Stochastic Online Optimization using Kalman Recursion - Archive ouverte HAL
Article Dans Une Revue Journal of Machine Learning Research Année : 2021

Stochastic Online Optimization using Kalman Recursion

Résumé

We study the Extended Kalman Filter in constant dynamics, offering a bayesian perspective of stochastic optimization. We obtain high probability bounds on the cumulative excess risk in an unconstrained setting. In order to avoid any projection step we propose a two-phase analysis. First, for linear and logistic regressions, we prove that the algorithm enters a local phase where the estimate stays in a small region around the optimum. We provide explicit bounds with high probability on this convergence time. Second, for generalized linear regressions, we provide a martingale analysis of the excess risk in the local phase, improving existing ones in bounded stochastic optimization. The EKF appears as a parameter-free online algorithm with O(d^2) cost per iteration that optimally solves some unconstrained optimization problems.
Fichier principal
Vignette du fichier
Stochastic_Kalman_Optimization.pdf (615.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02468701 , version 1 (07-02-2020)
hal-02468701 , version 2 (23-06-2020)

Identifiants

Citer

Joseph de Vilmarest, Olivier Wintenberger. Stochastic Online Optimization using Kalman Recursion. Journal of Machine Learning Research, 2021, 22, pp.1-55. ⟨10.48550/arXiv.2002.03636⟩. ⟨hal-02468701v2⟩
81 Consultations
95 Téléchargements

Altmetric

Partager

More