -adapted tubular

covering (TωS ,εdimS
)S∈S[a,b]

such that

|f(x)− f(y)| − mε

d
≤ G(ε0,...,εm,0,...,0)(x, y) .
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By Proposition 8.10 ε0m+1 > 0 can be chosen such that for any εm+1 ∈]0, ε0m+1] there exists an
ε

d(2∆a,b,f+1) -adapted tubular covering (TωS ,εdimS
)S∈S[a,b]

associated with (ε1, . . . , εm+1, 0, . . . , 0) ,

with ωS independent of εm+1 > 0 . For any εm+1 ∈ [0, ε
(0)
m+1] we deduce

sup
x,y∈f−1([a,b])

|G̃(ε0,...,εm+1,0,...,0)(x, y)−G(ε0,...,εm+1,0,...,0)(x, y)| ≤
ε

d(2∆a,b,f + 1)
×∆a,b,f .

Meanwhile we observed that G̃(ε0,...,εm,0,...,0) is the monotonous limit as εm+1 → 0+ of G̃(ε0,...,εm+1,0,...,0) ,
in the class of Lipschitz continuous functions on the compact set f−1([a, b])× f−1([a, b]) . Dini’s
convergence theorem then ensures that this convergence is uniform and we can choose εm+1 ∈
]0, ε0m+1] such that

sup
x,y∈f−1([a,b])

|G̃(ε0,...,εm+1,0,...,0)(x, y)− G̃(ε0,...,εm,0,...,0)(x, y)| ≤
ε

d(2∆a,b,f + 1)
.

Gathering all those inequalities yields

|f(x)− f(y)| − mε

d
≤ G(ε0,...,εm,0,...,0)(x, y)

≤ G̃(ε0,...,εm,0,...,0)(x, y) +
ε

d(2∆a,b,f + 1)
∆a,b,f

≤ G̃(ε0,...,εm+1,0,...,0)(x, y) +
ε

d(2∆a,b,f + 1)
(∆a,b,f + 1)

≤ G(ε0,...,εm+1,0,...,0)(x, y) +
ε

d(2∆a,b,f + 1)
(2∆a,b,f + 1)

≤ G(ε0,...,εm+1,0,...,0)(x, y) +
ε

d
.

This ends the recurrence. The lower bound in (145) is finally proved when m = d is reached.
For (147) it suffices to write

|∇fS(x) −∇fS(πSx)| ≤ ε , |∇fS(πSx)| = G(0,...,0)(πSx) ≥ mf,a,b ,

|ΠS∇S′f(x) −∇fS(x)| ≤ ε ,

and then to choose ε ≤ mf,a,b
4 .

Finally with S, S′ ∈ S[a,b] , dimS′ = d , and x ∈ TωS ,εdimS
, we have

∇f(x).ΠS∇f(x) − (1− ε′

2
) |ΠS∇f(x)|2 =

ε′

2
|ΠS∇f(x)|2 ≥

ε′m2
f,a,b

8
,

while ‖∇f‖L∞ ≤Mf and
|ΠS∇f(x)−∇fS(x)| ≤ ε .

By choosing ε > 0 small enough we obtain for all S, S′ ∈ S[a,b] , dimS′ = d , and all x ∈ S′ ,

∇f(x).∇fS(x) − (1− ε′)|∇fS(x)|2 ≥ 0 .

8.3.3 Agmon type estimate for Lipschitz subanalytic potential

Proposition 8.8 says that Hypothesis 1.6 is satisfied when f is a real analytic function on the
compact Riemannian real analytic manifoldM (Hypothesis 1.3), where the values c1 < . . . < cNf
are the values associated with horizontal strata of f .
We now prove that Hypothesis 2.16 is a consequence of Hypothesis 1.3 so that Theorem 6.3 and
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its consequences in Section 7 hold true under Hypothesis 1.3.
Remember that Hypothesis 2.16 gathers the results of Proposition 2.13 and Proposition 2.15
adapted to a general Lipschitz function f . We will first prove the analogous of Proposition 2.15
in Proposition 8.14 and then deduce in Proposition 8.16 the analogous of Proposition 2.13.

Proposition 8.14. Under Hypothesis 1.3 and when c1 < . . . < cNf are the values associated with

horizontal strata according to Proposition 8.8, choose a < b such that [a, b] ∩
{
c1, . . . , cNf

}
= ∅ .

If limh→0 λh = 0 , the resolvent kernel (∆f,f−1([a,b]),h − λh)−1(x, y) is well defined and satisfies

(∆f,f−1([a,b]),h − λh)−1(x, y) = Õ(e−
|f(x)−f(y)|

h ) ,

according to Definition 2.14.

Proof. This result relies on the stratification tools introduced in the previous paragraph. It is
proved in several steps, the first one being a localization in suitable open subsets. Let us fix
x0 ∈ f−1([a, b]) with f(x0) = t0 and we fix the neighborhood of x0 in f−1([a, b]) as

Vx0 = f−1([a, b]) ∩ f−1(]t0 − η; t0 + η)

where η > 0 is a small parameter to be fixed at the end of the analysis.
We want to prove that for any ε > 0 , any h ∈]0, hε[ , ∆f,f−1([a,b]),h − λh is invertible and that

for any rh ∈ L2(f ba) such that supp rh ⊂ Vx0 , ωh = (∆f,f−1([a,b]),h − λh)−1rh satisfies

‖e
|f(x)−f(x0)|

h ωh‖W∂(fba)
= Õ(1)‖rh‖ .

It will be convenient to call a = t1 and b = t2 especially when the arguments gather the three
levels tk , k = 0, 1, 2 .

i) Open covering of f−1([a, b]): Because [a, b] ∩
{
c1, . . . , cNf

}
= ∅ , for any x ∈ f−1([a, b])

there exist a neighborhood Ux of x in M and a smooth function ϕx on Ux and a constant Cx > 0
such that

∇f(y).∇ϕx(y) ≥
1

Cx
and |∇ϕx(y)| ≤ Cx for a.e. y ∈ Ux .

Take for ϕx(y) the coordinate function ϕx(y) = y1 given in Hypothesis 1.6 (see also Proposi-
tion 8.8). By the compactness of f−1({t0, t1, t2}) , there exists a finite family (xi)i∈I and constant
κ > 0 small enough such that

∇f.(κ∇ϕxi(y)) ≥ 2|κ∇ϕxi(x)|2 ≥ 2κ3 > 0 for a.e. y ∈ Uxi
and for all i ∈ I .
Once this open covering f−1({tk, k = 0, 1, 2}) ⊂ ∪i∈IUxi is fixed, we can choose the parameter
η > 0 such that

f−1
(
{tk, k = 0, 1, 2}+]− η

2
,
η

2
[
)
⊂ ∪i∈IUxi .

Again when η > 0 is fixed and the stratification S[a,b] is introduced as in Subsection 8.3.2 ,
Proposition 8.13 provides us an open covering

(TωS ,εdimS
)S∈S[a,b]

such that the associated functions, fS , S ∈ S[a,b] , and G(ε0,...,εd) satisfy

∀x, y ∈ f−1([a, b]) , |f(x)− f(y)| − η ≤ G(ε0,...,εd)(x, y) ≤Mfd(x, y) ,

∀S ∈ S[a,b] ,∇f(x).∇fS(x) − (1− η

2
)|∇fS(x)|2 ≤ 0 for a.e. x ∈ TωS ,εdimS

,

∀S ∈ S[a,b] , ∀x ∈ TωS,εdimS
, |∇fS(x)| ≥

mf,a,b

2
.

We now choose our open covering f−1([a, b]) ⊂ ∪j∈JΩj :
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• J = S[a,b] ∪ I ;
• when j = S ∈ S[a,b] , Ωj =

{
x ∈ TωS ,εdimS

, |f(x)− tk| > η
4 , k = 0, 1, 2

}
and ϕj = fS ;

• when j = i ∈ I , Ωj = Uxi ∩ f−1({tk, k = 0, 1, 2}+]− η
2 ,

η
2 [) , and ϕj = κϕxi .

ii) Choice of a global function ϕ: Once the open covering f−1([a, b]) ⊂ ∪j∈JΩj is fixed we
choose

ϕ(x) = (1 − η) inf
γ ∈ C1([0, 1]; f−1([a, b])
γ(0) = x0 , γ(1) = x

∫ 1

0

1[a,b]\∪2
k=0]tk−η,tk+η[(f(γ(t)))F(ε0,...,εd)(γ(t))|γ′(t)| dt.

Because the integrand is 0 when f(γ(t)) ∈]tk − η, tk + η[ the integral
∫ 1

0 [. . .]dt can be replaced

by
∫ T1

T0
[. . .]dt where T0 = max {t ∈ [0, 1], , f(γ(t)) ∈ [t0 − η, t0 + η]} and

T1 = min {t ∈ [0, 1] , f(γ(t)) ≥ f(b)− η} if f(x) > f(b)− η , b = t2 ,

T1 = min {t ∈ [0, 1] , f(γ(t)) ≤ f(a) + η} if f(x) < f(a) + η , a = t1 .

The comparison with G(ε0,...,εd)(x, x0) then gives

ϕ(x)

1− η ≥ G(ε0,...,εd)(x, x0)− 2η ≥ |f(x)− f(x0)| − 3η

and
∀x ∈ f−1([a, b]) , ϕ(x) ≥ |f(x)− f(x0)| − (b− a+ 3)η . (148)

The function ϕ is a Lipschitz function of which the gradient can be estimated almost surely in
any Ωj , j ∈ J . The triangle inequality for a pseudodistance implies for all x, x′ ∈ f−1([a, b])∩Ωj
|ϕ(x) − ϕ(x′)|

(1− η) ≤ inf
γ ∈ C1([0, 1]; f−1([a, b])
γ(0) = x , γ(1) = x′

∫ 1

0

1[a,b]\∪2
k=0]tk−η,tk+η[(f(γ(t)))F(ε0,...,εd)(γ(t))|γ′(t)| dt

≤ inf
γ ∈ C1([0, 1]; f−1([a, b] ∩ Ωj)

γ(0) = x , γ(1) = x′

∫ 1

0

|∇ϕj(γ(t))| (γ(t))|γ′(t)| dt .

We used that
1[a,b]\∪2

k=0]tk−η,tk+η[(f(γ(t)))F(ε0,...,εd)(γ(t))|γ′(t)|
is

• 0 and therefore bounded by |∇ϕj(γ(t))| when γ(t) ∈ Ωj ⊂ f−1(∪2k=0]tk − η, tk + η[) when
j ∈ I ;

• bounded by |∇fS(γ(t))| |γ′(t)|when γ(t) ∈ Ωj with j = S ∈ S[a,b] .
We deduce

∀j ∈ J , |∇ϕ(x)| ≤ (1− η)|∇ϕj(x)| for a.e. x ∈ Ωj . (149)

iii) Partition of unity: Let
∑
j∈J χ

2
j ≡ 1 in a neighborhood of f−1([a, b]) be a partition

of unity with χj ∈ C∞0 (Ωj ; [0, 1]) where f−1([a, b]) ⊂ ∪j∈JΩj is the open covering introduced
in i) . Accordingly the function ϕ ∈ W 1,∞(f−1[a, b]) is the one introduced in ii). For any
ω ∈W∂(f

b
a; ΛT

∗M) , the relations (19) and (18) of Lemma 2.10 give

Re Qf,f−1([a,b]),h(ω , e
2ϕ
h ω) =

∑

j∈J
Re Qf,f−1([a,b]),h(χjω , e

2ϕ
h χjω)− h2‖|∇χj|ω̃‖2 .

=
∑

j∈J

∥∥df,f−1([a,b]),hχjω̃
∥∥2 +

∥∥∥d∗f,f−1([a,b]),hχjω̃
∥∥∥
2

− 〈χjω̃ , |∇ϕ|2χjω̃〉 − h2‖|∇χj |ω̃‖2 .
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With (149) we deduce

Re Qf,f−1([a,b]),h(ω , e
2ϕ
h ω) =

∑

j∈J

∥∥df,f−1([a,b]),hχjω̃
∥∥2 +

∥∥∥d∗f,f−1([a,b]),hχjω̃
∥∥∥
2

− (1− η)2〈χjω̃ , |∇ϕj |2χjω̃〉 − h2‖|∇χj |ω̃‖2 .

Now ϕj can be extended to a C∞ function away from a neighborhood of supp χj without changing

the expression and using (18) and (21) with ωj = e−(1−η)ϕjh χjω̃ ∈W∂(f
b
a; ΛT

∗M) and ϕ replaced
by (1− η)ϕj , we obtain

∥∥df,f−1([a,b]),hχjω̃
∥∥2 +

∥∥∥d∗f,f−1([a,b]),hχjω̃
∥∥∥
2

− (1 − η)2〈χjω̃ , |∇ϕj |2χjω̃〉
= Qf−(1−η)ϕj,f−1([a,b]),h(χj ω̃ , χjω̃)

+ (1− η)〈(2∇f.∇ϕj − 2(1− η) |∇ϕj |2 + hL∇ϕj + hL∗∇ϕj )χjω̃ , χjω̃〉

+ h(1− η)
(∫

f=b

−
∫

f=a

)
〈χjω̃ , χjω̃〉ΛT∗

σM

(
∂ϕj
∂n

)
(σ) dσ .

Because all the ϕj are C∞ functions there exists C > 0 such that

∣∣∣〈(L∇ϕj + L∗∇ϕj )χjω̃ , χjω̃)〉
∣∣∣ ≤ C ‖χjω̃‖2 .

We have proved

Re Qf,f−1([a,b]),h(ω , e
2ϕ
h ω) =

∑

j∈J
Qf−(1−η)ϕj (χjω̃ , χjω̃) (150)

+ 2(1− η)〈(∇f.∇ϕj − (1− η) |∇ϕj |2)χjω̃ , χjω̃〉 (151)

+ h(1− η)
(∫

f=b

−
∫

f=a

)
〈χj ω̃ , χjω̃〉ΛT∗

σM

(
∂ϕj
∂n

)
(σ) dσ (152)

+Rh(ω̃)

where the constant Cη > 0 in
|Rh(ω̃)| ≤ Cηh‖ω̃‖2

depends on η > 0 via the construction of the open covering f−1([a, b]) ⊂ ∪j∈JΩj , the functions
ϕj and the partition of unity

∑
j∈J χ

2
j ≡ 1 .

iv) Local lower bounds: We give a lower bound for every individual j ∈ J for the three terms
(150)(151) and (152). The first one (150) is obviously non negative according to

Qf−(1−η)ϕj (χjω̃ , χjω̃) =
∥∥df−(1−η)ϕj (χjω̃)

∥∥2 +
∥∥∥d∗f−(1−η)ϕj (χjω̃)

∥∥∥
2

≥ 0 .

For the other terms we distinguish according to j ∈ I and j = S ∈ S[a,b] .
• j ∈ I: In this case by recalling the choice ϕj = κϕxj , we know

∇f.∇ϕj ≥ 2 |∇ϕj |2 ≥ κ2 > 0 for a.e. x ∈ Ωj .

This implies

2(1− η)
[
∇f.∇ϕj − (1− η) |∇ϕj |2

]
≥ 2(1− η) ‖∇ϕj‖2 ≥ (1− η)κ2 for a.e. x ∈ Ωj ,

106



where the positive constant (1− η)κ2 is uniform w.r.t j ∈ I .
Finally the condition ∇f.∇ϕj ≥ 0 makes sense almost surely along the boundary f−1({a, b}) so
that the integral terms (152) are non negative.
• j = S ∈ S[a,b] : Our choice of Ωj ⊂ {x ∈M , |f(x)− tk| > η , k = 0, 1, 2} implies that the
boundary terms (152) vanish. Finally our choice ϕj = fS in i) implies

∇f.∇ϕj − (1 − η

2
) |∇ϕj |2 ≥ 0 for a.e. x ∈ Ωj ,

We deduce

2(1− η)
[
∇f.∇ϕj − (1− η) |∇ϕj |2

]
≤ 2(1− η)η

2
|∇ϕj |2 ≥ (1− η)

m2
f,a,b

4

almost every where in Ωj with the positive constant independent (1 − η)m
2
f,a,b

4 independent of
j = S ∈ S[a,b] .
v) Gathering all the lower bounds and conclusion:

We take νη = (1− η)min
{
κ2,

m2
f,a,b

4

}
and summing the previous lower bound w.r.t j ∈ J leads

to
Re Qf,f−1([a,b]),h(ω , e

2ϕ
h ω)− λh‖e

ϕ
h ω‖2 =≥ (νη − Cηh− λh)‖ω̃‖2 ≥

νη
2
‖ω̃‖2

by taking h ∈]0, hη[ for some small enough hη > 0 .
Because ∆f,f−1([a,b]),h is self-adjoint the inequality

Re 〈e 2ϕ
h ω , (∆f,f−1([a,b]),h) − λh)ω〉 ≥

νη
2
‖2ω̃‖ ≥ cη,h‖ω‖2 , ω̃ = e

ϕ
h ω ,

valid for all ω ∈ D(∆f,f−1([a,b]),h) for some cη,h > 0 , implies that λh belongs to the resolvent set
of ∆f,f−1([a,b]),h .
When ωh solves (∆f,f−1([a,b]),h − λh)ωh = rh , the same inequality with ϕ ≡ 0 on supp rh ⊂
f−1(]t0 − η, t0 + η[) , gives

‖rh‖‖ω̃h‖ ≥
νη
2
‖ω̃h‖2 ,

and ‖ω̃h‖ ≤ 2
νη
‖rh‖ . By using again (18) we deduce

2

νη
‖rh‖2 ≥ ‖rh‖‖ω̃h‖ ≥ Re Qf,f−1([a,b]),h(ωh , e

2ϕ
h ωh)− λh‖ω̃h‖2

≥ ‖df,h)ω̃h‖2 + ‖d∗f,hω̃h‖2 − |∇ϕ|2 ω̃h〉 − λh‖ω̃h‖2 .

And finally there exists a constant Mη > 0 such that

Mη

h2
‖rh‖2 ≥ ‖ω̃h‖2 + ‖dω̃h‖2 + ‖d∗ω̃h‖2 = ‖eϕh ωh‖W∂(fba,ΛT

∗M) ,

with ϕ(x) ≥ |f(x)− f(x0)| − (b − a+ 3)η .
We conclude by taking η > 0 , on which all the construction depends, arbitrarily small, the limit
h→ 0 being taken for any fixed η > 0 .

Remark 8.15. In this proof, we did not use the global solution ϕ to the inequation |∇ϕ|2 −
|∇f |2 ≤ 0 provided in ii) because such a solution has no better regularity than the Lipschitz
one. Instead we really introduce the partition of unity in the process of obtaining exponential
decay estimates with all the functions ϕj which are regular enough and allow to use the various
integration tricks of Lemma 2.10, used in particular in order to absorb the singularity of the term
h(L∇f + L∗∇f ) .
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Proposition 8.16. Under Hypothesis 1.3 and when c1 < . . . < cNf are the values associated

with horizontal strata according to Proposition 8.8, choose a < b , a, b 6∈
{
c1, . . . , cNf

}
and call

U the compact set f−1(
{
c1, . . . , cNf

}
∩ [a, b]) . All families (λh)h>0 ∈ C , (rh)h>0 ∈ L2(f ba) and

ωh ∈ D(∆f,f−1([a,b]),h) ⊂W∂(f
b
a; ΛT

∗M) such that

(∆f,f−1([a,b]),h − λh)ωh = rh , supp rh ⊂ K , lim
h→0

λh = 0 ,

where K is a fixed compact subset of f−1([a, b]) , satisfy the estimate

‖e
miny∈U∪K |f(.)−f(y)|

h ωh‖W∂(fba)
= Õ(1)

[
‖rh‖L2(fba)

+ tU‖ωh‖L2(fba)

]
,

where tU = 1 if U 6= ∅ and tU = 0 if U = ∅ .

Proof. The case when U = ∅ is contained in Proposition 8.14. Let us consider the case when
U 6= ∅ . First of all, the positivity of ∆f,f−1([a,b]),h implies

‖df,hωh‖2 + ‖d∗f,hωh‖2 + (C − Re λh)‖ωh‖2 = Re 〈ωh , (∆f,f−1([a,b]),h + C − λh)ωh〉
≤ ‖rh‖ ‖ωh‖+ C‖ωh‖2 .

By taking C > 2(1 + ‖f‖W 1,∞) we obtain

‖ωh‖W∂(fba)
= Õ(1)(‖rh‖L2(fba)

+ ‖ωh‖L2(fba)
)

which provides W 1,2 estimates of ωh in any compact subset of f ba = f−1(]a, b[) .
For ε > 0 small enough, consider a cut-off function χε ∈ C∞(M ; [0, 1]) equal to 1 in Kε =

f−1((∪Nfk=1[ck − ε, ck + ε]) ∩ [a, b]) and to 0 in the complement of K2ε . The form χεωh solves

(∆f,h − λh)((1 − χε)ωh) = (1− χε)rh + Pχεωh ,

where Pχε is a first order differential operator with coefficients supported in K2ε \ Kε and

χεωh ∈ ⊕Nf−1
k=1 ∆f,f−1([max(ck+ε,a),min(ck+1−ε,b)]),h . The resolvent estimate of Proposition 8.14

applied to every ∆f,f−1(([max(ck+ε,a),min(ck+1−ε,b)]),h then implies

‖e
miny∈U∪K |f(.)−f(y)|

h ωh‖W∂(fba)
≤ Õ(e

10ε
h )
[
‖rh‖L2(fba)

+ ‖ωh‖
]
L2(fba)

,

and then we choose ε > 0 arbitrarily small before taking the limit h→ 0 .

9 Applications

The spectral version of the stability theorem, Corollary 1.8 in the Introduction or Theorem 7.6
for a more general version, corresponds to what can be expected at the level of Arrhenius law
identifying the exponential scales. It is a straightforward consequence of Theorem 6.3. But the
construction of global quasimodes for Theorem 6.3 is actually much more informative. It allows
to compute the subexponential factor, a la Eyring-Kramers, in many situations which lead to
different kind of asymptotic behaviours. As it was discussed in the Introduction, no continuity
with respect to f can be expected in the asymptotic leading term. Nevertheless some robust
integral formulation allow to follow the effect of deformations of f on the spectral quantities
and to explain the emerging discontinuities. Contrary to Theorem 6.3 and its consequences in
Section 7, we do not have a satisfactory general formulation of this kind of refined stability
property and we prefer to make explicit various examples, corresponding to interesting practical
cases.
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9.1 The generic Morse case

In this subsection, we recall the results of [LNV]. Although they were presented in the oriented
case, those results hold in the more general case of non necessarily oriented compact Riemannian
manifolds. The proofs are simply adapted by paying attention to the duality arguments, the
Hodge ⋆ operator sending the sections of ΛpT ∗M to sections of ΛpT ∗M ⊗ orM . The important
assumption which was made in [LNV] concerns the simplicity of the critical values of the Morse
function f : the latter function has distinct critical values, which allows in particular to identify
critical points with critical values. In [LNV], the set U of critical points was partitioned into lower

UL = ∪p∈{0,...,d}U (p)
L , upper UU = ∪p∈{0,...,d}U (p)

U , and homological UH = ∪p∈{0,...,d}U (p)
H critical

points. This partition actually coincides with the partition of bar endpoints J = X ∪ Y ∪ Z in

this order. In [LNV], we defined a boundary map ∂B : U (p+1)
U → U (p)

L and UU ∪ UH ⊂ ker ∂B .
It is exactly the dual version of the map dB of Appendix B.2 defined by dB : X (p) → Y(p+1)

and Y ∪ Z ⊂ kerdB . Actually, in [LNV], we started with the homological point of view before
we realized that working directly in terms of cohomology was more natural for this analysis.
The link with relative cohomology groups of sublevel sets of f , which is detailed at the end
of Appendix B.1, can be handled with elementary arguments under the assumptions of [LNV]
(Morse function with distinct critical values). Note that this generic Morse situation is often
used as a simple way to introduce persistent homology (see e.g. [EdHa]). Although it is an
obvious bijection under the assumption that the Morse function f has simple critical values, we
use the notations, when it is necessary, xα , yα or zα for the critical points associated with values
xα = f(xα) ∈ X , yα = f(y

α
) ∈ Y and zα = f(zα) ∈ Z . As a comparison with the notations of

Subsection 4.1, it is not necessary nor useful to distinguish xα = (aα, α) ∈ R×A from the value
aα = f(xα) .
Finally note that the result of [LNV] can be recovered while combining Theorem 6.3 of the present
text with the final computations of [LNV]-Section 4 which rely on local WKB approximations
valid locally for any Morse function f .

Here is the main result of [LNV] with the above modified notations.

Theorem 9.1. Assume that f is a Morse function with simple critical values. For any p ∈
{0, . . . , d} , there exists c > 0 such that for every h > 0 small enough, the spectrum of ∆

(p)
f,M,h

satisfies

σ(∆
(p)
f,M,h) ∩ [0, ch] = σ(∆

(p)
f,h) ∩ [0, e−

c
h ] ,

and the latter set consists in card(J (p)) eigenvalues counted with multiplicity. For every h > 0

small enough, there exists moreover a bijection j : J (p) → σ(∆
(p)
f,M,h) ∩ [0, ch] , where the latter

set is counted with multiplicity, such that:

1. For every zα in Z(p) , the associated eigenvalue is

j(zα) = 0 .

2. For every xα in X (p) , xα being the lower endpoint of the bar [xα, yα[ , and hence yα =
dBxα , there exists a homological constant κα ∈ Q∗ such that

j(xα) = κ2α
h

π

|λ1(yα) · · ·λp+1(yα)|
|λ1(xα) · · ·λp(xα)|

|detHess f(xα)|
1
2

|detHess f(y
α
)| 12

e−2yα−xα
h

(
1 +O(h)

)
,

where, for any critical point s of f with index ℓ and critical value s = f(s) , λ1(s), . . . , λℓ(s)
denote the negative eigenvalues of Hess f(s) .

3. And yα in Y(p) , yα being the upper endpoint of the bar [xα, yα[ , and hence yα = dBxα ,
there exists a homological constant κα ∈ Q∗ such that
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j(yα) = κ2α
h

π

|λ1(yα) · · ·λp(yα)|
|λ1(xα) · · ·λp−1(xα)|

|detHess f(xα)|
1
2

|detHess f(y
α
)| 12

e−2yα−xα
h

(
1 +O(h)

)
,

where, for any critical point s of f with index ℓ and critical value s = f(s) , λ1(s), . . . , λℓ(s)
denote the negative eigenvalues of Hess f(s) .

Remark 9.2. 1. Theorem 9.1 is a refinement of Theorem 1.7 in this generic Morse situation.
It extends Eyring-Kramers asymptotic formulas known in the case p = 0 . The boundary
version in f−1([a, b]) corresponding to Theorem 7.1 is also found in [LNV, Theorem 4.5].
In both papers, the general strategy consists in a recurrence with respect to the number
of critical values, carried out by increasing the interval [a, b] . The setting in [LNV], was
simpler because: a) the critical values were assumed to be simple while here they may be
multiple or very degenerate; b) the subexponential factors of exponentially small quantities
had explicit leading terms derived from the WKB approximations (this is not possible here).
1 In this section, we will combine Theorem 6.3 with the local computations of [LNV]-
Section 4 to provide a more general approach.

2. In [LNV], hanks to the Morse assumption, we could compute the subexponential factors
using WKB and Laplace methods.. On the other hand, the exponential factors are given by
global topological quantities: the lengths of the bar code. In the present paper we manage
to compute the logarithmic equivalents of the small eigenvalues without any knowledge of
the exponential factor.

3. The connexion between the local computation around the lower endpoint xα and the upper
one yα = dBxα is implemented by an application of Stokes’s formula. The boundary opera-
tor ∂ for chains induces a linear application from Hp+1(f

yα+ε, fyα−ε) intoHp(f
xα+ε, fxα−ε) .

Under the generic Morse assumption, these spaces are 1-dimensional with natural bases
given by the stable manifolds of ∇f . This actually provides the coefficients κα (see [LNV,
Proposition 2.12]). When the critical values correspond to multiple critical points, such a
construction has to be replaced by more general linear algebra (see Subsection 9.3).

As shown in [HKN], the homological constants κ2α equal 1 when p = 0 , and also when p = d
and M is oriented by duality. In the case of oriented surfaces treated in [Lep2], a combination of
these results together with simple duality and chain complex arguments then implies that these
constants equal 1 for any p ∈ {0, 1, 2} . Nevertheless, contrary to this indication that it could be
true in general, which was moreover our intuition when we wrote [LNV], this is not the case as
soon as d ≥ 3 and even when d = 2 in the non-oriented case. The simplest example comes from
Morse theory on the projective plane. It is more generally related to the “open book picture”
exhibited on the front cover of [LauB].

To be more specific, we shall prove the following result.

Proposition 9.3. Let X be a d-dimensional manifold.

1. If d = 1, 2 , and X is orientable, then κ2α = 1 ,

2. The coefficient κ2α may be equal to 4 for some well chosen Morse functions on RP 2 and on
RP 3 .

3. For d ≥ 3 and each integer n , there exists a manifold Xn of dimension d such that κ2α = n2 .

4. For d ≥ 4 , for any integer n and any closed manifold X , there is a function fn on X such
that κ2α takes the value n2 .

1A small confusion occurred in the construction of accurate global quasimodes in [LNV, Section 4.2]: a version of
Proposition 6.16 is missing and can be easily corrected.
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Proof. The number κα is obtained as follows: consider the sphere S−(y
α
) in the unit disc

bundle of the descending manifold from y
α
, the stable manifold of ∇f . It is homologous to a

multiple, κα of the descending manifold from xα , W
−(xα) , with dBxα = yα . But since the

ascending manifold from xα , the unstable manifold of ∇f , W+(xα) has intersection +1 with
W−(xα) , the number κα is the intersection number of S−(y

α
) and W+(xα) . We work here

under the generic Morse-Smale assumption saying that all the stable and unstable manifolds are
mutually transverse, which ensures the finiteness of κα , within the construction of the Thom-
Smale complex (see [LauB]). In homological terms, if we set xα = f(xα), yα = f(y

α
) , and ε > 0

small enough, we have the maps

H∗(fyα+ε, fyα−ε)

∂

��
H∗−1(f

xα+ε, fxα−ε) // H∗−1(f
yα−ε, fxα−ε)

��
H∗(fyα+ε, fxα−ε)

Now sinceH∗(fyα+ε, fyα−ε;Z) andH∗(fxα+ε, fxα−ε;Z) are isomorphic to Z , the R-vector spaces
H∗(fyα+ε, fyα−ε) and H∗(fxα+ε, fxα−ε) have canonical generators (i.e. well defined, and not
just up to a constant multiple).

But a generator on the left-hand side has its image zero in H∗(fyα+ε, fxα−ε) by assumption.
Therefore this generator has an image in H∗−1(f

yα−ε, fxα−ε) that lies in the image of ∂ . It is
thus equal to the image by ∂ of κ(α) times a generator.
Now consider the Morse function on RP 2 obtained by perturbing the following Morse-Bott
function:

[x0, x1, x2] 7→ x22

where [x0, x1, x2] is the class of (x0, x1, x2) ∈ S2 by the equivalence relation (x0, x1, x2) ≃
(−x0,−x1,−x2) . This Morse-Bott function has a point of index 2 at [0, 0, 1] , and a circle of
index 0 at [cos(θ), sin(θ), 0] for θ ∈ [0, π] . Perturbing this circle yields a pair of critical points of
index 0 and 1 , and the Thom-Smale complex is then

∂z = 2 · y, ∂y = 0, ∂x = 0

represented as z

2

��
y

0

��
x

The Barannikov complex (on Q or R) is then

z

y

x

But necessarily κα = 2 , hence κ2α = 4 .
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For RP 3 , which is orientable, we have the similar function [x0, x1, x2, x3] 7→ x23 where x20 +
x21,+x

2
2 + x23 = 1 and we identify (x0, x1, x2, x3) and (−x0,−x1,−x2,−x3) . We then have

a maximum x3 = ±1 of index 3 , and an RP 2 Morse-Bott critical submanifold, which after
perturbation yields a critical point of index 0 , one of index 1 and one of index 2 .

The Thom-Smale complex is then

t

0

��
z

2

��
y

0

��
x

so again κ(z) = 2 .
To obtain any squared integer, we can consider the lens space L(n, 1) quotient of S3 =

{(z0, z1) ∈ C2 | |z0|2 + |z1|2 = 1} by

(z0, z1) ≃ (ωz0, ωz1)

where ω is a primitive n-th root of unity. The function (z0, z1) 7→ |z0|2 has two critical circles a
minimum and a maximum. After perturbation we get

t

0

��
z

n

��
y

0

��
x

and then |κα| = n , since H1(L(n, 1),Z) = Z/nZ, H2(L(n, 1),Z) = 0 .
Now assume there is some function f on the manifold V with a given bar code Bf , and

we embed V into a manifold X . Consider the function gε(x) = d(x, V )2 + ερ(d(x, V )2)f(p(x))
where ρ is nonnegative, equal to 1 near 0 and vanishes outside a neighbourhood of 0 . then
for ε > 0 mall enough, the lower part of the bar code of gε coincides with the bar code of f .
As a result if there is a function with some κα = n on V , the same holds for X . Consider
the function f above on L(n, 1) , and normalize it so that the critical points are 0, 1/3, 2/3, 1 .
Consider the subset Λ(n, 1) = {x ∈ L(n, 1) | 1/4 ≤ f(x) ≤ 3/4} . This is a Lens space with two
punctures, hence embeds in R4 as a subset of a compact hypesurface Σn,1: if Λ(n, 1) is contained
in {x ∈ R4 | ψ(x) = 0} and extending ψ to a proper function having 0 as a regular value, we
set Σn,1 = ψ−1(0) . Now we can extend f to a function f̃ on Σn,1 and its bar code contains Bf .
Applying the previous argument, we get a function close to d(x,Σn,1)

2 containg Bf in its bar
code. Since near infinity, d(x,Σn,1)

2 is close to |x|2 , we get a function F on the ball, with F ≤ c
and F = c near the boundary with arbitrary κα . By embedding the ball in any 4- manifold
M , we get a function on M with κα = n . Again by embedding, this works on any manifold of
dimension ≥ 4 .
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More generally if for some prime p , the homology mod p has rank different from the rational
homology there must be a y such that p divides κα .

Remark 9.4. 1. The converse does not hold, i.e. we may have κα 6= ±1 while the homology
has the same rank for all fields. For example if we have a Morse complex containing the
following diagram

z

p
��⑧⑧
⑧⑧
⑧⑧
⑧⑧

1

��✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴

y
0

1

��✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴

y
1

−p
��⑧⑧
⑧⑧
⑧⑧
⑧⑧

x

the corresponding homology vanishes and the rational Barannikov complex is

z

y0

y1

x
but mod p , we get z

y0

y1

x
But in both cases the homology vanishes. Note however that if we look at the homology of
sublevels, we can distinguish the two situations : if a < f(x) < f(y1) < c < f(y0) the rank
of the homology H∗(f c, fa) depends on the coefficient field : for k = Q we get 0 while mod
p , we get 2 .

2. When several critical values coincide, the numbers kα are replaced by integral matrices. For
example if we have the following bar code

y0 y1 y2 y3

x0 x1 x2

x3
and if a < x3 < b < x2 < c < y2 < d , we have the map
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H∗(fyα+ε, fyα−ε) ≃ Z4

∂

��
H∗−1(f

xα+ε, fxα−ε) ≃ Z3 // H∗−1(f
yα−ε, fxα−ε)

��
H∗(fyα+ε, fxα−ε) ≃ Z

hence we get a matrix κ ∈M(4, 3,Z) such that κ⊗ R is surjective. We can then consider
the singular values of M , and we get three numbers κ1, κ2, κ3 , however these are not the
homological constants that will yield the prefactor of the eigenvalues, since we must first
compose with diagonal matrices depending on the Hessian at each critical point involved
(see Proposition 9.10) .

9.2 Simple critical values for non Morse functions

We consider here cases where changing the function f from f1 to f2 leads to explicit changes

of the global quasimodes (ϕ
(p)
j )j∈J (p)(a,b) and provides accurate formulas, even for the subex-

ponential factor, already known when f1 is a generic Morse function. It works especially well
for functions, i.e. for p = 0 , and although we are not considering Dirichlet boundary conditions
at f−1({b}) in f ba , like it is done in the study of quasi-stationary distributions, this sketches
possible generalizations of the analyses made in [LeNi, DLLN1, DLLN2, LeNe1, LeNe2]. Note
however that, though obtaining precise estimates on the low spectrum of the corresponding Wit-
ten Laplacians with Dirichlet boundary conditions is an important step in the studies made in
[LeNi, DLLN1, DLLN2, LeNe1, LeNe2], these works actually focus on further issues such as the
exit events or the concentration of the associated quasi-stationary distributions. In particular, in
[DLLN1] are considered rare exit events, which are actually rather related with the low spectrum
of appropriate Witten Laplacians with mixed Dirichlet–Neumann boundary conditions. Simple
cases when p 6= 0 will also be discussed afterwards.

9.2.1 Degenerate local minima

We consider a reference function f1 which is a generic Morse function like in Theorem 9.1 with

a bar code Bf1 = ([a∗1,α, b
∗+1
1,α [)α∈A1 . In particular in degree 0 , there is one bar [a

(0)
1,0,+∞[=

[x
(0)
1,0, y

(1)
1,0[ associated with the global minimum a

(0)
1,0 and the sublevel set Ω

(0)
1,0 =M = f+∞

1 , and

there are bars [x
(0)
1,k, y

(1)
1,k[∈ A1,c , 1 ≤ k ≤ K0 where y

(1)
1,k is the value of saddle point and x

(0)
1,k

is the global minimum value of the newly created connected component Ω
(0)
1,k of f

y
(1)
1,k

1 , when we

pass from the sublevel set f
y
(1)+0
1,k

1 to f
y
(1)
1,k

−0

1 .

We take ℓ
(0)
min < min

{
y
(1)
1,k − x

(0)
1,k, |x

(0)
1,k − x

(0)
1,k′ | , 0 ≤ k < k′ ≤ K0

}
and we assume that the func-

tion f2 satisfies Hypothesis 1.2 and coincides with f1 except around the local minima. The open
set called

ω
(0)
k = Ω

(0)
1,k ∩ f

x
(0)
1,k

+
ℓ0
2

1 ,

is a connected open neighborhood of x
(0)
1,k for all k = 0, . . . ,K0 . The two functions f1 and f2 are

compared by:

i) f1 ≡ f2 in a neighborhood of M \ (⊔K0

k=0ω
(0)
k ) ;

ii) ‖f1 − f2‖C0 ≤ ℓ0
4 .
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Those two assumptions combined with the stability theorem

dbot(B(f),B(g)) ≤ ‖f − g‖C0

recalled in Appendix B.3, ensure that there are exactly K0 + 1 bars [x
(0)
2,k, y

(0)
2,k[ of degree 0 and

length larger that ℓ0
2 , where the saddle points are not changed y

(1)
2,k = y

(1)
1,k for 1 ≤ k ≤ K0 .

Additionally and especially because with our choice of ℓ0 < min
{
|x(0)1,k − x

(0)
1,k′ | , k < k′

}
and ii),

the associated connected component remain unchanged as well Ω
(0)
2,k = Ω

(0)
1,k for 0 ≤ k ≤ K0 . We

drop the index j = 1, 2 for Ω
(0)
k and y

(1)
k . Like in the previous Subsection, we use the notation

Figure 15: The function f1 is represented by dashed lines and the modification
giving f2 by plain lines.

s for the point associated with the critical value s , when it is uniquely defined.

Proposition 9.5. Under the above assumptions and in particular the comparison i)ii) between

f1 and f2 , the õ(e
− ℓ0
h ) eigenvalues of ∆

(0)
f2,h

are given by

h|λ1(y(1)k )|

π
∣∣∣detHess f1(y(1)k )

∣∣∣
1/2

e−2
y
(1)
k

−x
(0)
2,k

h

(πh)
−d/2 ∫

Ω
(0)
k

e−2
f2(x)−x

(0)
2,k

h dx

× (1 +O(h)) (153)

as h→ 0 for all k = 0, 1, . . . ,K0 (it is exactly 0 for k = 0) .

With this formula it then suffices to apply the Laplace method for the integral
∫
Ω

(0)
k

e−2
f(x)−x

(0)
2,k

h dx

in order to exhibit various asymptotic behaviours as h → 0 of the subexponential factor. We
refer in particular to [AGV] for the case when f is a multidimensional polynomial function.

Proof. When we work with functions, we are actually in the simpler framework of [HKN] for
the generic Morse function f1 . The problem consists in computing the square modulus of the

interaction 〈ψ(1),h
k , df,hTδ2ϕ

(0),h
k 〉 where ψ(1),h

k is a local WKB-approximation of eigenvectors of

∆
(1)
f,h around the point y

(1)
k while ϕ

(0),h
1,k is a global quasimode associated with the bar [x

(0)
1,k, y

(1)
k [ ,

solving df,hϕ
h
1,k = 0 in Ω

(0)
k ∩ fy

(1)
k −δ(h) with limh→0 δ(h) = 0 . The truncation Tδ2 is a smooth

truncation around the level y
(1)
k −δ2 with δ2 > 0 small. By Theorem 6.3 and Theorem 7.1 the same

method holds by replacing the global quasimodes ϕ
(0),h
1,k by global quasimodes ϕ

(0),h
2,k constructed

in Theorem 6.3. In details we refer more specifically to the consequences stated in Subsection 6.3.

Moreover we can focus on the bars of length larger that ℓ02 which are ([x
(0)
2,k, y

(1)
k [)k=0,...,K0 . Since
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those quasimodes satisfy df2,hϕ
(0),h
2,k = 0 in Ω

(0)
k ∩ fy

(1)
k −δ(h) they equal

√
Ck,he

−
f2(x)−x

(0)
2,k

h where
Ck,h is the normalization constant

Ck,h =
1

∫
Ω

(0)
k

∩fy
(1)
k

−δ(h)
e−2

f2(x)−x
(0)
2,k

h dx

=
1 + õ(1)

∫
Ω

(0)
k

e−2
f2(x)−x

(0)
2,k

h dx

which replaces

1

∫
Ω

(0)
k

e−2
f1(x)−x

(0)
1,k

h dx

= (πh)
−d/2 |det Hess f(x(0)1,k)|1/2 × (1 +O(h)) .

Finally it suffices to notice that up to the normalization constant and the change of the length

of the bar which brings another constant factor, the functions ϕ
(0),h
1,k and ϕ

(0),h
2,k coincide in the

neigborhood of y
(1)
k and the local computation of the interaction is not changed.

The above formula shows a good stability when f1 is changed into f2 although such a sta-
bility may not appear when we make an explicit asymptotic expansion of the Laplace inte-

gral
∫
Ω

(0)
k

e−2
f(x)−x

(0)
2,k

h dx . Here is an example in dimension 1 , that is for functions defined on

S1 = R/(2πZ) . The function f1 is assumed to have four non degenerate critical points:

• at x
(0)
1,1 = 0 with value x

(0)
1,1 = 0 and second derivative 1 ;

• at x
(0)
0,1 = π with value x

(0)
0,1 = −1 , the global minimum;

• at y(1)
1,1

= π
2 with value y

(1)
1,1 = 1 and the second derivative equal to −λ1 ;

• at y(1)
0,1

= 3π
2 with value y

(1)
0,1 = 2 , the global maximum.

The modified function f2,δ parametrized by δ ∈ R , δ small, and consists in replacing f1(x) =
x2

2 +O(x3) in a small neighborhood [−ε, ε] of x(0)1,1 = 0 by

f2,δ(x) =
x4 + 2δx2 + 1(−∞,0](δ)δ

2

4
,

while f2,δ ≡ f1 outside [−2ε, 2ε] . Formula (153) then says that the õ(e−
1
h ) non zero eigenvalue

of ∆
(0)
f2,δ ,S1,h

(for δ > 0 and ε > 0 small enough) equals

h
√
λ1e

− 2
h

π(πh)−1/2
∫
R
e−

x4+2δx2+1(−∞,0](δ)δ
2

2h dx

× (1 +O(h)) .

It is equivalent as h→ 0 to

h
√
λ1δe

− 2
h

π when δ > 0

h5/4√λ1e
− 2
h

√
π
∫

R
e−

u4
2 du

when δ = 0 ,

h
√
λ1|δ|e−

2
h

√
2π

when δ < 0 .

So the apparent discontinuity in the exponent of h at δ = 0 is a simple consequence of the dis-
continuity of the Laplace integral. Actually the stability of persistence homology has a stronger
spectral counterpart than what is stated in Theorem 7.6: It does not concern only the exponen-
tial scales but also allows to study the deformations of the asymptotic subexponential factors
provided that a robust formula can be proved for them. The rest of this section explores different
cases for which we are able to prove such formulas.
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9.2.2 Variations

In the previous paragraph we used a good enough knowledge of the global quasimodes ϕ
(0),h
2,k =

√
Ck,he

− f2(.)−x2,k)

h in degree p = 0 , in order to get the explicit change in the asymptotic formulas
when we pass from the Morse function f1 with simple critical values to the function f2 with
degenerate local minima. Such an analysis can be done in more general degree if we have

explicit enough information on the local forms of quasimodes the global ones ϕ
(p),h
k and the local

ones ψ
(p+1),h
k . By duality this is obviously true in dimension 1 and we start with this example.

We then consider other possible extensions.

The one dimensional case with degenerate critical values Consider a C∞ Morse
funlction f1 on R such that |∂xf1| ≥ c for some positive constant c when x ∈ R \ [−R,R] for
R > 0 large enough. For −a = |a| and b = |b| large enough the bar code Bf1(a, b) does not
change when a, b are changed, except for the value of the endpoints a, b , while for such a fixed
pair (a, b) it can be viewed as a restricted bar code Bf̃1(a, b) of a function f̃1 defined on S1 . This
solves the compactness problem in order to fit with our general framework. It can be checked

easily that in all such cases the exponentially small eigenvalues of ∆
(p)

f1,f
−1
1 ([a,b]),h

are close to the

ones of ∆
(p)
f1,R,h

for p = 0, 1 and even that the endpoints of the interval f−1
1 ([a, b]) can be moved

as long as they do not meet the critical point without changing the final approximate spectral
result (the same will be true for the function f2). So let us focus on f−1

1 ([a, b]) with −a = |a|
and b = |b| large. The bar code is made of bars [x

(0)
k,1, y

(1)
k,1[ , k = 1, . . . ,K with an additional bar:

• [x
(0)
0,1, b[ if f1

∣∣
f−1
1 ([a,b])

admits an interior global minimum at x
(0)
0,1 = f(x

(0)
0,1) , x

(0)
0,1 ∈ f−1

1 (]a, b[) ;

• or [a, y
(1)
0,1[ if f1

∣∣
f−1
1 ([a,b])

admits an interior global maximum at y
(1)
0,1 = f(y(0)

0,1
) , y(0)

0,1
∈

f−1
1 (]a, b[) .

Figure 16: Three different cases for f1 between the level a and b , from left-hand
side to right-hand side with an interior global minimum, an interior global maximum
in the interior and none of them. The bar code in [a, b] is represented beside the
y-axis.

Only in the first case, the Witten Laplacian ∆
(0)

f1,f
−1
1 ([a,b])

has a non trivial kernel Ce−
f1(.)−x

(0)
0,1

h .

Only in the second case, the Witten Laplacian ∆
(1)

f1,f
−1
1 ([a,b]),h

has a non trivial kernelCe
f1(.)−y

(1)
0,1

h dx .

The two cases are exclusive and a third one is when the global minimum value of f1
∣∣
f−1
1 ([a,b])

is

a and the global maximum value is b . Depending on the cases f1 admits 2K + 1 or 2K distinct
critical values and their set in [a, b] is denoted C .
In order to specify our modified function f2 we first choose ℓ0 < min {|c− c′|, c 6= c′ , c, c′ ∈ C} .
The connected open set Ω

(0)
k,1 as the connected component of (f1)

y
(1)
k,1 which contains x

(0)
k,1 for
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1 ≤ k ≤ K , with Ω
(0)
0,1 = f−1

1 (]a, b[) if the global minimum x
(0)
0,1 ∈ f−1

1 (]a, b[) exists. By duality

one defines Ω
(1)
k,1 as the connected component of (f1)x(0)

k,1

for 1 ≤ k ≤ K , with Ω
(1)
0,1 = f−1(]a, b[)

if the global maximum y(1)
0,1
∈ f−1

1 (]a, b[) exists. Then the connected open sets ω
(0)
k and ω1

k are

defined by

ω
(0)
k = Ω

(0)
k,1 ∩ (f1)

x
(0)
k,1+

ℓ0
4 , ω

(1)
k,1 = Ω

(1)
k,1 ∩ (f1)y1k,1−

ℓ0
4
.

The function f2 satisfies Hypothesis 1.2 and

• f1 ≡ f2 in a neighborhood of R \ (⊔0≤k≤K(ω
(0)
k ⊔ ω

(1)
k )) where ω

(0)
0 and ω

(1)
0 are replaced

by the empty set when they are not defined;

• ‖f1 − f2‖ ≤ ℓ0
4 .

Note in particular f−1
1 ([a, b]) = f−1

2 ([a, b]) .

Figure 17: The function f1 is represented by the dashed curve, the open sets

ω
(p)
k are materialized by the white rectangles along the x-axis and the modifications

leading to f2 by the plain curve.

Owing to the stability theorem

dbot(B(f),B(g)) ≤ ‖f − g‖C0

the bars [x
(0)
k,1, y

(1)
k,1[ are transformed into bars [x

(0)
k,2, y

(1)
k,2[ of length y

(1)
k,2 − x

(0)
k,2 >

ℓ0
2 while all the

other bars have length smaller thant ℓ0
2 . After those assumptions the spectral result take a nice

simple form.

Proposition 9.6. For the values a, b and the function f2 chosen like above, there are K non

zero õ(e−
ℓ0
h ) eigenvalues of ∆

(0) or (1)

f2,f
−1
2 ([a,b]),h

which are equal to

1 + õ(1)

(h−1
∫
ω

(1)
k

e2
f(x)
h dx)× (h−1

∫
ω

(0)
k

e−2 f(x)h dx)
, k = 1, . . . ,K .
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Proof. By the usual supersymmetric arguments the non zero eigenvalues of ∆
(0)

f2,f
−1
2 ([a,b]),h

and

∆
(1)

f2,f
−1
2 ([a,b]),h

are the same in dimension 1 and we thus focus on ∆
(0)

f2,f
−1
2 ([a,b]),h

or more precisely

on the non zero singular values of the restricted differential. We follow the general method

which consist in computing the interaction scalar product 〈ψ(1)
k , df,hTδ2ϕ

(0)
k 〉 where ψ

(1)
k is a

local quasimode for ∆f2,h in the neighborhood ω
(1)
k around y

(1)
k,1 while ϕ

(0)
k is a global quasimode

associated with the bar [x
(0)
2,k, y

(1)
2,k[ solving df,hϕ

(0)
k = 0 in the connected component which

contains ω
(0)
k of fy

(2)
k −δ(h) , with limh→0 δ(h) = 0 . We work directly with the function f2 the

global quasimode ϕ
(0)
k equals

1 + õ(1)√
∫
ω

(0)
k

e−2
f2(x)−x

(0)
2,k

h dx

e−
f2(.)−x

(0)
2,k

h in ω
(0)
k .

By noticing that ∂nf2
∣∣
∂ω

(1)
k

= ∂nf1
∣∣
∂ω

(1)
k

< 0 , and by using Dirichlet boundary conditions on

∂ω
(1)
k in degree p = 1 , we find that ψ

(1)
k can be chosen as

1 + õ(1)√
∫
ω

(1)
k

e2
f2(x)−y

(1)
2,k

h dx

e
f2(x)−y

(1)
2,k

h dx in ω
(1)
k .

A direct computation gives

〈ψ(1)
k , df,hTδ2ϕ

(0)
k 〉 = ±

he−
y
(1)
2,k

−x
(0)
2,k

h (1 + õ(1))√
∫
ω

(1)
k

e2
f2(x)−y

(1)
2,k

h dx×
√
∫
ω

(0)
k

e−2
f2(x)−x

(0)
2,k

h dx

where the factor e−
y
(1)
2,k

−x
(0)
2,k

h can be simplified.

Remark 9.7. Note that in this proof the result on the generic Morse function f1 is not used.
The function f1 was introduced in order to have a simple formulation of the assumptions fulfilled
by f2 . The result actually comes from a direct computation when we know well enough the local

forms of the global (ϕ
(0)
k ) and local (ψ

(1)
k ) quasimodes . We have explicit form in dimension 1

and the computation is straightforward. It is not the same in the multidimensional case although
Stokes’s formula allows to perform the computation when local approximations of local and global
quasimodes are well known.

Piecewise affine functions In this paragraph we make more explicit the one dimensional
result when f is a continuous piecewise affine function and discuss the possible extension to the
multidimensional case. Let f be a piecewise affine function on R such that:

• the derivative f ′ does not vanish when it is defined;

• there exists R > 0 such that the derivative f ′ is a constant on [R,+∞) and on (−∞,−R] ;
• the values f(x) of the points x where f ′ is discontinuous are all distinct.

Such a function f can be written as a function f2 of the previous paragraph (simply regularize
locally the discontinuous change of slopes in order to get the Morse function f1).
The extension of Proposition 9.6 to a = −∞ and b = +∞ says that the õ(1)-eigenvalues of

∆
(0)
f,R,h (and by duality of ∆

(1)
f,R,h) are given by

H [|f ′(y(1)
k

+0)|, f ′(y(1)
k
−0)]H [f ′′(x(0)k +0), |f ′(x(0)k −0)|]e−2

y
(1)
k

−x
(0)
k

h (1+ õ(1)) , k = 1, . . . ,K ,
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Figure 18: A piecewise affine potential in 1D with distinct and some fake critical
values.

where the finite length bars of Bf are [x
(0)
k , y

(1)
k [ , k = 1, . . . ,K ; x

(0)
k is the local strict minimal

value around the point x
(0)
k ; y

(1)
k is the local maximal value around the point y

(1)
k ; f ′(x + 0)

and f ′(x− 0) denote respectively the right and left derivative and H [s, t] = 2st
s+t is the harmonic

mean of s, t > 0 .
The computation when f is constant on some intervals is also possible with a subexponential
factor behaving like h or h2 , depending on the different cases (left to the reader).

Now let f be a piecewise affine function defined on a finite triangulation of Rd = ⊔1≤i≤ITi
where Ti is a d-dimensional non degenerate simplex with endpoints A0

i , . . . , A
d
i and where non

finite simplices are roughly taken into account by sending the first endpoint to infinity A0
i =∞

(a more precise description is not necessary here). We assume that limx→∞ f(x) = +∞ . The
function f is a subanalytic function on Rd of which the restriction to any ball B(0, R) can be
viewed as the restriction to B(0, R) of a subanalytic function defined on Sd . This solves the
compactness problem or the questions about the topology at infinity (alternatively we could
work on the d-dimensional flat torus). The function f has a finite number of horizontal strata
according to the terminology of Definition 8.6 , which contain all the critical values and the
possible endpoints of the bar code Bf . We may consider either ∆f,Rd,h or by approximation
∆f,f−1([a,b]),h with −a, b > 0 large enough. According to our analysis in Subsection 8.3, in
particular Proposition 8.8, Proposition 8.14 and Proposition 8.16, the results of Theorem 6.3

hold in this case and we know that the exponentially small eigenvalues of ∆
(p)
f,f−1([a,b]),h satisfy

λ(p)α (h)
log∼ e−2

y∗+1
α −x∗α

h ,

where α belongs to A
(p)
c (a, b) ⊔ A(p−1)

c (a, b) .
The question is whether it is possible to give algebraic formulas for the accurate asymptotic
behaviour as this is done easily in the one dimensional case. For such a function f , the Witten
Laplacian ∆f,h is a matricial Schrödinger operator with a singular potential. Many things are
known on scalar Schrödinger operators with singular potentials (see e.g. [AGHKH][BGP]), but
little seems to be known for those Witten Laplacians, and especially when we think about
the algebraic topology subtleties. We may also start directly, instead of Rd , on a Lipschitz
manifold made of glued simplexes, with a function f which has a constant gradient along every
simplex. The functional analysis of Hodge Laplacian on Lipschitz manifold has been considered
in [GMM, MMMT]. An accurate analysis of the low lying spectrum of such Witten Laplacians

120



would provide a large family of discrete and easily encoded models, from the point of view of
data and hopefully of results, which could be used as approximations of complicated realistic
situations. It would be interesting to compare with the approach starting from purely discrete
models on graphs as presented in [CdVPY].

Critical submanifolds This case is related with degenerate Witten Laplacians studied
in connection with Bott-Morse inequalities (see e.g. [Bis, HeSj6]). We consider here simple
examples where we have a critical submanifold instead of a critical point. We start with the

mexican hat function f(r, θ) = r4

4 − r2

2 + 1
4 in polar coordinates (r, θ) in R2 with the euclidean

metric dr2 + (rdθ)2 , which admits a non degenerate maximum at r = 0 with f(0R2) = 1
4 and a

degenerate minimum at r = 1 with f(1, θ) = 0 .
The bar code of the function f is made of the bar [0,+∞[ in degree 0 and the bar [0, 14 [ in

degree 1 . We compute the non zero exponentially small eigenvalue of ∆
(p)
f,R2,h with p = 1 or 2

by computing the interaction scalar product 〈ψ(2)
1 , d

(1)
f,hTδ2ϕ

(1)
1 〉 where ϕ1

1 is a global quasimode

1-form associated with the bar [0, 14 [ and ψ
(2)
1 is a local quasimode 2-form around r = 0 .

In this particular example we have explicit forms for ϕ
(1)
1 and ψ

(2)
1 :

• We take ν > 0 smaller than the truncation parameter δ2 . Then a explicit normalized

element of ker(∆
(1)

f,f−1([−1, 14−ν]),h
) is given by

ϕ
(1)
1 =

1√
∫
f

1
4
−ν e

−
r4
2

−r2+1
2

h r−2dr(rdθ)

e−
r4

4
− r2

2
+ 1

4
h dθ .

• For the local quasimode ψ
(2)
1 defined around r = 0 , we can use either a WKB approxi-

mation, or by duality the exact normalized element of ker(∆
(2)

f,f−1([ 14−δ]),h
) (δ > 0 is small

enough but bigger than 2δ2) given by equal to

ψ
(2)
1 =

1√
∫
f 1

4
−δ
e
r4
2

−r2

h dr(rdθ)

e
r4

4
− r2

2
h dr ∧ (rdθ) .

The scalar product 〈ψ(2)
1 , df,h(Tδ2ϕ

(1)
1 )〉 is then equal to

1√
∫
f 1

4
−δ

e
r4
2

−r2

h dr(rdθ)

√
∫
f

1
4
−ν e

−
r4
2

−r2+1
2

h r−2dr(rdθ)

〈dr ∧ (rdθ) , hχ′
δ2(r)dr ∧ dθ〉e−

1
4h ,

where

〈dr ∧ (rdθ) , hχ′
δ2(r)dr ∧ dθ〉 = ±h

∫

r=̺

rdθ

r
= ±2πh

does not depend on the value ̺ > 0 (This is an explicit illustration of Stokes’s formula argument
used in [LNV] when f is a Morse function).
Using the asymptotics of non degenerate Laplace integrals, the non zero exponentially small of

∆
(p)
f,R2,h , for p = 1, 2 equals

1 +O(h)

πh
× 1 +O(h)

π(2πh)1/2
× (2πh)2e−

1
2h =

2
√
2h1/2 +O(h3/2)√

π
e−

1
2h .
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The subexponential factor Cte ×
√

h
π differs from the asymptotic behaviour Cte × h

π obtained

when f is a generic Morse function. Actually it is possible to study the transition from the
Morse generic case to this degenerate case by taking fδ(r, θ) = f(r, θ) + δγ(r) cos(θ) where
γ ∈ C∞(]0,+∞[; [0, 1]) equals 1 in a neigborhood of 1 , and δ ∈ R is chosen small enough. Let us
illustrate this in a larger framework. Note that the above formula is not changed if the metric
dr2+ r2dθ2 is replaced by dr2+dθ2 in a neighborhood of r = 1 . This will make the forthcoming
analysis simpler.
We consider a C∞ function f on the compact Riemannian manifold M with a finite number of
critical values, which are all non degenerate and simple except the critical value fixed to be 0 .
We further assume:

• the critical set around the value 0 is a closed orientable submanifold M ′ of dimension p ;

• there is a tubular neighborhood of M ′ which is a product of two Riemannian manifolds

M ′ ×M ′′ with the metric g = g′
⊥
⊕ g′′ ; a corresponding local coordinate system is written

x = (x′, x′′) ;

• in the tubular neighborhood M ′ ×M ′′ the function f is a function of x′′ ∈M ′′ and has a
unique minimum f(x′′0 ) = 0 ;

• the bar code Bf contains a unique bar [0, y
(p+1)
1 [ of degree p with lower endpoint 0 and

upper endpoint y
(p+1)
1 < +∞ ; the eigenvalues of the Hessian at the corresponding point

y(p+1)
1

are denoted −λ1(y(p+1)
1

), . . . ,−λp+1(y
(p+1)
1

) and λp+2(y
(p+1)
1

), . . . , λd(y
(p+1)
1

) ;

• a local unstable (for −∇f) closed cell around the non degenerate critical point y(p+1)
1

is denoted e
(p+1)
1 and its boundary in M which is a p-dimensional sphere is denoted by

∂e
(p+1)
1 ;

• if φ is C∞ Morse function on M ′ with the maximal value 0 and χ ∈ C∞0 (M ′′; [0, 1]) is equal
to 1 in a neighborhood of x′′0 and such that f(x′′) ≥ c > 0 on supp dχ , the function fδ is
defined as fδ = f + δχ(x′′)φ(x′) ;

• for the sake of simplicity we work in the energy interval [a, b] with a = −ε and b = y
(p+1)
1 +ε

where ε > 0 is fixed so that the critical values of f in [a, b] are the ones contained in

[0, y
(p+1)
1 ] .

Proposition 9.8. Under the above assumptions, the boundary of the unstable cell ∂e
(p+1)
1 is

homologous to κM ′ , for some constant κ and relatively to f−ε .
For δ ≥ 0 small enough, the bar code Bfδ(a, b) admits the unique bar [0, y

(p+1)
1 [ of degree p and

length y
(p+1)
1 .

The corresponding eigenvalue of ∆
(p) or (p+1)

fδ,f
−1
δ ([a,b]),h

equals

h

π
×
|λ1(y(p+1)

1
) · · ·λp+1(y

(p+1)
1

)|1/2

|λp+2(y
(p+1)
1 ) · · ·λd(y(p+1)

1 )|1/2
×

(πh)−p
(
κ
∫
M ′ e

2δφ(x′)
h dx′

)2

(πh)−d/2
∫
M ′×M ′′ e

−2 f−δχ(x′′)φ(x′)
h dx

×e−
2y

(p+1)
1
h ×(1+O(h)) .

Proof. The first statement is due to the fact that the bar [0, y
(p+1)
1 [ of degre p provides a non

null linear application from the relative homology vector space Hp+1(f
y
(p+1)
1 +ε; fy

(p+1)
1 −ε) , of

which e
(p+1)
1 is a representant, via the boundary map to Hp(f

ε; f−ε) , of which the cycle M ′

is a representant. Therefore there exists a constant κ such that ∂e
(p+1)
1 − κM ′ is a boundary

relatively to f−ε . In particular if ω is a regular p-form in ker d0,f−1([−ε,+∞[),1 then

∫

∂e
(p+1)
1

ω = κ

∫

M ′

ω . (154)
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M'

M''

Figure 19: Case of a critical submanifold (plain line) and its perturbation (dashed

line): The above example is modelled on the mexican hat function r4

4 − r2

2 with the
manifold M ′ = S1 with the metric dθ2 and M ′′ ∼ R (around r = 1) with the metric
dr2 . The function Φ(θ) = −1− cos(θ) is a negative Morse function with maximum
value 0 when θ = π .

The fact that [0, y
(p+1)
1 [ remains the only bars of degree p and length y

(p+1)
1 for δ > 0 small

enough is a consequence of the stability theorem (Note that for δ > 0 , fδ is a Morse function if
x′′ 7→ f(x′′) has a non degenerate minimum at x′′0 .)

Let ϕ
(p)
1 be a global quasimode and ψ

(p+1)
1 be a local quasimode associated with the bar [0, y

(p+1)
1 [

and let us compute the scalar product

〈ψ(p+1)
1 , dfδ,hTδ2ϕ

(p)
1 〉 .

Because we have a non degenerate critical point at y(p+1)
1

, the computations of [LNV]-Section 4.3,

which rely on the WKB approximation for ψ
(p+1)
1 around y(p+1)

1
and dfδ,hϕ

(p)
1 ≡ 0 in f

y
(p+1)
1 −δ(h)
δ =

fy
(p+1)
1 −δ(h) , leads to

〈ψ(p+1)
1 , dfδ,hTδ2ϕ

(p)
1 〉 = ±

(
h

π

)1/2

×
|λ1(y(p+1)

1
) · · ·λp+1(y

(p+1)
1

)|1/4

|λp+2(y
(p+1)
1 ) · · ·λd(y(p+1)

1 )|1/4
× (πh)

d
4−

p
2

×
∫

∂e
(p+1)
1

e
fδ
h ϕ

(p)
1 × e−

y
(p+1)
1
h × (1 +O(h)) .

Because d(e
fδ
h ϕ

(p+1)
1 ) ≡ 0 in fy

(p+1)
1 −δ(h) we may apply (154) with ω = e

fδ
h ϕ

(p+1)
1 and the integral∫

∂e
(p+1)
1

can be replaced by κ
∫
M ′ . Thus it suffices to know ϕ

(p)
1 in a neighborhood ofM ′ . A good

approximation is given by a normalized element of ker(∆
(p)

fδ ,f
−1
δ ([−ε,ε],h)) which is exponentially

close (in any Sobolev norm) to the p-form constructed by the separation of variables inM ′×M ′′

1
(∫

M ′×M ′′ e
−2 f−δχ(x′)φ(x′)

h dx
)1/2 e

− f−δχ(x′′)φ(x′)
h | det g′(x′)| 12 dx1 ∧ . . . ∧ dxp .

The final result follows by taking the square.
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When f(x′′) near x′′0 ∈ M ′′ and φ(x′) , x′ ∈ M ′ , are Morse functions, the above formula
allows again to study the transition between the case when f is a Morse function on M for
δ > 0 small and when 0 is a degenerate critical value with critical set M ′ for δ = 0 . We get

the following asymptotic behaviour for the eigenvalue of ∆
(p) or (p+1)

fδ,f
−1
δ ([a,b]),h

associated with the bar

[0, y
(p+1)
1 [:

Cδ
h
π e

−2
y
(p+1)
1
h (1 +O(h)) when δ > 0 ,

C0
h
π (πh)

−p/2e−2
y
(p+1)
1
h (1 +O(h)) when δ = 0 .

In general degre p it is possible to have a good information on the local approximations of

the global quasimodes ϕ
(p)
k either when the critical value is x

(p)
k is non degenerate via a WKB

approximation of when we can use some separation of variables. Otherwise it is not clear that
we could get a general robust integral formula for the subexponential factor. Note also that we

used the fact that y
(p+1)
k is a non degenerate critical value when we reduced the computation

of 〈ψ(p+1)
1 , df,hTδ2ϕ

(p)
1 〉 to a integral along the explicit cycle ∂e

(p+1)
1 . Again it is not clear that

such a simple argument can be used when y
(p+1)
k is a degenerate critical value without some

other specific assumptions.

9.3 More general Morse functions

We consider in this paragraph a Morse function f which may admit multiple critical values. For
the sake of simplicity, we work in the following situation:

• c < c′ , c, c′ ∈
{
c1, . . . , cNf

}
are the only multiple critical values.

• All the critical points with critical value c (resp. c′) , x(p)k , 1 ≤ k ≤ K , (resp. y
(p+1)
k′ ,

1 ≤ k′ ≤ K ′) have the index p (resp. p+ 1).

• All the bars of Bf with the lower (resp. upper) endpoint c (resp. c′) have a length larger
or equal to c′ − c . The numbers of such bars of length equal to c′ − c (the bar is a copy of
[c, c′[) , is denoted by K0 ≤ min(K,K ′) .

Figure 20: A simple example in dimension 1 with K = 4 , K0 = K ′ = 3 .

• We will consider the energy interval [a, b] such that c (resp. c′) is the smallest (resp. largest)
critical value in [a, b] .
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• When x
(p)
k , k = 1, . . . ,K (resp. y

(p+1)
k′ , k′ = 1, . . . ,K ′) denote the critical points for

the value c (resp. c′) the function χ
(p)
k ∈ C∞(M ; [0, 1]) (resp χ

(p+1)
k ∈ C∞(M ; [0, 1])) is

supported in a neighborhood and equals 1 in a smaller neighborhood of x
(p)
k (resp.y

(p+1)
k′ ) for

k = 1, . . . ,K (resp k′ = 1, . . . ,K ′) . Let t
(p)
k , k = 1, . . . ,K , (resp. t

(p+1)
k′ , k′ = 1, . . . ,K ′)

be real numbers. For δ ∈ R small, we consider

fδ = f + δ



K∑

k=1

t
(p)
k χ

(p)
k +

K′∑

k′=1

t
(p+1)
k′ χ

(p+1)
k′


 .

Because f is a Morse function we may find ε > 0 small enough such that the homology vector
space Hp(f

c+ε, f c−ε;R) (resp. Hp+1(f
c′+ε, f c

′−ε;R)) have a basis made of the descending (un-

stable of −∇f) manifolds e
(p)
k , 1 ≤ k ≤ K (resp. e

(p)
k′ , 1 ≤ k′ ≤ K ′) restricted to fc−ε (resp.

fc′−ε). The boundary of e
(p)
k (resp e

(p+1)
k′ ) is a p − 1-dimensional (resp. p-dimensional) sphere

∂e
(p)
k (resp. ∂e

(p+1)
k′ ) lying in f−1({c− ε}) (resp. in f−1({c′ − ε})) .

On the Witten Laplacian side, ker(∆
(p)
f,f−1([c−ε,c+ε]),h) (resp. ker(∆

(p+1)
f,f−1([c′−ε,c′+ε],h))) may be

approximated with a Õ(e−
ε
h )-distance by ⊕⊥

1≤k≤K Cψ
(p)
k (resp. ⊕⊥

1≤k′≤K′ Cψ
(p+1)
k′ ), where ψ

(p)
k

(resp. ψ
(p+1)
k′ ) is a normalized ground state of ∆

(p)
f,k (resp. ∆

(p+1)
f,k′ ), the Witten Laplacian in de-

gree p (resp. p+1) with full Dirichlet boundary conditions in B(x
(p)
k , R

√
ε) (resp. B(y

(p)
k′ , R

√
ε))

for R > 0 chosen large enough . We refer to [Hel] and [HeSj4] and we recall that for the Witten
Laplacian associated with a Morse function f , the local Agmon distance to a critical point s , φ
solving |∇φ|2 = |∇f |2 and satisfying φ(x) ≥ |f(x)−f(s)| , behaves like the square of the geodesic
distance to s . Additionally, the L2 estimate between ψ

(p)
k (resp. ψ

(p+1)
k′ ) and its projection onto

ker∆
(p)
f,f−1([c−ε,c+ε],h) (resp. ker∆

(p+1)
f,f−1([c′−ε,c′+ε],h)) can be completed by a Õ(e−

ε
4h ) error esti-

mate in any Sobolev norm on the open set f
c+ ε

2

c− ε
2
∩B(x

(p)
k , R2

√
ε) (resp. f

c′+ ε
2

c′− ε
2
∩B(y

(p+1)
k′ , R2

√
ε)).

We also have WKB-approximations for all the ψ
(p)
k (resp. ψ

(p+1)
k′ ) 1 ≤ k ≤ K (resp. 1 ≤ k′ ≤ K ′)

in B(x
(p)
k , R2

√
ε) (resp. B(y

(p+1)
k′ , R2

√
ε)) which are valid in W s,2-norm.

By the construction of Theorem 6.3 there is a Õ(e−
ε
h )-orthonormal family of quasimodes ϕ

(p)
k ,

1 ≤ k ≤ p , which are approximated by the Π
ker(∆

(p)

f,f−1([c−ε,c+ε]),h
)
ψ
(p)
k and therefore by ψ

(p)
k or

their WKB-approximation and which solve df,hϕ
(p)
k = 0 in f−1([c − ε, c′ − ε

2 ]) , vanish in f c−ε

and satisfy the exponential decay property.

At the level c′ the local quasimodes are Π
ker(∆

(p+1)

f,f−1([c′−ε,c′+ε]),h
)
ψ
(p+1)
k′ and are therefore close to

ψ
(p+1)
k′ .

For a generic choice of the coefficients t
(p)
k and t

(p+1)
k′ , the perturbation fδ is a Morse function with

simple critical values as soon as δ ∈ R is chosen small enough. Moreover the stability theorem
says that the bars with endpoints c and c′ are simply modified by O(δ) variations of the endpoints
while all the other bars are not changed owing to our choice of fδ . We can even be more specific.
The above parameter ε > 0 , R being fixed, ε small enough, we may take the cut-off function

χ
(p)
k , k = 1, . . . ,K , (resp. χ

(p+1)
k′ , k′ = 1, . . . ,K ′) such that the equal 1 in B(x

(p)
k , 2R

√
ε)

(resp B(y
(p+1)
k′ , 2R

√
ε)) . Finally δ > 0 is chosen small enough such that all the critical values

of fδ close to c (resp c′) are in [c − ε/2, c + ε/2] (resp. [c′ − ε/2, c′ + ε/2]) . With this choice

of fδ , (e
(p)
k )k=1,...,K (resp. (e

(p+1)
k′ )k′=1,...,K′) defines a basis of Hp((fδ)

c+ε, (fδ)
c−ε;R) (resp.

Hp+1((fδ)
c′+ε; f c

′−ε
δ )) . The quasimodes ψ

(p)
k , ψ

(p+1)
k′ , and their WKB-approximations are not

changed because we have just changed f by a constant in B(x
(p)
k , R

√
ε) (resp. B(y

(p+1)
k+1 , R

√
ε)) .

Lemma 9.9. In the above framework and for δ ∈ R small enough the boundary map ∂ :
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Hp+1((fδ)
c′+ε, (fδ)

c′−ε;R)
can.∼ ⊕K′

k′=1 Re
(p+1)
k′ induces a linear map to Hp((fδ)

c+ε, (fδ)
c−ε;R)

can.∼
⊕Kk=1 Re

(p)
k of rank K0 which is written

∂ : e
(p+1)
k′ 7→

K∑

k=1

κk,k′e
(p)
k .

The matrix κ does not depend on δ .

Proof. When δ = 0 , the boundary map sends Hp+1(f
c′+ε, f c

′−ε,R) to Hp(f
c′−ε, f c−ε;R) of

which a dual basis (in cohomology) is indexed by the K0 bars [c, c′[ , k = 1, . . . ,K0 . It suffices
to follow the bars to the lower endpoint to define a linear map to Hp(f

c+ε, f c−ε;R) . For a
general δ small enough, fδ differs from f only by a constant in each ball of radius R

√
ε around

the critical points x
(p)
k , y

(p+1)
k′ . Therefore, the gradient vector fields and the Morse models

remain unchanged around these points. The homotopy becomes trivial by replacing locally

the level set f−1({c − ε}) (resp. f−1({c′ − ε})) by f−1
δ ({c − ε}) = f−1({c − ε − δt(p)k }) (resp.

f−1
δ ({c′−ε}) = f−1({c′−ε−δt(p+1)

k′ })). Hence, (e(p)k )k∈{1,...,K} (resp. (e
(p+1)
k′ )k′∈{1,...,K′}) appears

as a canonical basis of Hp((fδ)
c+ε, (fδ)

c−ε;R) (resp. Hp+1((fδ)
c′+ε, (fδ)

c′−ε;R)) in which the

matrix κ of the topological linear map ∂ : Hp+1((fδ)
c′+ε, (fδ)

c′−ε;R)→ Hp((fδ)
c+ε, (fδ)

c−ε;R)
remains unchanged.

Figure 21: In dimension 2 we have represented 3 critical points with index 2 at the
value c′ and 2 critical points with index 1 at the value c . The unstable (and stable
manifold for the index 1) of −∇f are considered in the level sets f c

′+ε
c′−ε and f c+ε

c−ε .
The homotopy with respect to δ consists simply to move separately up or down, the
disconnected parts of this picture.

Proposition 9.10. In the above framework with δ small enough, the singular values µh of

d
(p)
fδ,(fδ)−1([a,b]),h which satisfy limh→0−h logµh = c− c′+O(δ) are equal to (1+O(h))× the non

zero singular values of the K ×K ′ matrix

(
h

π

)1/2

(D(p))−1
κD(p+1)

where D(p) (resp. D(p+1)) is the diagonal matrix with entries

|λ1(x(p)k ) · · ·λp(x(p)k )|1/4

|λp+1(x
(p)
k ) · · ·λd(x(p)k )|1/4

e−
fδ(x

(p)
k

)

h , k = 1, . . . ,K ,

resp.
|λ1(y(p+1)

k′ ) · · ·λp+1(y
(p+1)
k′ )|1/4

|λp+2(y
(p+1)
k′ ) · · ·λd(y(p+1)

k′ )|1/4
e−

fδ(y
(p+1)

k′
)

h , k′ = 1, . . . ,K ′ .
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Proof. Set x
(p)
k,δ = fδ(x

(p)
k ) = c + δt

(p)
k and y

(p+1)
k′,δ = fδ(y

(p+1)
k′ ) = c′ + δt

(p+1)
k′ , for k = 1, . . . ,K

and k′ = 1, . . . ,K ′ . An orthonormal basis of ker(∆
(p+1)
fδ,fδ [c′−ε,c′+ε],h) is well approximated by the

local quasimodes ψ
(p+1)
k′ which is the ground state of the full Dirichlet realization of ∆

(p+1)
f,h in

B(y
(p)
k′ , R

√
ε) which do not depend on δ . The same holds for ker(∆

(p)
fδ,fδ([c−ε,c+ε],h)) with the

notation ψ
(p)
k , k = 1, . . . , p . Hence ⊕⊥

k=1...,K Cψ
(p)
k provides a good approximation in the energy

interval [c− ε, c+ ε] for fδ for the vector space of global quasimodes ϕ
(p)
k,δ for fδ associated with

the bars [x
(p)
k,δ, y

(p+1)
k,δ [ for k = 1, . . . ,K0 and [x

(p)
k,δ, b[ for k = K0 + 1 , . . . ,K . Let us chose the

basis (ϕ
(p)
k,δ)k=1,...,K as an orthonormal basis such that ‖ϕ(p)

k,δ −ψ
(p)
k ‖L2 = õ(1) , while such a õ(1)

estimate also holds in any Sobolev norm in f
c+ ε

2

c− ε
2
∩B(x

(p)
k,δ,

R
2

√
ε) . Those global quasimodes are

assumed to solve dfδ ,hϕ
(p)
k,δ = 0 in f−1

δ ([a, c′−Mδ]) for some M > 0 large enough and we assume

Mδ << δ2 << ε . We now compute the interaction K ′×K matrix 〈ψ(p)
k′ , df,hχδ2(fδ)ϕ

(p)
k,δ〉 where

χδ2 smoothly vanishes in [c′ − δ2, b] and equals 1 in [a, c′ − 2δ2] for all k = 1, . . . ,K . Because

df,hϕ
(p)
k,δ = 0 in f−1

δ ([b, c′ −Mδ]) , the local computation around y
(p+1)
k′ done in [LNV]-Section 4

are the same and they say:

〈ψ(p+1)
k′ , df,hTδ2ϕ

(p)
k,δ〉 = ±

(
h

π

)1/2

×
|λ1(y(p+1)

k′ ) · · ·λp+1(y
(p+1)
k′ )|1/4

|λp+2(y
(p+1)
k′ ) · · ·λd(y(p+1)

k′ )|1/4
× (πh)

d
4−

p
2

×
∫

∂e
(p+1)

k′

e
fδ
h ϕ

(p)
k,δ × e−

y
(p+1)

k′,δ
h × (1 +O(h)) .

By Stokes’s formula applied with d[e
fδ
h ϕ

(p)
k,δ] = 0 in f−1

δ ([b, c′ −Mδ]) we obtain

〈ψ(p+1)
k′ , df,hTδ2ϕ

(p)
k,δ〉 = ±

(
h

π

)1/2

×
|λ1(y(p+1)

k′ ) · · ·λp+1(y
(p+1)
k′ )|1/4

|λp+2(y
(p+1)
k′ ) · · ·λd(y(p+1)

k′ )|1/4
× (πh)

d
4−

p
2

×



K∑

j=1

κj,k′

∫

e
(p)
j

e
fδ
h ϕ

(p)
k,δ


× e−

y
(p+1)

k′,δ
h × (1 +O(h)) .

By approximating ϕ
(p)
k,δ by ψ

(p)
k,δ and its WKB approximation in B(x

(p)
k , R2

√
ε) we have

(πh)
d
4−

p
2

∫

e
(p)
j

e
fδ
h ϕ

(p)
k,δ = (πh)

d
4−

p
2

∫

e
(p)
j

e
fδ
h ψ

(p)
k × (1 + õ(1))

= ±1 |λp+1(x
(p)
k ) . . . λd(x

(p)
k )|1/4

|λ1(x(p)k ) . . . λp(x
(p)
k )|1/4

e
x
(p)
k,δ
h × (1 +O(h)) .

The error terms actually occur as matricial products on the left-hand side for the approximation

of ψ
(p+1)
k′ and on the right-hand side for ϕ

(p)
k,δ .

The interaction matrix 〈(ψ(p+1)
k′ , dfδ,hχδ2ϕ

(p)
k,δ〉)1≤k′≤K′,1≤k≤K is thus equal to

diag
(
± 1 +O(h)

)(h
π

)1/2

D(p+1)(tκ)(D(p))−1diag
(
± 1 +O(h)

)
.

Its singular values are thus equal up to a O(h)-relative error to the singular values of

(
h

π

)1/2

D(p+1)(tκ)(D(p))−1
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or equivalently of (
h

π

)1/2

(D(p))−1
κD(p+1) .

Remark 9.11. The result of Propostion 9.10, in a specific case, show that it is possible to get
a matricial robust accurate formula for the exponentially small eigenvalues of Witten Laplacians
for general Morse potentials. This provides another stability property valid for the first term
asymptotics of the subexponential factor, which allows to study the transition from the generic
Morse case with simple critical values to the general case. Note that here the power of h in this
subexponential factor is not changed. But discontinuities appear on the constants as it is shown
in the next simple examples. Actually we have considered a simple case where only one multiple
bar [c, c′[ has to be taken into account. A more general form would consist in following the
induction scheme of Theorem 6.3 and would lead to some complicated linear matricial structure
for which we do not have an elegant presentation at the moment. In the degree p = 0 , L. Michel
in [Mic] proposed an interpretration in terms of the spectrum of a discrete Laplacian on a finite
graph with vertices given by the local minima and edges given by saddle points. This formulation
is written for a fixed Morse function with possible multiple local minima and saddle points, the
perturbative issue is not really clarified there. In our specific example, the discrete Laplacian
proposed by L. Michel is actually the square

h

π
(D(0))−1

κD(1)D(1),∗
κ
∗(D(0))−1,∗ .

It would be interesting to find such a general robust formulation, with several multiple critical
values, in degree p > 0 .

Examples:

1. Consider a Morse function f on [s, t] such that minx∈[s,t] f(x) = f(s) = a , maxx∈[s,t] f(x) =
f(t) = b , with f ′(s) > 0 and f ′(t) > 0 , with two local maxima and two local minima

s < y(1)
1

< x
(0)
1 < y(1)

2
< x

(0)
2 < t , f(y(1)

1
) = f(y(1)

2
) = c′ and f(x

(0)
1 ) = f(x

(0)
2 ) = c .

For the perturbation of f we will consider the cases when (t
(1)
1 , t

(1)
2 ) = (0, 0) , (t

(0)
1 , t

(0)
2 ) ∈

{(0, 0), (0,−1), (−1, 0)} . The matrix κ equals
(
1 −1
0 1

)

while the matrices D(0) and D(1) are given by

D(0) =


|λ1(x

(0)
1 )|−1/4e−

c+δt
(0)
1

h 0

0 |λ1(x(0)2 )|−1/4e−
c+δt

(0)
2
h


 =

(
α−1
1 0
0 α−1

2

)
e−

c
h ,

D(1) =

(
|λ1(y(0)1

)|1/4e− c′

h 0

0 |λ2(y(0)2
)|1/4e− c′

h

)
=

(
β1 0
0 β2

)
e−

c′

h .

The singular values of the matrix (D(0))−1
κD(1) are the square roots of the eigenvalues of

the symmetric square matrix
(
α2
1(β

2
1 + β2

2) −α1α2β
2
2

−α1α2β
2
2 α2

2β
2
2

)
e−2 c

′−c
h .

Those eigenvalues equal

[(α2
1(β

2
1 + β2

2) + α2
2β

2
2)]±

√
[α2

1(β
2
1 + β2

2)− α2
2β

2
2)]

2 + 4α2
1α

2
2β

4
2

2
× e−2 c

′−c
h .

128



Depending on the three considered cases, we obtain:

t
(0)
1 = t

(0)
2 = 0: The 2 exponentially small eigenvalues of ∆

(0) or (1)
f,[s,t],h have the form Ck

h
π e

−2 c
′−c
h (1+

O(h)) , k = 1, 2 , where the constants C1 and C2 clearly depend on the four hessians
at the critical points.

t
(0)
1 = −1, t(1)2 = 0: The 2 exponentially small eigenvalues of ∆

(0) or (1)
f,[s,t],h are equal to:

h

π
|λ1(x(0)2 )|1/2|λ1(y(1)2

)|1/2e−2 c
′−c
h (1 +O(h))

h

π
|λ1(x(0)1 )|1/2|λ1(y(1)1

)|1/2e−2 c
′−c+δ
h (1 +O(h)) .

In particular the smallest one depends on the hessians of fδ at the only points x
(0)
1

and y(1)
1

.

t
(0)
1 = 0 , t

(0)
2 = −1: The 2 exponentially small eigenvalues of ∆

(0) or (1)
f,[s,t],h are equal to:

2
h

π
|λ1(x(0)1 )|1/2

|λ1(y(1)1
)|1/2 + |λ1(y(1)1

)|1/2
2

e−2 c
′−c
h (1 +O(h))

1

2

h

π
|λ1(x(0)2 )|1/2H(|λ1(y(1)1

)|1/2, |λ1(y(1)2
)|1/2)e−2 c

′−c+δ
h (1 +O(h)) ,

where H(u, v) = 2uv
u+v denotes the harmonic mean.

In this case the smallest eigenvalue depends on the Hessians of fδ at the points x
(0)
2 ,

y(1)
1

and y(1)
2

.

Figure 22: The three considered cases: (t1, t2) = (0, 0) plain line; (t1, t2) = (−1, 0)
move the curve downward with (↓) , (t1, t2) = (0,−1) move the curve downward
with (↓ ↓) .

The general formula is again a robust formula which allow to follow the dependence on the
parameter δ of the asymptotic expressions although those at the end are not continuous
with respect to δ .

2. Consider in Rd a function f with a unique local minimum at x
(0)
1 = 0 with f(0) = c ,

such that limx→∞ f(x) = −∞ and surrounded by K ′ saddle points, critical points with

index 1 , such that f(y
(1)
k′ ) = c′ , while all the other crtical values are larger than c′ with
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an index p ≥ 2 . For the perturbation we will consider the two cases when t
(0)
1 = 0 and

t
(1)
1 ∈ {0,−1} . The matrix κ is the 1 × K ′ matrix (1 , 1 , . . . , 1) . Thus the smallest

eigenvalue of ∆
(0)
fδ,(fδ)−1([a,b]),h , which is the unique exponentially small eigenvalue, equals

h
π | det(Hessf(x

(0)
1 ))|1/2∑K′

k′=1

|λ1(y
(1)

k′
)|1/2

|λ2(y
(1)

k′
)...λd(y

(1)

k′
)|1/2

e−2 c
′−c
h (1 +O(h)) if δ = 0 ,

h
π | det(Hessf(x

(0)
1 ))|1/2 |λ1(y

(1)

1
)|1/2

|λ2(y
(1)
1 )...λd(y

(1)
1 )|1/2

e−2 c
′−c−δ
h (1 +O(h)) if δ > 0 .

Similar formulas are obtained for various configurations in [DLLN1, DLLN2, LeNe2, LeMi].

2 -10

1

2

Figure 23: An example with K = 6 . Level curves at the level 1, 2,−10 are repre-
sented, the global minimum is denoted by ◦ , the saddle points by ↔ and the local
maximum by • .

3. A case with symmetries: Consider in R2 a Morse function f with a local maximum at

y(2)
1

= 0 , f(y(2)
1

) = c2 surounded by K saddle points at x
(1)
k = y

(1)
k , k = 1 . . .K , f(x

(1)
k ) =

c1 , and K local minima at x
(0)
k , k = 1 . . . ,K , f(x

(0)
k ) = c0 , c0 < c1 < c2 . We also

assume that limx→∞ f(x) = +∞ and that f has no other critical points. When j ∈ {1, 2}
or p ∈ {0, 1} are fixed λj(x

(p)
k ) = λ

(p)
j do not depend on k = 1, . . . ,K . We study the

eigenvalues of ∆
(p)
f,R2,h , p = 0, 1, 2 by restricting to the case c0 < a < c = c1 < c′ = c2 < b

for p = 2 and to the case a < c = c0 < c′ = c1 < b < c2 for p = 0 . By supersymmetry, the

non zero eigenvalues of ∆
(1)
f,R2,h are obtained by gathering the ones of ∆

(0)
f,R2,h and ∆

(2)
f,R2,h .

For p = 2 , c0 < a < c = c1 < c′ = c2 < b: The matrix κ equals the K × 1 matrix

κ =



1
...
1


 .

The smallest eigenvalue of ∆
(2)
f,f−1([a,b]),h , which is the only exponentially small one,

then equals:

h

π
| det(Hessf(y(2)

1
))|1/2K |λ

(1)
2 |1/2

|λ(1)1 |1/2
e−2

c2−c1
h (1 +O(h)) .
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2 10

4

2

Figure 24: An example with K = 6 . Level curves at the level 4, 2, 10 are repre-
sented, the local minima are denoted by ◦ , the saddle points by ↔ and the global
maxima by • .

For p = 0 , a < c = c0 < c′ = c1 < b < c2: The matrix κ is the K ×K matrix

κ =




1 −1 0 . . . 0

0 1 −1 . . .
...

...
. . .

. . .
. . .

...
...

... 0
. . . −1

−1 0 . . . 0 1




of which the singular values equal |1 − ωk| , k = 1, . . . ,K , where ωk = e2iπ
k
K for

k = 1, . . . ,K . Owing to

(D(0))−1
κD(1) = |λ(0)1 λ

(0)
2 |1/4

|λ(1)1 |1/4

|λ(1)2 |1/4
e−

c1−c0
h κ ,

we deduce that the K exponentially small eigenvalues of ∆
(0)
f,f−1([a,b]),h are equal to

|λ(0)1 λ
(0)
2 |1/2

|λ(1)1 |1/2

|λ(1)2 |1/2
|1− ωk|2e−2

c1−c0
h (1 +O(h)) , k = 1, . . . ,K .

This case with p = 0 was considered by Michel in [Mic] for the Witten Laplacian and by Hérau-
Hitrik-Sjöstrand in [HHS] for the non-self-adjoint Kramers-Fokker-Planck operator.

10 Broadening the scope

Our work provides a general method for analyzing the exponentially small eigenvalues of Witten
Laplacians with a general potential function. However, it does not answer all the questions that
arose along this analysis. Here is a short list of still open questions and of connections with
closely related fields.
a) General C∞ potential: A general C∞-function on a compact manifold M may have an
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infinite number of critical values and bars in its bar code. Nevertheless, for any ε > 0, the set
of bars of length larger than ε is finite. In order to realize this, take a covering [min f,max f ] ⊂
∪Nεi=1[ai, ai+1], where the ai’s are not critical values and such that 0 < ai+1 − ai ≤ ε for all
i ∈ 1, . . . , N − 1 . Any bar α(p) of degree p and length larger than ε has at most two endpoints
lying in different intervals [ai, ai+1] and appearing as an element of Z(p)(ai, ai+1) for the possible
lower endpoint and an element of Z(p+1)(ai′ , ai′+1) for the possible upper endpoint with i 6= i′ .
Therefore, the set of bars of degree p and length larger than ε is bounded by

Nε−1∑

i=1

♯Z(p)(ai, ai+1) + ♯Z(p+1)(ai, ai+1)

=

Nε−1∑

i=1

β(p)(fai+1 , fai) + β(p+1)(fai+1 , fai) < +∞ .

The conjecture stated in the introduction for a general C∞ function f has now the following

more precise version: For ε > 0, the õ(e−
2ε
h ) eigenvalues of ∆

(p)
f,M,h are given by the λ

(p)
α (h) such

that α is of length larger than ε, α ∈ A(p) or (α ∈ A(p−1) and b
(p)
α < +∞), and

lim
h→0
−h log(λα(h)) = 2(bα − aα) .

Our proof, relying on a recurrence on the number of critical values by following their increasing
(and decreasing) order, is not adapted to the more general case with an infinite number of critical
values. One may think of a different type of induction: Starting from our result for finitely many
critical values, one may increase the number of critical values by perturbing the function such
that it creates small bars in a given interval [a, b], and then try to obtain spectral and resolvent

estimates for the spectral parameter λ ∈ [0, õ(e−
2ε
h )], which are uniform with respect to the

additional small bars.
b) What about C0-potentials ? The stability of bar codes makes sense in the C0 topology while
a finite bar code can be associated with a continuous function which satisfies Hypothesis B.1.
The relation between the exponentially small eigenvalues of ∆f,h and the bar code of f suggests
that the bottom of the spectrum of ∆f,h makes sense only under Hypothesis B.1. Is there a
natural self-adjoint operator “∆f,h” on M when f is only continuous and for which Theorem 1.7
could be extended ?
c) Applications of the result on p-forms: Over decades, the case of functions has received a
lot of attention with an easy interpretation in terms of Fokker-Planck equation associated with
reversible processes at low temperature and within the modelling e.g. in chemistry as points the
title of this text. Here is an attempt to interpret our spectral results for p-forms. This deserves
more precise studies and we hope that relevant applications will be found. Within the stochastic
approach, the Witten Laplacian is better written as

Lf,h = e
f
h∆f,he

− f
h = h2∆0,1 + 2hL∇f = d0,hd

∗
2f,h + d∗2f,hd0,h ,

considered in the L2-space associated with the invariant measure e−
2f
h dx , L2(M, e−

2f
h dx; ΛT ∗M) ,

and where ∆0,1 = dd∗ + d∗d is the usual Hodge Laplacian. There are formulas to express the
semigroups associated with Hodge and Witten Laplacians, in terms of expectations values along
brownian motion: e−tLf,hv = E(ξ∗t v) for v ∈ C∞(M ; ΛT ∗M) , where ξt is the flow associated
with a stochastic differential equation of the type dx = X(xt) ◦ dBt − 2∇f(xt)dt where B is an
m-dimensional brownian motion in Rm and X :M ×Rm → TM is a submersion specified by the
metric on M (see in particular [ELJL, Theorem 1.1.2, formula 1.2.5, and Section 2.4]). Due to
the supesymmetric argument, eigenforms of ∆f,h (resp. Lf,h) can be assumed to solve d∗f,hω = 0

(resp. d∗2f,hω̃ = 0 with ω̃ = e
f
hω), because when d∗f,hω 6= 0 (resp. d∗2f,hω) 6= 0) then d∗f,hω (resp
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d∗2f,hω̃) is another eigenform of ∆f,h (resp. of Lf,h) with degree decreased by 1 and associated

with the same eigenvalue. Let ω̃ be such an eigenform with d∗(e
2f
h ω̃) = 0 and Lf,hω̃h = λhω̃h .

By assuming that ω̃ is a p-form and after normalization, Ahe
2f
h ω̃ may be identified with a p-cycle

via ∫

M

η ∧ (⋆e
2f
h Ahω̃) =

∫

Cω̃,h

η ,

where ∂Cω̃,h = 0 is a consequence of d∗(e
2f
h ω̃) = 0 . It would be better to think of Cω̃,h as a

courant but let us forget the regularity issues. When f is a Morse function with

f(x1, . . . , xp, xp+1, . . . , xd) = −ϕ−(x1, . . . , xp) + ϕ+(xp+1, . . . , xd)

around a critical point of index p with critical value 0 which is a lower endpoint of a bar of degree

p , the leading term of the WKB-approximation says e
2f
h ω̃ = e−

2ϕ+(xp+1,...,xd)

h dx1 ∧ . . .∧ dxp and
Cω̃,h is assymptotically equal to some fixed cycle Cω̃,0 supported by the unstable manifold of
−∇f . We may expect such a behaviour in general. The evolution ω̃h(t) = e−tLf,hω̃h = e−tλhω̃h
says that this cycle is not changed by the dynamics when t << 1

λh
and disappears when t >> 1

λh
.

The reverse eigenvalue 1
λh

appear as the lifetime of the cycle Cω̃,h of which an asymptotic form
Cω̃,0 is expected when the normalization factor Ah is well chosen. Below is a picture for the
brownian dynamics of a 1-cycle, which shows the generalization of the metastability picture that
we expect.

Figure 25: Metastability of cycles: The bars of degree 1 represented on the left-

hand side, with lengths ℓ1 < ℓ2, provide the lifetime e
2ℓ1
h (resp e

2ℓ2
h ) of the cycle

C1 (resp. C2). After a time larger than the lifetime, C1 is first deformed into C2

and C2 is then deformed into the grey cycle which is rapidly retracted to the global
minimum.

d) General statement for subexponential factors: Specifying the exponential scales of the

exponentially small eigenvalues of ∆
(p)
f,M,h associated with the lengths of the bar code of f was

done in Theorem 1.7 and Theorem 7.1, while the spectral version of the stability was given in
Corollary 1.8 and Theorem 7.6. Those results are general statements which hold under simple
general assumptions like Hypothesis 1.2 or Hypothesis 1.3. The situation is different when we
want to specify the subexponential factors. In Section 9, the general construction was used in
order to specify the subexponential factors and to show that they were keeping some kind of
stability property, possibly within a finite dimensional matricial writing (see Proposition 9.10).
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Although the method is clear and heavily relies on Theorem 6.3 and the use of Stokes’ theorem
like in [LNV], we were not able to take into account all the possible configurations in a uniform
and satisfactory presentation. Although the stability of individual subexponential factors cannot
hold, a general robust statement or formula for the determination of the subexponential factors
would be valuable.
e) Piecewise affine functions and discretization via triangulation: In the one dimen-
sional case, a schematic Witten Laplacian for which everything relies on simple linear algebra is
provided by a piecewise affine function f . Eigenforms of degree 0 or 1 are computed by match-
ing exponentials at the discontinuities of the slope of f . It becomes a fully discrete model, in
its coding and in the computation of the eigenforms. The generalization of a piecewise affine
function after a triangulation of Rd or Td (and for further generalizations, one should consider
a Lipschitz triangulated riemannian manifold like in [GMM]) enters in our general assumption
Hypothesis 1.3. Away from the singularities of f , the Witten Laplacian is nothing but a scalar
operator −∆+ V (x), where V is a piecewise constant function, while the Hessian of f brings a
measure potential carried by the singularities of f . We are led to consider a specific self-adjoint
extension of −∆+ V (x) on C∞0 (Ωreg; ΛT

∗M), where Ωreg is the open domain where f is differ-
entiable with a locally constant gradient. Many things have been done on the scalar Laplacian
plus simple or double layer potentials, or more general interface conditions (see [AGHKH, BGP]).
Here we work with Hodge-type Laplacians and discriminating with respect to the degree will lead
to different types of interface conditions and we wonder whether cohomology brings additional
restrictions along strata of codimension > 1 . It would be interesting to see if such a finitely
coded potential f leads to a completely solvable linear algebra problem like in dimension 1 . It
could be an alternative model problem as compared to the case of Morse functions, which could
be useful to understand some non trivial boundary or corner problems.
f) Infinite or large dimensional problems: After specifying the geometrical problems, espe-
cially concerned with the domain issues for the differential, codifferential, and Witten Laplacian,
all the analysis is carried out along the real axis of values of f , R ⊃ f(M) . In this projective
perspective, the dimension of M does not count until the computation of the subexponential
factors, which involve the asymptotics of Laplace integrals. This raises the question of the va-
lidity of such an approach for infinite dimensional – or large dimensional – problems, which
have applications in statistical physics, and where the asymptotic behaviour of the dimension is
related with the small parameter h→ 0+ (see e.g. [HelW, DiLe], or the recent [BrDi] where the
estimates when h→ 0+ are even shown to be uniform in the dimension, and references therein).
g) Other boundary conditions for Witten Laplacians: Our results include the case of
Witten Laplacians on bounded domains like f ba , provided that one considers Neumann bound-
ary conditions on the upper boundary f−1({b}) and Dirichlet boundary conditions on f−1({a}) .
In some applications like in the analysis of quasi-stationary distributions, it is relevant to put
Dirichlet boundary conditions everywhere on ∂Ω when the manifold M is replaced at the be-
ginning by some regular domain (see [LeNi, DLLN1, DLLN2, LeNe1, LeNe2]). The cohomology
groups H∗(f b; fa) have to be replaced by H∗(f b; fa ∪ ∂Ω), but additional corner problems at
the intersection ∂Ω ∩ f−1({a, b}) have to be analyzed carefully.
h) Non reversible dynamics and spectral analysis of non self-adjoint related prob-
lems: The analysis of Witten Laplacians enters in the general scope of the semiclassical analysis
of self-adjoint Schrödinger-type operators. Within the stochastic analysis, several models, moti-
vated by applications where a non reversible drift is considered, lead to non self-adjoint operators
for which a similar analysis can be carried out in the case of functions, p = 0 (see e.g [LeMi]).
An interesting non self-adjoint (and non elliptic) operator which has many connections with
Witten Laplacian is Bismut’s hypoelliptic Laplacian, which is defined in any degree 0 ≤ p ≤ 2d
when we work on X = T ∗Q with dimQ = d . The asymptotic behaviour of exponentially small
eigenvalues has been studied so far only when p = 0 and Q = Rd in [HHS], where Bismut’s
hypoelliptic Laplacian is nothing but the Kramers-Fokker-Planck operator of kinetic theory. For
studying the case of general p-forms on a manifold, a better understanding of boundary condi-
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tions for Bismut’s hypoelliptic Laplacians (defined in [Nie]) is necessary. When f : Q→ R is the
potential, adapting the analysis of this text would lead to “Dirichlet boundary conditions” on
T ∗
f−1({a})Q and “Neumann boundary conditions” on T ∗

f−1({b})Q for the hypoelliptic Laplacian

acting in π−1(f ba) , where π : T ∗Q→ Q is the fiber projection. Additionally, the non self-adjoint
nature of the problem requires different techniques relying on complex deformations in order to
handle the exponential decay of resolvents and eigenfunctions.
i) Remarks about the subanalytic case: In the subanalytic case and for at least the second
time (a previous time was in [GeNi] for the analysis of Mourre estimates for analytically fibered
operators), the differentiation along regular strata has been used in order to prove estimates.
Instead of considering a non regular solution φ to the Hamilton-Jacobi equation |∇f |2 = |∇φ|2 ,
we constructed a finite family of regular functions φk , k = 1, . . . ,K , |∇f |2 ≥ |∇φk|2, finally
leading to a good enough exponential decay estimate. We were not able to make a direct use
of viscosity solutions, which did not allow to absorb all the singular terms in Agmon’s type
estimates. In a different context, global subanalytic viscosity solutions to Hamilton-Jacobi with
analytic coefficients (which is not the case here) were studied in [Tre]. Is there a better way to
introduce viscosity solutions in our problem ? In the other way, differentiating along the regular
strata could it be used for constructing subsolutions to Hamilton-Jacobi type equations ?
j) Fukaya conjecture and multidimensional persistence: Determining the homotopy type
of a compact manifold M such that π1(M) = 0 and the A∞ structure on harmonic forms in-
duced by the pullback of the wedge product, can be attacked via Witten’s deformation. This
was proposed by Fukaya in [Fuk] and more precisely studied via WKB methods a la Helffer-
Sjöstrand in [CLM]. It consists in considering several Witten’s deformations of the differential

and the Hodge Laplacian, dfij ,h = e−
fij
h (hd)e

fij
h , associated with a sequence (f0, f1, . . . , fk)

such that fij = fj − fi , 0 ≤ i < j ≤ k , are Morse functions. Although it may not bring
an additional topological information, replacing Morse functions by more general C∞ functions

means the understanding of the k(k+1)
2 -dimensional version of persistence diagrams, bars being

replaced by multidimensional objects. The multidimensional version of persistence homology,
partly motivated by applications in statistical data analysis, is only emerging. We refer again to
[KaSc] for a theoretical presentation of multidimensional persistence.
k) Comparison with the instantonic picture: The instantonic picture makes sense within
Thom-Smale transversality condition, which ensures that any critical point of index p + 1 is
related to some critical points of index p by a finite number of regular integral curves of −∇f .
This gives rise to the standard Thom-Smale complex structure. More recently, it has received
an accurate analysis in terms of the analysis of the dynamical system of −2∇f perturbed by a
brownian motion in [DaRi] by applying Faure-Sjöstrand theory of weighted Sobolev spaces. We
already mentioned that our approach is orthogonal to the instantonic point of view: Instead of
exploring the geometry of the potential landscape M ∋ x 7→ f(x) ∈ R , we considered globally
the sublevel sets fλ and their homological properties. We can parallel this with the comparison
between Riemann’s and Lebesgue’s integration theory. This global approach avoids to consider
possibly complicated cancellation phenomena in the general method of tunnel effect computa-
tions described in [HeSj2, HeSj3]. It is a question whether such a global and topological approach
makes sense for other spectral problems related with dynamical systems.

A Abstract Hodge theory

The abstract version of Hodge theory provides spectral results, like (155) or Corollary A.2 below,
which hold in general with weak regularity assumptions. For a proof, we refer for example to
[GMM, Section 2] (see in particular Propositions 2.3 and 2.4, Corollary 2.5, and Theorem 2.8
there).

Proposition A.1. Let (H, ‖ · ‖H) be a Hilbert space and let T : D(T ) ⊂ H → H be a closed
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densely defined unbounded linear operator such that

RanT ⊂ kerT and D(T ) ∩D(T ∗) embeds compactly into H ,

where D(T ) ∩D(T ∗) is equipped with the graph norm

‖u‖D(T )∩D(T∗) :=
√
‖u‖2H + ‖Tu‖2H + ‖T ∗u‖2H .

We then have the following properties:

i) The operator (T + T ∗, D(T )∩D(T ∗)) is self-adjoint with a compact resolvent and satisfies

ker(T + T ∗) = kerT ∩ kerT ∗ .

In particular, the linear space D(T ) ∩ D(T ∗) is dense in H and T + T ∗ is a self-adjoint
Fredholm operator with index 0 , that is more precisely

kerT ∩ kerT ∗ has finite dimension and Ran(T + T ∗) =
(
kerT ∩ kerT ∗)⊥ .

ii) The operator ∆ := TT ∗ + T ∗T with domain

D(∆) := {u ∈ D(T ) ∩D(T ∗) s.t. Tu ∈ D(T ∗) and T ∗u ∈ D(T )}

is a nonnegative self-adjoint operator with kernel

ker∆ = kerT ∩ kerT ∗ = ker(T + T ∗) .

In particular, ∆ has a compact resolvent (since D(∆) with its graph norm embeds con-
tinuously into D(T ) ∩ D(T ∗)) and is the Friedrichs extension associated with the closed
nonnegative quadratic form Q on D(T ) ∩D(T ∗) defined by

Q(u, v) := 〈Tu, T v〉H + 〈T ∗u, T ∗v〉H .

Let us also note the following consequences of Proposition A.1 underlining the supersymmet-
ric structure of the operator ∆ defined there : when T is as in the statement of Proposition A.1,
the resolvent satisfies for every z ∈ C \ σ(∆) , u ∈ D(T ) , and u′ ∈ D(T ∗) ,

(z −∆)−1 T u = T (z −∆)−1 u and (z −∆)−1 T ∗ u′ = T ∗ (z −∆)−1 u′ . (155)

Let us prove the first relation, the proof of the second one being similar. Let us then consider
u ∈ D(T ) and let us define v = (z − ∆)−1u for some z ∈ C \ σ(∆) . Then v ∈ D(∆) and
(z−∆)v = u ∈ D(T ) , which implies ∆v = T ∗Tv+TT ∗v ∈ D(T ) and hence, since RanT ⊂ kerT ,
T ∗Tv ∈ D(T ) . In particular, one has Tv ∈ D(TT ∗) , and hence Tv ∈ D(∆) , and

(z −∆)Tv = zTv − TT ∗Tv = T (z −∆)v = Tu and then Tv = (z −∆)−1Tu ,

that is precisely the first relation in (155).

An easy consequence of (155) is the following: for any eigenvalue λ of ∆ and associated eigen-
vector u ∈ D(∆) , we have Tu ∈ D(∆) and T ∗u ∈ D(∆) , with

T ∆u = ∆T u = λT u and T ∗∆u = ∆T ∗ u = λT ∗ u (156)

Note that if in addition λ 6= 0 , one element among Tu, T ∗u is nonzero (since in this case
u /∈ ker∆ = kerT ∩ kerT ∗).
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Corollary A.2. Assume the hypotheses of Proposition A.1 and define ∆ := TT ∗+T ∗T as there.
The following orthogonal decompositions then hold:

H = RanT
⊥
⊕ RanT ∗ ⊥

⊕ ker∆ and, for T = T or T = T ∗ , kerT = RanT
⊥
⊕ ker∆ .

In particular, the operators T and T ∗ have closed ranges and

kerT/RanT ≃ kerT ∗/RanT ∗ ≃ ker∆ .

Proof. This result is the statement of [GMM, Proposition 2.9] and is an easy consequence of

Proposition A.1. First, since Ran(T + T ∗) =
(
kerT ∩ kerT ∗)⊥ = (ker∆)⊥ according to Propo-

sition A.1, we deduce the inclusions (since T and T ∗ are closed),

RanT +RanT ∗ ⊃ (ker∆)⊥ = RanT + RanT ∗ ⊃ RanT +RanT ∗ .

The linear space RanT +RanT ∗ is then closed in H and, owing to T 2 = 0 , this sum is moreover
orthogonal. The spaces RanT and RanT ∗ are consequently closed and

H = (ker∆)⊥
⊥
⊕ ker∆ = RanT

⊥
⊕ RanT ∗ ⊥

⊕ ker∆ .

Furthermore, the inclusion kerT ⊃ RanT ⊕⊥ ker∆ is clear, owing again to T 2 = 0 . To prove
the reverse inclusion, just notice that any v ∈ kerT writes as the sum v = u0 + Tu1 + T ∗u2 ,
where u0 ∈ ker∆ , u1 ∈ D(T ) , and u2 ∈ D(T ∗) . It follows that T ∗u2 ∈ D(T ) and TT ∗u2 = 0 ,
which implies T ∗u2 = 0 (by taking the scalar product with u2) and then v = u0 + Tu1 ∈
RanT ⊕⊥ ker∆ .
Lastly, the relation kerT ∗ = RanT ∗⊕⊥ ker∆ follows by applying the relation kerT = RanT ⊕⊥ ker∆
with T replaced by T ∗ , which satisfies RanT ∗ ⊂ kerT ∗ and T ∗∗ = T .

B Persistent cohomology and bar codes

B.1 A sheaf theoretic presentation

Let f be a C∞ function on the compact manifold M having finitely many critical values (but we
do not assume f is a Morse function). We shall define its bar code following the sheaf theoretic
presentation of [KaSc].

The following assumption on f which is weaker than Hypothesis 1.2 allows us to use this
construction in a low regularity setting. We keep the notation of Definition 1.1

f t = {x ∈M , f(x) < t} and f≤t = {x ∈M , f(x) ≤ t} .

Hypothesis B.1. The function f : M → R is continuous and there exist finitely many values
min f = c1 < . . . < cNf = max f with the following property: For any n ∈ {1, . . . , Nf − 1} and

all a < b ∈]cn, cn+1[ , f
≤a is a deformation retract of f≤b . The values c1, . . . , cNf are called

“critical values” of f .

We shall need the following

Lemma B.2. With the assumptions of Hypothesis B.1, we the space H∗(f b, fa) is finite dimen-
sional.

Proof. It is enough to prove that if t is in some ]cj , cj+1[ , then H∗(f≤t) is finite dimensional.
The general case follows by applying the long exact sequence of the pair (f≤b, f≤a) . Now let ε
be small enough, g a smooth function such that ‖g − f‖ ≤ ε . Then the inclusions

f≤t ⊂ g≤t+ε ⊂ f≤t+2ε
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hold true and for ε small enough,

f≤t−2ε ⊂ f≤t ⊂ f≤t+2ε

are homotopy equivalences. Notice that g being smooth and t + ε being a regular value for ε
generic , the cohomologies H∗(gt+ε) are finite dimensional, and we have maps

H∗(f≤t+2ε) −→ H∗(g≤t+ε) −→ H∗(f≤t)

but the composition of the above two arrows must be an isomorphism, and it factors through a
finite dimensional space, therefore H∗(f≤t) is finite dimensional and we have a uniform bound
for t in ]cj , cj+1[ .

By using the deformation along the gradient flow away from the “critical values” c1, . . . , cNf ,
Hypothesis B.1 is obviously true when f satisfies Hypothesis 1.2. It is also true for a general
Lipschitz function satisfying Hypothesis 1.6 as mentioned in Subsection 8.3.1. It implies that for
any a, b 6∈

{
c1, . . . , cNf

}
, a < b , the relative homology groups (K-vector spaces) H∗(f≤b, f≤a;K)

are finite dimensional and change only when a or b passes a “critical value”, c1, . . . , cNf .
For the introduction of a persistent sheaf on R , we need to consider all the sublevel sets, and
only at the end, do we restrict our attention to the relative cohomology groups H∗(f b, fa;K)
with a < b , a, b 6∈

{
c1, . . . , cNf

}
.

In order to use standard results of sheaf theory it is better to work with the closed sublevel
set f≤t for a general t ∈ R which may be a “critical value”.
For a field K , KM denotes the locally constant sheaf on M and we consider a c-soft injective
resolution

0 // KM // L0 // L1 // . . . ,

c-soft meaning that the restriction morphism Γ(M ;Lq)→ Γ(K;Lq) is surjective for any compact
subset K ⊂ M and any q ∈ N . A bounded c-soft resolution ending with LdimM → 0 exists
because M is a compact manifold.
Such a resolution can be obtained by introducing the canonical injective resolution or the sheaf
of K-valued Alexander-Spanier cochains on M . When K = R or C we can use the de Rham
resolution

0 // KM // C∞(M ;K)
d // C∞(M ; Λ1T ∗M)

d // . . . .

showing that KM is quasi-isomorphic to the de Rham complex

0 // C∞(M ;K)
d // C∞(M ; Λ1T ∗M)

d // . . . .

and the homology groups of KM , denoted Hi(M ;K) , are obtained by computing the homology
of the complex L• .
For any locally closed subset (i.e. the intersection of a closed and an open set) A , LA is c-soft.
When A and B are closed, A ⊂ B , the short exact sequence

0 // L•B\A
// L•B // L•A // 0

leads to the long exact sequence

· · · // H∗
c (B \A,L•) // H∗(B,L•) // H∗(A,L•) // H∗+1

c (B \A,L•) // · · ·

With our choice of L• , this says

· · · // H∗
c (B \A,K) // H∗(B,K) // H∗(A,K) // H∗+1

c (B \A,K) // · · ·
(157)
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when A is a closed subspace of M . We have just summarized Godement’s arguments for Theo-
rem 4.10.1 of [God] defining the long exact sequence associated to a closed subset. For general
values a < b in R , the relative cohomology groups H∗(f≤b, f≤a;K) can be understood in terms
of the cohomology with compact support in {x ∈M,a < f(x) ≤ b} . Under Hypothesis B.1,
H∗(f≤a−ε′ ,K) ∼ H∗(f≤a−ε,K) for any ε, ε′ > 0 small enough, the Mittag-Leffler condition (see
[KaScBook]-chap I) is satisfied and the cohomology groups of open sublevel sets are given by
the projective limits H∗(fa;K) = lim←−

ε→0+

H∗(f≤a−ε;K) ∼ H∗(f≤a−ε0 ,K) for ε0 > 0 small enough .

Persistent cohomology is introduced in this way in [KaSc] (we refer the reader to [CaZo][EdHa][LSV]
for other presentations) via the direct image functor Rp∗ , in the derived category, applied to
the locally constant sheaf KΓ+

f
on Γ+

f = {(x, t) ∈M × R, f(x) ≤ t} where p : M × R → (R, γ)

is given by p(x, t) = t . The notation (R, γ) means that R is endowed with the non-Hausdorff
γ-topology for which open (resp. closed) sets are ]−∞, t[ (resp. [t,+∞[), t ∈ R . Note that here
we do not need to consider the values ±∞ because M is compact.
So we set P = Rp∗KΓ+

f
. For a γ-open set ] −∞, t[ the set of sections Γ(] −∞, t[;P) is quasi-

isomorphic to the de Rham complex

0 // C∞(f t;K)
d // C∞(f t; Λ1T ∗M)

d // . . . ,when K = R or C ,

while the stalk at t ∈ R , Pt = lim−→
t′>t

Γ(]−∞, t′[;P) is quasi-isomorphic to the de Rham complex

of f≤t . With the γ-topology on R an example of a locally constant sheaf is K[a,b[ , −∞ < a <
b ≤ +∞ with

Hom(K[a,b[;K[c,d[) =

{
K if a ≤ c < b ≤ d
0 else

Under Hypothesis B.1, the cohomology H∗(f<t;K) is finite dimensional and locally constant
on R \

{
c1, . . . , cNf

}
. Therefore the sheaf P is an R-constructible sheaf of K-vector spaces.

By applying results of Crawley-Boevey in [Cra] (see also Guillermou in [Gui]), Kashiwara and
Schapira show in [KaSc] that

P ∼
dimM
⊕
p=0

⊕
α∈A(p)

K
[a

(p)
α ,b

(p+1)
α [

[p] , −∞ < a(p)α < b(p+1)
α ≤ +∞ .

As pointed out in [KaSc] this equivalence has to be understood as an equivalence of the objects

in the bounded derived category, for Ext1(R[0,+∞[,R]−∞,0]) = R . This subtlety has no conse-
quence as long as we focus on those objects which are the Hj(f<t,R) .
Because the sheaf is locally constant inR\

{
c1, . . . , cNf

}
, the endpoints aα belong to

{
c1, . . . , cNf

}

and the endpoints bα to
{
c2, . . . , cNf ,+∞

}
. The reason why we put the exponent (p+1) for bα

will become clear below. When we allow aα = bα the finite cardinal of A can be augmented
arbitrarily by adding [aα, bα[= ∅ , K∅ = 0 , with bα = aα .

Remember that when F is a sheaf on the topological space X and Z is locally closed, FZ is
the sheaf on X characterized by {

FZ
∣∣
Z
= F

∣∣
Z

FZ
∣∣
X\Z = 0

and when Z is closed one has the exact sequence

0 // FX\Z // F // FZ // 0 .
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Applied to X = (R, γ) and F = P ∼ ⊕
α∈A

K[aα,bα[ we obtain

P[t0,+∞[ ∼ ⊕
α∈A,t0<bα

K[max(aα,t0),bα[ ,

P]−∞,t0[ ∼ ⊕
α∈A,bα≤t0

K[aα,bα[ ,

P[a,b[ ∼ ⊕
α∈A,a<bα≤b

K[max(a,aα),bα[ .

and the obvious graded analogous result holds. From the long exact sequence (157) written

··· // H(p−1)(f≤t) // H(p−1)(f≤a) // H(p)
c (f≤t\f≤a) // H(p)(f≤t) // H(p)(f≤a) // ···

and because we are working with K-vector spaces we obtain

P(a)(p)
∣∣
t
∼ ker[H(p)(f≤t;K)→ H(p)(f≤a;K)]⊕ coker[H(p−1)(f≤t;K)→ H(p−1)(f≤a;K)] ,

or
P(a)(p) ∼ ker(P(p)

[a,+∞[ → P(p)
a )⊕ coker(P(p−1)

[a,+∞[ → P(p−1)
a ) .

Using P[a,+∞[ ∼ ⊕α∈A,a<bα K[max(aα,a),bα[ , we deduce

ker(P(p)
[a,+∞[ → P(p)

a ) ∼ ⊕
α∈A(p),a<a

(p)
α

K
[a

(p)
α ,b

(p+1)
α [

coker(P(p−1)
[a,+∞[ → P(p−1)

a ) ∼ ⊕
α∈A(p−1),a

(p−1)
α ≤a<b(p)α <+∞

K
[b

(p)
α ,+∞[

.

We obtain

H(p)
c (f≤b \ f≤a;K) ∼

(
⊕

α∈A(p),a<a
(p)
α ≤b<b(p+1)

α

K

)⊕(
⊕

α∈A(p−1),a
(p−1)
α ≤a<b(p)α ≤b

K

)
.

When a, b do not belong to
{
c1, . . . , cNf

}
, the inequalities in the sums can be replaced by strict

inequalities and

H(p)(f b, fa;K) ∼
(

⊕
α∈A(p),a<a

(p)
α <b<b

(p+1)
α

K

)⊕(
⊕

α∈A(p−1),a
(p−1)
α <a<b

(p)
α <b

K

)
.

B.2 Trivialized complex

We now establish the relationship with the bar codes used in [LNV] which was inspired by
Barannikov’s presentation of Morse theory in [Bar] (see also [LSV]).

With the definitions of [LNV], the equality ∂Bb = a holds true for two critical values a, b if
and only the map

Hp(f b+ε, fa−ε) −→ Hp(f≤a+ε, fa−ε)

vanishes, while
Hp(f b−ε, fa−ε) −→ Hp(f≤a+ε, fa−ε)

is non-zero. But we have H∗(fy, fx) = H∗([x, y[,P) , where P = Rp∗KΓ+
f
and by assumption

P =
dimM
⊕
p=0

⊕
α∈A(p)

K
[a

(p)
α ,b

(p+1)
α [

[p] , −∞ < a(p)α < b(p+1)
α ≤ +∞ .

so that

H∗([x, y[,P) =
dimM
⊕
p=0

⊕
α∈A(p)

H∗([x, y[,K
[a

(p)
α ,b

(p+1)
α [

[p]) , −∞ < a(p)α < b(p+1)
α ≤ +∞ .

140



so it is enough to consider the case of P = K
[a

(p)
α ,b

(p+1)
α [

[p] and then it is obvious that ∂Bb
(p+1)
α =

a
(p)
α . We thus proved

Proposition B.3. If
P = Rp∗KΓ+

f

and
∂Bb

(p+1)
α = apα, ∂Ba

(p)
α = 0

With the persistent cohomology described above, we are now able to extend it under the
general Hypothesis B.1 and we fix the corresponding notations.
The bar code B(f) = ([aα, bα[)α∈A associated with f with aα < bα , aα ∈

{
c1, . . . , cNf

}
, bα ∈{

c2, . . . , cNf ,+∞
}
and graded according to B(p)(f) = ([a

(p)
α , b

(p+1)
α [)α∈A(p) is the one introduced

in the previous paragraph . We use the superscript ∗ when we do not want to specify (p) . When
a < b are not “critical values” we write

A∗(a, b) =
{
α ∈ A∗, [a∗α, b

∗+1
α [∩]a, b[ 6∈ {∅, ]a, b[}

}
,

A∗
c(a, b) =

{
α ∈ A∗(a, b), [a∗α, b

∗+1
α [∩]a, b[ relatively compact in ]a, b[

}
,

α ∈ A∗(a, b)⇔ a < a∗α < b or a < b∗+1
α < b ,

α ∈ A∗
c(a, b)⇔ a < a∗α < b∗+1

α < b .

In order to keep track of the possible multiplicities of the values aα and bα , we set

X ∗(a, b) = {(α, a∗α) , α ∈ A∗
c(a, b)}

Y∗(a, b) =
{
(α, b∗α), α ∈ A∗−1

c (a, b)
}

Z∗(a, b) = {(α, a∗α) , α ∈ A∗(a, b) \A∗
c(a, b) , a < aα < b}

⊔
{
(α, b∗α) , α ∈ A∗−1(a, b) \A∗−1

c (a, b), a < b∗α < b
}
,

J ∗(a, b) = X ∗(a, b) ⊔ Y∗(a, b) ⊔ Z∗(a, b) .

We now consider the complex defined on

KJ (a,b) =
dimM
⊕
p=0

KJ (p)(a,b) ∼ K2♯Ac(a,b)+♯(A(a,b)\Ac(a,b))

with natural basis (x ∈ X (a, b), y ∈ Y(a, b), z ∈ Z(a, b)) and with the differential dB defined by

dBx
(p) = y(p+1) if x(p) ∈ X (p)(a, b) , y(p+1) ∈ Y(p+1)(a, b) , p1(x) = α = p1(y) ,

dBy
(p) = 0 if y(p) ∈ Y(p)(a, b) ,

dBz
(p) = 0 if z(p) ∈ Z(p)(a, b) .

By construction, when −∞ < a < b < +∞ are not “critical values” of f ,

Hp(KJ (a,b),dB) = ⊕
z∈Z(p)(a,b)

Kz ∼
(

⊕
α∈A(p),a<a

(p)
α <b<b

(p+1)
α

K

)⊕(
⊕

α∈A(p−1),a
(p−1)
α <a<b

(p)
α <b

K

)
,

and the complex (KJ (a,b),dB) computes all the relative cohomology groups H∗(f b, fa;K) .
The sets X (a, b) , Y(a, b) , Ac(a, b) , play a role when we compute the positive exponentially small
eigenvalues of Witten Laplacians with Dirichlet boundary conditions on f−1({a}) and Neumann
boundary conditions on f−1({b}) .
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B.3 Stability theorem

The bar code associated with f is given by a family B(f) = ([aα, bα[)α∈A , now containing
possibly empty sets when aα = bα , with the equivalence ([aα, bα[)A ∼ ([cβ , dβ [)β∈B if there
is a bijection between j : {α ∈ A, aα < bα} → {β ∈ B, cβ < dβ} such that cj(α) = aα and
dj(α) = bα . Following [CEH] they can be represented as a family of points ((aα, bα))α∈A in
{(x, y) ∈ R× (R ∪ {+∞}), x ≤ y} , appearing with multiplicities, and the bottleneck distance
between two general bar codes BA = ([aα, bα[)α∈A and BB = ([cβ , dβ [)β∈B , where A and B can
be assumed with the same cardinal when we authorize aα = bα , cβ = dβ , is given by

dbot(BA,BB) = inf
j:A

bij→B

max
α∈A

max(|aα − cj(α)|, |bα − dj(α)|) ,

with the convention |(+∞) − (+∞)| = 0 . The stability theorem says that for two different
functions f, g onM which satisfy Hypothesis B.1, the bottleneck distance between the bar codes
B(f) and B(g) associated with f and g satisfies

dbot(B(f),B(g)) ≤ ‖f − g‖C0 .

It is proved in [KaSc] by using the convolution of sheaves. In the one-dimensional case and for
ε ≥ 0 we have K[−ε,ε] ∗K[a,b[ = K[a−ε,b−ε[ (in terms of constructible functions according to [Sch],
simply use 1[a,b[ = 1[a,+∞] − 1[b,+∞[ and 1[−ε,ε] ∗ 1[a,+∞[ = 1[a−ε,+∞[) and this convolution is
nothing but a translation by −ε on the real axis. Two R-constructible sheaves on (R, γ) , F,G

are said ε-isomorphic, F
ε∼ G , if there are morphisms i : K[−ε,ε] ∗F → G and j : K[−ε,ε] ∗G→ F

such that natural morphisms K[−2ε,2ε] ∗ F → F and K[−2ε,2ε] ∗G→ G are factored via

K[−2ε,2ε] ∗ F
K[−ε,ε]∗i→ K[−ε,ε] ∗G

j→ F

K[−2ε,2ε] ∗G
K[−ε,ε]∗j→ K[−ε,ε] ∗ F i→ G .

The bottleneck distance is then equal to

dbot(F,G) = inf
{
ε ≥ 0, F

ε∼ G
}
,

and coincides with dbot(BA,BB) after writing F ∼ ⊕α∈AK[aα,bα[ and G ∼ ⊕β∈B K[cβ,dβ [ .
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[HHS] F. Hérau, M. Hitrik, and J. Sjöstrand. Tunnel effect and symmetries for Kramers-Fokker-
Planck type operators. J. Inst. Math. Jussieu 10 (3), pp. 567–634 (2011).

[Hirs] M.W. Hirsch. Differential topology Graduate Text in Mathematics 33, Springer (1976).

[HKS] R. A. Holley, S. Kusuoka, and D. Stroock. Asymptotics of the spectral gap with ap-
plications to the theory of simulated annealing. Journal of functional analysis 83 (2),
pp. 333–347 (1989).

[Hiro] H. Hironaka. Subanalytic sets. Number Theory, Algebraic Geometry and Commutative
Algebra in honor of Y. Akizuki, Kimokuniya Publications (1973) pp 453–493.

[JMM] T. Jakab, I. Mitrea, and M. Mitrea. On the regularity of differential forms satisfying
mixed boundary conditions in a class of Lipschitz domains. Indiana Univ. Math. J. 58, no.
5, pp. 2043–2071 (2009).

[KaSc] M. Kashiwara, P. Schapira Persistent homology and microlocal sheaf theory
arXiv:1705.00955v5

[KaScBook] M. Kashiwara, P. Schapira Sheaves on Manifolds Grundlehren der Mathe-
matischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292,
Springer-Verlag (1990).

[Kra] H. Kramers. Brownian motion in a field of force and the diffusion model of chemical
reactions. Physica 7 (4), pp. 284–304 (1940).

[Lan] S. Lang. Fundamentals of Differential Geometry Graduate Texts in Mathematics 191,
Springer (1999).
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