Stochastic Online Optimization using Kalman Recursion - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Stochastic Online Optimization using Kalman Recursion

Résumé

We study the Extended Kalman Filter in constant dynamics, offering a bayesian perspective of stochastic optimization. We obtain high probability bounds on the cumulative excess risk in an unconstrained setting. The unconstrained challenge is tackled through a two-phase analysis. First, for linear and logistic regressions, we prove that the algorithm enters a local phase where the estimate stays in a small region around the optimum. We provide explicit bounds with high probability on this convergence time. Second, for generalized linear regressions, we provide a martingale analysis of the excess risk in the local phase, improving existing ones in bounded stochastic optimization. The EKF appears as a parameter-free O(d^2) online algorithm that optimally solves some unconstrained optimization problems.
Fichier principal
Vignette du fichier
main_hal.pdf (416.13 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02468701 , version 1 (07-02-2020)
hal-02468701 , version 2 (23-06-2020)

Identifiants

Citer

Joseph de Vilmarest, Olivier Wintenberger. Stochastic Online Optimization using Kalman Recursion. 2020. ⟨hal-02468701v1⟩
81 Consultations
95 Téléchargements

Altmetric

Partager

More