3D global hydrodynamic stability analysis of a diffusion flame - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Fluid Dynamics Research Année : 2018

3D global hydrodynamic stability analysis of a diffusion flame

Résumé

This work investigates the three-dimensional global hydrodynamic stability of a diffusion flame. The low-Mach-number Navier–Stokes (LMN-NS) equations for reacting flows are solved together with a transport equation for the mixture fraction. A source term is added to the energy conservation equation to model the chemical heat release as a function of the Damköhler (Da) number and of the reaction rate, computed according to an Arrhenius law. The global stability analysis has been performed by a matrix-free time-stepper approach applied to the LMN-NS equations, using an Arnoldi method to compute the most unstable modes. Increasing the value of Da, direct numerical simulations show a transition from an oscillating unstable regime towards a stable one. In the unstable regime, stability analyses show two different flame behaviors: a highly unstable weak-flame and a typical diffusion flame. In the latter case, two different families of modes have been identified: the low-frequency most unstable one related to the premixing zone of the flame and a high-frequency stable branch representative of the Kelvin–Helmholtz instability of the diffusive rear region of the flame. The present three-dimensional stability analysis has been able to compute, for the first time, the eigenmodes responsible for the cellular structure of the flame.
Fichier principal
Vignette du fichier
DYNFLUID_FDR_2018_FARANO.pdf (2.45 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02454112 , version 1 (24-01-2020)

Identifiants

Citer

Mirko Farano, C Mancini, Pietro De Palma, Jean Christophe Robinet, Stefania Cherubini. 3D global hydrodynamic stability analysis of a diffusion flame. Fluid Dynamics Research, 2018, 50 (5), pp.051401. ⟨10.1088/1873-7005/aaaa94⟩. ⟨hal-02454112⟩
14 Consultations
77 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More