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Abstract
This work investigates the three-dimensional global hydrodynamic stability of
a diffusion flame. The low-Mach-number Navier–Stokes (LMN-NS) equations
for reacting flows are solved together with a transport equation for the mixture
fraction. A source term is added to the energy conservation equation to model
the chemical heat release as a function of the Damköhler (Da) number and of
the reaction rate, computed according to an Arrhenius law. The global stability
analysis has been performed by a matrix-free time-stepper approach applied to
the LMN-NS equations, using an Arnoldi method to compute the most
unstable modes. Increasing the value of Da, direct numerical simulations show
a transition from an oscillating unstable regime towards a stable one. In the
unstable regime, stability analyses show two different flame behaviors: a
highly unstable weak-flame and a typical diffusion flame. In the latter case,
two different families of modes have been identified: the low-frequency most
unstable one related to the premixing zone of the flame and a high-frequency
stable branch representative of the Kelvin–Helmholtz instability of the diffu-
sive rear region of the flame. The present three-dimensional stability analysis
has been able to compute, for the first time, the eigenmodes responsible for the
cellular structure of the flame.
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1. Introduction

Lifted flames are common in many engineering applications such as gas-turbine combustion
chambers, burners, and rocket engines. The flame does not anchor to the injector rim when the
flame propagation velocity in the upstream direction equals the flow velocity at some distance
from the inlet plane. The flame velocity depends on the characteristics of the fuel and of the
oxidizer and on their mixing process. In most gas-turbine combustion chambers, the lifting
distance depends also on the inlet flow swirl, which creates a recirculation region downstream
of the injector, anchoring the flame (Qadri et al 2015).

In the present work a non-swirling jet diffusion flame is considered. Such a flame has a typical
triple-flame structure with a lean branch and a rich branch in the base premixed region, which
anchor the diffusion part of the flame extending downstream along the stoichiometric surface.

The hydrodynamic stability of a jet diffusion flame has been recently studied by using
local (Nichols and Schmid 2008) and global (Qadri et al 2015) stability analysis, considering
an axisymmetric jet of fuel issuing in a large cylindrical domain.

A pocket of absolute instability (Nichols and Schmid 2008) at the injector exit (wave-
maker) produces oscillations which are convected and amplified downstream. The hydro-
dynamic stability properties of the flow upstream of the flame base is different from that
downstream of it. The upstream part is more unstable and can influence the behavior of the
entire flow (Qadri et al 2015). These instabilities may become dangerous when coupled with
thermo-acoustic perturbations. For small lift-off height, for example in H2/O2 rocket engines
where the flame speed is very high, the pocket of absolute instability reduces and does not
support unstable global modes, so that the entire flow may be stabilized.

Nichols and Schmid (2008) have shown that two peak-frequency ranges for the oscil-
lations exist: a high frequency range, 0.25<St<0.3, and a low frequency range, St<0.05,
St being the Strouhal number. They showed that the high-frequency oscillations are linked to
the absolutely unstable premixing region, whereas they postulated that the low-frequency
oscillations were due to nonlinear interactions among resonant modes.

The local stability analysis is not fully suited for this kind of application since the heat
release modifies sharply the stability properties of the flow. For this reason, Qadri et al (2015)
performed an axisymmetric stability analysis using the same test case. They have shown that
two families of global mode exist, called mode A and B. Mode A is linked to high-frequency
oscillations and its wavemaker is located in the shear layer in the premixing region. Mode B
has global frequency close to the low-frequency oscillations computed by Nichols and
Schmid (2008), and its wavemaker is located in the outer part of the shear layer of the flame.

The approach employed by Qadri et al (2015) is based on a linearization of the differ-
ential operator governing the phenomenon and on the time-stepper approach proposed by
Edwards et al (1994) and Bagheri et al (2009) to compute the eigenpairs of the exponential
propagator. Such an approach allows one to avoid the explicit storage of the linearized
operator and a direct computation of its eigenvalues; this is needed especially for computa-
tions in three space dimensions, where the number of degrees of freedom can be too large.

In the present work, we extend this analysis to three space dimensions, employing a time-
stepper approach and also avoiding the linearization procedure by adopting a numerical eva-
luation of the exponential propagator. In this way, we provide a more flexible approach, which
can be applied straightforwardly to any complex system of conservation equations governing
the dynamics of a reacting flow. Such a method was validated by Mancini et al (2017) versus
the results of Qadri et al (2015), using the test case proposed by Nichols and Schmid (2008).

As a suitable three-dimensional test case, a gaseous diffusion flame has been considered,
for which experimental data show that non axisymmetric phenomena, such as cellular
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instabilities, may exist. In particular, for relatively low Lewis and Damköhler numbers, the
occurrence of cellularity has been observed in Wolfhard-Parker burner flames (Frouzakis
et al 2005). Cell formation includes uniformly rotating or stationary ring(s) or cells (Gunaratne
et al 1996) and ratcheting or chaotic motions (Gorman et al 1996). Frouzakis et al (2005)
performed direct numerical simulations (DNSs) and local linear stability analysis, trying to
replicate and explaining the experimental observations of Lo Jacono et al (2003). In the present
work, we employ the mixture fraction model and the time-stepper approach validated in a
previous work (Mancini et al 2017) to perform a three-dimensional global stability analysis of a
jet diffusion flame inspired to that experimentally tested by Lo Jacono et al (2003).

2. Problem formulation

The present work provides a hydrodynamic stability analysis of jet diffusion flames. The flow
is modeled by the low-Mach-number Navier–Stokes (NS) equations, neglecting the effect of
acoustic waves (Tomboulides et al 1997). These equations are coupled with a simple com-
bustion model and a closing equation to link density, ρ, temperature, T, and mixture fraction,
Z (Nichols and Schmid 2008):
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where p indicates the pressure, u is the velocity vector, and u u Tt =  +  -[ ( ) ]
Iu2 3 ( · ) . Using equations (3)–(5), the mass conservation equation (1) is recast in the

following form:
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The concentration of fuel and oxidizer is described using the mixture fraction parameter
(Peters 2000),
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where Y indicates concentrations of fuel and oxidizer while Y0 indicates the corresponding
inlet values and s is the reaction stoichiometric ratio. The flow variables have been non-
dimensionalized by the jet diameter at inlet, d, inlet fuel jet velocity, uj, and oxidizer density,
ρo. The non-dimensional temperature is
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where T* is the dimensional temperature [K], Tf is the dimensional adiabatic flame
temperature [K] and T0 is the dimensional ambient oxidizer temperature [K]. S1 represents the
ratio of the oxidizer density, ρo, to the fuel density, ρj; whereas, S2 is the the ratio of the
adiabatic flame temperature to the oxidizer temperature. In equation (4) the source term, Da
ρ3ω, is the non-dimensional rate of enthalpy release per unit volume. In particular, the
following simple Arrhenius law, employed by Nichols and Schmid (2008) and Qadri et al
(2015), has been used for the reaction rate,
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that includes as chemistry parameters: the equilibrium constant κ; the mass stoichiometric
ratio s; the heat release parameter T T T ;f f0a = -( ) the Zeldovich number, T Ta fb a= ,
where Ta is the dimensional activation temperature of the considered reaction. Re, Pr and Sc
indicate the Reynolds, Prandtl and Schmidt numbers, respectively. Finally, Da is the
Damköhler number,
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where Δh is the enthalpy change due to combustion, cp the specific heat at constant pressure
and A the pre-exponential factor. This parameter is very important in this case of study: it
specifies the ratio of the rate of reaction to the rate of fluid convection and controls the
transition from stable to unstable flame.

2.1. Global stability analysis

Linear stability analysis allows one to investigate the asymptotic time evolution of global
infinitesimal perturbations in the vicinity of a given fixed point of the governing equations.
We recast these equations in the following compact form,

t
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where Zq u x , , T T= ( ( ) ) , x is the position vector, and  is the nonlinear partial differential
operator projected onto a vector space satisfying equation (6) (the density is not included
since it is computed from the known values of the mixture fraction and the temperature by
using equation (5)). The dynamics of an infinitesimal perturbation tq x,¢( ) is governed by the
following linearized equation (with respect to a given base flow qb),
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where  is the linearized operator. Since, especially for computations in three space
dimensions, the number of degrees of freedom can be too large to enable explicit storage of
matrix  and a direct computation of its eigenvalues, the time-stepper approach proposed by
Edwards et al (1994) and Bagheri et al (2009) is here employed, extending the algorithm
developed by Loiseau et al (2014) using the code Nek5000. Given an initial state q 0¢ and a
time increment Δt, the solution of the linearized equation is of the form tq Mq 0¢ D = ¢( ) ,
where M e t= D is the exponential propagator. The eigenvalues λ=σ+iω and the
eigenvectors Q of  are related to those of M, namely (Λ, V), by the following equations,
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Therefore, one can compute the eigenpairs of M and easily recover those of  by the latter
equations; the advantage of this procedure is that one does not need to compute  since the
action of the exponential propagator onto a generic vector q 0¢ can be approximated by
integrating the linearized NS equations from t=0 to t=Δt with initial solution q 0¢ . This
allows one to compute Λ and V by using an efficient matrix-free Arnoldi iteration. In the
present work, we also avoid the linearization of the NS equations by computing the effect of
the linear operator employing a first order finite-difference approximation (Mack et al 2008,
Mack and Schmid 2010) using the nonlinear operator N acting on a small perturbation
superposed to the base flow solution, namely,

Mq N q q N q , 14b b0 0 ¢ » + ¢ -[ ( ) ( )] ( )

where the nonlinear NS equations are integrated from t=0 to t=Δt and ò is a small
parameter equal to 10−7 as proposed by Gibson et al (2008) (see the appendix for further
details about the numerical procedure). For the initial Arnoldi iteration, q 0¢ is chosen as a
random unit norm vector (Loiseau et al 2014).

3. Global stability of a 3D cellular jet diffusion flame

3.1. Flow configuration

We choose as flow configuration for our investigation the one used in the experimental
analysis of Lo Jacono et al (2003), which was performed on circular jet diffusion flames
burning CO2-diluted hydrogen and oxygen at the EPFL jet flame facility. The gaseous fuel
passed through a muffler, a settling chamber with honeycomb straighteners and screens, and
finally through a contoured axisymmetric contraction with an area ratio of 100:1.

The diameter of the circular fuel nozzle was D=0.75 cm; a uniform co-flow of a
H2–CO2 mixture was introduced through a porous plate of 7.5 cm diameter surrounding the
fuel nozzle. The uniform fuel velocity was uF=76 cm s−1, and the co-flowing oxidizer
stream velocity, uO , was fixed at 4 cm s−1. All reactants have T0=300 K.

The parameter space near the extinction limit was investigated by fixing the fuel com-
position (H2–CO2 mixture) and then systematically lowering the O2 concentration in the co-
flowing O2–CO2 stream. The O2 concentration was lowered in decrements of less than 0.1%
(by volume) until a transition to cellular flames was first observed, and then further until the
extinction limit was reached. The conditions for these near-extinction experiments covered a
range of reactant Lewis numbers (Sc/Pr), based on the overall fuel-oxygen mixture at 300 K,
of 1.1–1.2 for oxygen and 0.25–0.29 for hydrogen.

Several types of cellular modes were observed for a fixed jet fuel composition and
various oxygen concentrations above the extinction limit of 23.2% O2. The cellular state can
be classified by the number of cells and by its rotating or stationary condition. The experi-
ments show that cellular flames occur near the extinction limit; furthermore, several cellular
states were found to co-exist and the particular state realized was determined by the initial
conditions and the path adopted to reach the experimental condition. The number of cells in
the preferred states observed was found to decrease with decreasing oxygen concentration
(Damköhler number).
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3.2. Simulation assumptions

The above experimental set-up has been approximated by a simplified computational model
in which we have assumed a unique value of the Lewis number equal to 1 and a fuel stream of
pure H2. The fuel enters the domain through a circular nozzle of diameter d at (x, y, z)=(0, 0,
0) with a hyperbolic tangent profile having maximum velocity uj, and density ρj. The fuel jet
is surrounded by an oxidizer co-flow of pure O2 with velocity uc=4/76. d and uj are chosen
as reference length and velocity, respectively. The computational domain is a block with
dimensions Lx=10, Ly=5, and Lz=5, x, y, and z being the streamwise, vertical, and
spanwise directions, respectively.

The nondimensional parameters in the governing equations are the following: Re = 500,
S1=16, S2=10.67, Pr=Sc=1, κ=0.01, α=0.906 25, β=2.353, s=8 (corresp-
onding to a stoichiometric mixture fraction Zst=0.111).

In the present work, because of the simple combustion model, we cannot reproduce the
same test performed by Frouzakis et al (2005). Therefore, we control the transition from
stable to unstable regime varying the value of the Damköhler number and we perform a
qualitative analysis concerning the phenomenology of extinction of the flame.

The open-source code Nek5000 (Fischer et al 2008) is employed, based on a spectral-
element method with Galerkin approximation. The solution is expanded within the spectral
elements using Legendre polynomials of order N=8 at the Gauss–Lobatto–Legendre
quadrature points. The computational domain is discretized by 30, 15, and 15 spectral ele-
ments in the x, y, and z direction, respectively. The resulting grid has 6750 3D-hexahedric
elements, about three times more than those used by Frouzakis et al (2005). For time dis-
cretization, a second-order-accurate backward differentiation has been employed (Fischer
et al 2008). The nondimensional time step is equal to 0.0025.

Concerning the boundary condition, at inlet points, Michalke’s profile number two
(Michalke 1984) has been employed,
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where r y z2 2= + . The ratio of the jet radius d/2 to momentum thickness of the shear
layer θ is equal to d/2θ=20. At the lateral boundaries, T=0, Z=0, and the normal
derivative of the velocity components and pressure are set to zero. At the outlet boundary,
outflow conditions have been employed for the velocity, whereas temperature and mixture
fraction have zero gradient in the normal direction to the boundary:
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Finally, p x 0¶ ¶ = has been imposed at inlet and outlet points.
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3.3. Discussion of the DNS results

We start the investigation about the cellular flame by looking for the range of Damköhler
number in which blow-off of the flame occurs. For sufficiently large inlet jet velocity uj, the
flame stabilizes at a lift-off height H defined as the minimum axial distance from the nozzle at
which the temperature is T>0.5 for any radius (Nichols and Schmid 2008).

Figure 1 shows seven snapshots of jet flames obtained from DNS. We found that
instabilities occur for Da3 10 4 10 ;5 5´ < < ´ increasing the Damköhler number, the
flame shifts towards the nozzle and tends to stabilize. The predicted lift-off heights are
compatible with flame profiles provided by Frouzakis et al (2005). For the sake of com-
pleteness, also cases at Da=1.5×105 and Da=105 are shown; for the latter case we had
the flame almost lifted out of the domain. At Da=1.5×105, Da=2×105 and
Da=3×105, the flow reaches a quasi-periodic unstable condition. One can see in the
center part of the domain, which is rich of fuel, the development of a train of Kelvin–
Helmholtz type vortices which convect downstream. In addition we observe some waves on
the lean branch of the flame which arise in the premixed zone. At Da=4×105,
Da=5×105 and Da=6×105, the flow evolves towards a steady-state solution, pro-
viding a flame profile stable and aligned with the flow.

The structure of the flame was analyzed also by extracting snapshots of the temperature
contours in crosswise sections, as shown in figure 2. For low values of Da, several transient
cellular structures are observed. It is noteworthy that this phenomenon can be observed only
in a three-dimensional simulation, such as that presented here.

DNS shows that, under the assumptions described above, all flames achieve a 4-cell
structure, sometimes evolving through a transient 8-cell configuration, as shown by
figure 2(a). This result can be explained by remembering that the Lewis number is equal to
one for all species, whereas, in the computation of Frouzakis et al (2005) it was possible to set
different values of the Lewis number for each species. The experiments (Lo Jacono
et al 2003) clearly demonstrated that this parameter affects the occurrence of cellularity in
flames.

Table 1 shows the lift-off height obtained from the computations. For Da=105,
Da=1.5×105, Da=2.0×105 and Da=3.0×105, after the initial transient, the flame
tip oscillates around a mean value of the lift-off height, Hm. A fast Fourier transform (FFT)
analysis of such an oscillating signal has been performed to compute the Strouhal number,
St=f1d / uj, based on the frequency of the first peak of the FFT.

For these unstable cases, the selective frequency damping (SFD) technique (Åkervik
et al 2006) has been employed to compute a steady base solution. The low-pass filter fre-
quency for the SFD simulation has been set according to the Strouhal number, so that global
fluctuations are damped and the solution is driven to steady state. Hs is defined as the lift-off
height obtained using the SFD technique (Åkervik et al 2006); at this purpose, the iterative
procedure is stopped when residuals are smaller than 10−6. For the stable cases, the values of
Hs and Hm are coincident.

The typical base-flow flame structure obtained using the SFD computation is shown in
figure 3: Kelvin–Helmholtz vortices and lean branch waves are damped. For different
Damkhöhler numbers only Hs varies, as one can see in table 1, the steady-state solution being
characterized by a 4-cell structure.

For Da=105 and Da=1.5×105, the DNS shows an unstable flame with values of
temperature and reaction rate similar to other cases with higher Damköhler number. However,
applying the SFD technique, the base flow for these low values of Da reveals a weak flame
structure (Bucci et al 2016). This states are characterized by very low values of temperature
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Figure 1. Snapshots at t=200 of jet flames obtained by seven DNSs with:
Da 1 10 , 1.5 10 , 2 10 , 3 10 , 4 10 , 5 10 , 6 105 5 5 5 5 5 5= ´ ´ ´ ´ ´ ´ ´ (top to
bottom). Contours of non-dimensional temperature in a y=0 plane. Scales are from
white (1× 0−2) to red (0.98).
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Figure 2. Non-dimensional temperature contours in a cross section showing the
computed cellular structures: (a) Da=105, x=4; (b) Da=1.5×105, x=1;
(c) Da=2×105, x=1.15; (d) Da=3×105, x = 1.1. Scales are from blue (low) to
red (high).

Table 1. Strouhal number, lift-off height (Hs) computed by the SFD technique, and
average lift-off height (Hm) computed by DNS, for several values of the Damköhler
number.

Da St Hs Hm

1.0×105 0.180 weak-flame 7.151
1.5×105 0.196 weak-flame 1.405
2.0×105 0.208 1.195 1.157
3.0×105 0.214 1.082 1.123
4.0×105 stable 0.735 0.735
5.0×105 stable 0.393 0.393
6.0×105 stable 0.382 0.382
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and heat release rate and represent often not sustainable flame configurations, being strongly
unstable.

Figure 4 shows the temperature field and the heat release rate field computed by SFD:
one can notice that the flame structure is completely different with respect to that computed
by the DNS and shown in figure 1.

3.4. Global stability: weak flame cases

Firstly, two weak flame cases will be analyzed, obtained for Da=105 and 1.5×105. In the
related spectra, shown in figure 5, among the modes that are well-converged, we find four
isolated unstable modes for each value of Da.

These results explain the strong unstable nature of weak flames. The eigenvalues
obtained for these two cases are listed in table 2. One can notice that in this regime the
Damköhler number does not strongly affect the eigenvalue growth rates and frequencies. For
both values of Da, the fourth eigenvalue has a frequency close to the λi,DNS calculated from
the DNS. Concerning the associated eigenvectors, they all have a similar shape as shown in
figures 6 and 7. The real components of these eigenvectors reveal that the instability zone is in
the diffusive part of the flame, which is typical of weak flame cases (in agreement with Bucci
et al (2016)) with a strong diffusion of production rate and radial development of the
eigenmodes’ shape.

Figure 3. Base flow of cellular jet flame: non-dimensional temperature field in the
longitudinal section (a) and in the crosswise section at x=1.3 (b) for Da=2.0×105.
Same temperature scale as figure 1.
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Figure 4. Base flow of cellular jet flame: temperature field (a) and ln(ω) field (b) for the
weak-flame condition at Da=1.5×105. Same temperature scale as figure 1.

Figure 5. The least-stable part of the global eigenvalue spectra for the weak flame cases
at Da=105 (circles) and Da=1.5×105 (crosses).

Table 2. Frequency and growth rate of the unstable eigenvalues at Da=105 and
Da=1.5×105 compared to frequencies obtained from Fourier transform of the lift-
off height displacement signals.

Da=105 λi,DNS Da=1.5×105 λi,DNS

0.141+0.734i 0.139+0.732i
0.065+0.824i 0.066+0.817i
0.051+0.630i 0.039+0.646i
0.014+0.953i 1.13 0.017+0.964i 1.23
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3.5. Global stability: cellular flame cases

Figure 8(a) shows the eigenvalue spectra forDa=2×105, Da=3×105 and Da=4×105.
Varying the Damköhler number in this range, a transition between unstable and stable flame was
found. In fact, for Da=4×105 all modes drop under the stability limit, confirming the results
of the DNS. Amongst the modes that are well-converged, we find an isolated low-frequency
unstable mode (mode A), and a set of stable convective high-frequency modes: these modes
correspond to shear vortical structures and only the most unstable of these will be shown in
detail (mode B). Mode A has lower frequency than mode B; moreover, the frequencies of both
modes increase with Da, the vortical shape of the modes being almost unchanged. It is worth to
notice that the modes here labeled as A and B have not a direct correspondence with the modes
found by Nichols and Schmid (2008), since the test case considered in the present work is quite
different from that used by Nichols and Schmid (2008) both for the chemical and fluid para-
meters, so that a direct comparison of the results is not possible.

Table 3 provides the eigenvalues for each Damköhler number. A good matching is found
between Im(λ) of mode A and λi,DNS: this indicates that the sampling employed in the
algorithm is correct and validates our approach.

Figure 6. Isosurfaces of the non-dimensional temperature T (a) and of the mixture
fraction Z (b) for the real component of the most unstable weak-flame global mode at
Da=1.5×105. Negative (blue) and positive (red) surfaces are shown.

Figure 7. Contours of the non-dimensional temperature T (a) and of the mixture
fraction Z (b) in a longitudinal plane for the real component of the most unstable weak-
flame global mode at Da=1.5×105. Negative (blue) and positive (red) contours are
shown.
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Figure 8(b) shows the eigenspectra of the stable cases; the previously shown unstable
modes, such as mode A, have negative growth rate despite their imaginary part remains about
the same. Stable behavior is coherent with DNSs, in which the residual reduces in time in
absence of SFD. On the other hand, modes B have higher frequency when increasing the
Damköhler number.

Concerning the shape of the eigenvectors, small modifications are observed varying the
Damköhler number; therefore, only those corresponding to Da=6×105 are provided. For
the first of these modes, labeled mode A, real components, shown in figures 9 and 10, indicate
that the mode shape is dominant in the premixing zone between the inlet and the flame base.
Thus, mode A appears to correspond to the pocket of instability upstream of the flame base.
Temperature distribution shows two zones marked by different wave lengths: the front part,
where the maximum amplitudes of the eigenmode are located, is characterized by oscillations
having smaller wave length; whereas, the downstream oscillations, similar to the Kelvin–
Helmholtz vortices observed by DNS, are characterized by a higher wave length.

However, even if both instability mechanisms are involved for mode A, the effect of the
wavemaker in the premixing zone is dominant. Figure 9 shows that the present global stability
analysis allows one to predict the three-dimensional structure of these modes, which are char-
acterized by different azimuthal wave numbers along the axis of the flame. In fact, it appears that,
for mode A, the azimuthal wave number tends to zero towards the tip of the flame. These figures
also show that the axial wavenumber is varying along the streamwise direction. Moreover, both
figures 9 and 10 show the presence of an instability front in the premixed region aligned with the
lean branch of the triple flame. Finally, figures 11(a) and (b) provide the temperature distribution

Figure 8. Global eigenvalue spectra for cellular flames at (a) Da=2×105,
Da=3×105 and Da=4×105; (b) Da=4×105, Da=5×105 and
Da=6×105. Filled symbols represent modes A and B.

Table 3. Frequency and growth rate of the unstable eigenvalues at Da=2×105,
Da=3×105, and Da=4×105 compared to frequencies obtained from Fourier
transform of the lift-off height displacement signals.

Da=2×105 Da=3×105 Da=4×105

Mode A +0.159+1.183i +0.179+1.247i −0.077+1.531i
Mode B −0.211+2.070i −0.212+2.213i −0.359+2.414i
λi,DNS 1.306 1.344
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for mode A at two cross section corresponding to x= 4.5 and x= 8.0, respectively. The contours
clearly show again the 4-cell structure of the eigenmode.

The second mode, labeled mode B, provided in figure 12, is located further downstream
along the diffusive part of the flame; it is clearly a Kelvin–Helmholtz mode, which grows
both in the radial and axial direction (convective instability).

Also the corresponding contours of temperature and mixture fraction are located along
the diffusive zone of the flame, as shown in figure 13. It is noteworthy that this mode is active
in the flame region as mode B described by Qadri et al (2015); however, its frequency is
higher than that of mode A, whereas, in the test case considered by Qadri et al (2015), mode
B had a lower frequency with respect to mode A. This different behavior could be due to the
different parameters of the combustion model and to three-dimensional effects.

4. Conclusions and future developments

In this work, a numerical method based on the time-stepper approach proposed by Edwards
et al (1994) and Bagheri et al (2009) has been combined with a numerical linearization of the

Figure 9. Isosurfaces of the non-dimensional temperature T (a) and of the mixture
fraction Z (b) for the real component of mode A at Da=6.0×105. Negative (blue)
and positive (red) surfaces are shown.

Figure 10. Contours of the non-dimensional temperature T (a) and of the mixture
fraction Z (b) in a longitudinal plane for the real component of mode A at
Da=6.0×105. Negative (blue) and positive (red) contours are shown.
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governing equations and employed to study the global stability of three-dimensional reacting
flows. This method allows one to analyze the stability of diffusion flames without the direct
evaluation and storage of the linearized operator; in this way, a remarkable reduction of the
storage capacity is achieved, which renders the method suitable for three dimensional flow
computations and complex combustion models. Furthermore, the employed numerical
approach, avoiding the analytical evaluation of the Jacobian matrices, represents a very
flexible approach, which can be applied straightforwardly to any complex system of con-
servation equations governing the dynamics of a reacting flow provided that a DNS solver is
available. The present work provides the first application of the global stability analysis to a

Figure 11.Non-dimensional temperature distribution in the cross sections at x = 4.5 (a)
and x = 8.0 (b) for the real component of mode A at Da=6.0×105. Negative (blue)
and positive (red) contours are shown.

Figure 12. Isosurfaces of the non-dimensional temperature T (a) and of the mixture
fraction Z for the real component of mode B at Da=6.0×105. Negative (blue) and
positive (red) surfaces are shown.
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three-dimensional reacting flow. The results obtained in the present work demonstrate that the
proposed approach is useful to identify the main mechanisms of instability with a reasonable
computational cost.

The method was validated versus the results of Qadri et al (2015) using the same test case
proposed by Nichols and Schmid (2008) concerning an axisymmetric jet diffusion flame
(Mancini et al 2017).

In the present work, the numerical model has been employed to study the stability of a
three-dimensional jet diffusion flame with cellular structure. The baseline case was the same
employed by Lo Jacono et al (2003), providing the experimental observation of cell
structures in reactive flows using the EPFL jet flame facility, and by Frouzakis et al (2005),
who have performed numerical simulations and a local stability analysis. Since the focus of
the present paper is the stability analysis, a simple mixture fraction combustion model has
been employed. Despite the mixture fraction model does not consider transport equations
for species concentrations, we obtained a cellular structure for all considered Damköhler
numbers and the flame behavior in terms of lift-off height is coherent with the experimental
results.

Thanks to the global stability analysis it was possible to study the three-dimensional
eigenmode shape related to the most representative eigenvalues in the range
105�Da�6×105. Two different families of modes have been identified: we labeled
as mode A the low-frequency most unstable mode that contains instabilities related to the
premixing zone of the flame and presents higher frequency peaks in that zone; whereas,
the high-frequency mode was labeled mode B, which is the most representative of the
instabilities in the diffusive rear region of the flame (associated with Kelvin–Helmholtz
vortices). Moreover, unlike previous two-dimensional analyses, the present three-dimen-
sional stability analysis has been able to compute for the first time non-axisymmetric
modes, which are responsible for the cellular structure of the flame. Thus, the main
contribution of this paper has been to provide a physical explanation for the onset of a
cellular structure of the flame, linking it to a Hopf bifurcation arising for decreasing values
of the Damköhler number.

Future development of this work could be to employ a more accurate chemical reaction
model that would allow one to consider different Lewis numbers and to have a better
matching with real experimental assumptions.

Figure 13. Contours of the non-dimensional temperature T (a) and of the mixture
fraction Z (b) for the real component of mode B at Da=6.0×105. Negative (blue)
and positive (red) contours are shown.
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Appendix

In this section, details about the numerical method used for evaluating the Jacobian matrix,
as well as a validation of the grid, are provided. The numerical evaluation of the Jacobian
matrix for stability analysis is a well established technique employed by several authors
(Mack et al 2008, Mack and Schmid 2010). The present work provides the first application
of such a technique for the global stability analysis of three-dimensional reacting flows. For
applying this method, one should first ensure that the value of ò in equation (14) is small
enough to accurately approximate (with a nonlinear operator) the linear evolution of the
perturbations. However, even if the initial value of ò is very small, the flow might be prone
to strong energy growth due to modal or nonmodal mechanisms, as in some of the cases
considered in this work. In these cases, a renormalization of the amplitude of the pertur-
bation during the time integration is necessary in order to ensure that the flow remains in the
linear regime during the whole time integration. This method guarantees a good approx-
imation of the eigenvalues even when the flow is highly unstable. In this work, for all of the
considered cases, we have applied such a renormalization every Δt (namely, every time a
snapshot is extracted from the DNS for creating the Krylov subspace in the Arnoldi
method), rescaling the initial condition for obtaining the following snapshot such that its L2
norm is equal to ò. Concerning the value of ò, we have chosen to employ ò=10−7, which is
a reference value employed in the literature (see, for instance, the work of Gibson et al
(2008)). Furthermore, using the two-dimensional flow case of Qadri et al (2015) as a test
case, we have verified that the leading eigenvalues change less than 1% when using
ò=10−8.

Concerning the discretization, all computations have been performed using a
Cartesian grid. Inside each cell, the nodes are distributed according to the spectral-
element discretization based on Legendre polynomials. To choose the order of the
Legendre polynomial employed in the study, we have used different values of N for the
case with Da=6×105. The eigenspectrum as well as the eigenvector shapes obtained
for N=8 and N=9 are very similar. Figure A1 provides the eigenvalue spectrum
obtained with N=8 and N=9, showing a satisfactory convergence level, whereas the
non-dimensional temperature distributions in the cross sections at x = 4.5 (a) and x = 8.0
(b) for the real component of mode A, are provided in figure A2. One can compare these
results with those provided in figure 11 (obtained with N=8), noticing that the 4-cell
structure of the mode does not change with the order of the polynomial reconstruction.
Thus, for all the computations provided in this work, a polynomial order N=8 has
been used.

M Farano et al

17



ORCID iDs

P De Palma https://orcid.org/0000-0002-7831-6115

References

Åkervik E, Brandt L, Henningson D S, Hœpffner J, Marxen O and Schlatter P 2006 Phys. Fluids 18
068102

Bagheri S, Åkervik E, Brandt L and Henningson D S 2009 AIAA J. 47 1057–68
Bucci M A, Robinet J C and Chibbaro S 2016 Combust. Flame 167 132–48
Edwards W S, Tuckerman L S, Friesner R A and Sorension D C 1994 J. Comput. Phys. 110 82–102
Fischer P, Lottes J and Kerkemeir S 2008 ‘nek5000 Web pages’ http://nek5000.mcs.anl.gov
Frouzakis C E, Tomboulides A G, Papas P, Fischer P F, Rais R M, Monkewitz P A and Boulouchos K

2005 Proc. Combust. Inst. 30 185–92

Figure A1. Eigenvalue spectrum for Da=6×105 obtained with N=8 and N=9.

Figure A2. Non-dimensional temperature distributions in the cross sections at x=4.5
(a) and x=8.0 (b) for the real component of mode A obtained for Da=6×105.

M Farano et al

18

https://orcid.org/0000-0002-7831-6115
https://orcid.org/0000-0002-7831-6115
https://orcid.org/0000-0002-7831-6115
https://doi.org/10.1063/1.2211705
https://doi.org/10.1063/1.2211705
https://doi.org/10.2514/1.41365
https://doi.org/10.2514/1.41365
https://doi.org/10.2514/1.41365
https://doi.org/10.1016/j.combustflame.2016.02.018
https://doi.org/10.1016/j.combustflame.2016.02.018
https://doi.org/10.1016/j.combustflame.2016.02.018
https://doi.org/10.1006/jcph.1994.1007
https://doi.org/10.1006/jcph.1994.1007
https://doi.org/10.1006/jcph.1994.1007
http://nek5000.mcs.anl.gov
https://doi.org/10.1016/j.proci.2004.08.087
https://doi.org/10.1016/j.proci.2004.08.087
https://doi.org/10.1016/j.proci.2004.08.087


Gibson J F, Halcrow J and Cvitanović P 2008 J. Fluid Mech. 611 107–30
Gorman M, El-Hamdi M, Pearson B and Robbins K A 1996 Phys. Rev. Lett. 76 228
Gunaratne G H, El-Hamdi M, Gorman M and Robbins K A 1996 Mod. Phys. Lett. B 10 1379–87
Loiseau J C, Robinet J C, Cherubini S and Leriche E 2014 J. Fluid Mech. 760 175–211
Lo Jacono D, Papas P and Monkewitz P A 2003 Combust. Theory Modelling 7 635–44
Mack C J and Schmid P J 2010 J. Comput. Phys. 229 541–60
Mack C J, Schmid P J and Sesterhenn J L 2008 J. Fluid Mech. 611 205–14
Mancini C, Farano M, De Palma P, Robinet J C and Cherubini S 2017 Energy Proc. 126 867–74
Michalke A 1984 Prog. Aerosp. Sci. 21 159–99
Nichols J and Schmid P J 2008 J. Fluid Mech. 609 275–84
Peters N 2000 Turbulent Combustion (Cambridge: Cambridge University Press)
Qadri U A, Chandler G J and Juniper M P 2015 J. Fluid Mech. 775 201–22
Tomboulides A G, Lee J C Y and Orszag S A 1997 J. Sci. Comput. 12 139–67

M Farano et al

19

https://doi.org/10.1017/S002211200800267X
https://doi.org/10.1017/S002211200800267X
https://doi.org/10.1017/S002211200800267X
https://doi.org/10.1103/PhysRevLett.76.228
https://doi.org/10.1142/S0217984996001553
https://doi.org/10.1142/S0217984996001553
https://doi.org/10.1142/S0217984996001553
https://doi.org/10.1017/jfm.2014.589
https://doi.org/10.1017/jfm.2014.589
https://doi.org/10.1017/jfm.2014.589
https://doi.org/10.1088/1364-7830/7/4/302
https://doi.org/10.1088/1364-7830/7/4/302
https://doi.org/10.1088/1364-7830/7/4/302
https://doi.org/10.1016/j.jcp.2009.09.019
https://doi.org/10.1016/j.jcp.2009.09.019
https://doi.org/10.1016/j.jcp.2009.09.019
https://doi.org/10.1017/S0022112008002851
https://doi.org/10.1017/S0022112008002851
https://doi.org/10.1017/S0022112008002851
https://doi.org/10.1016/j.egypro.2017.08.292
https://doi.org/10.1016/j.egypro.2017.08.292
https://doi.org/10.1016/j.egypro.2017.08.292
https://doi.org/10.1016/0376-0421(84)90005-8
https://doi.org/10.1016/0376-0421(84)90005-8
https://doi.org/10.1016/0376-0421(84)90005-8
https://doi.org/10.1017/S0022112008002528
https://doi.org/10.1017/S0022112008002528
https://doi.org/10.1017/S0022112008002528
https://doi.org/10.1017/jfm.2015.297
https://doi.org/10.1017/jfm.2015.297
https://doi.org/10.1017/jfm.2015.297
https://doi.org/10.1023/A:1025669715376
https://doi.org/10.1023/A:1025669715376
https://doi.org/10.1023/A:1025669715376

	1. Introduction
	2. Problem formulation
	2.1. Global stability analysis

	3. Global stability of a 3D cellular jet diffusion flame
	3.1. Flow configuration
	3.2. Simulation assumptions
	3.3. Discussion of the DNS results
	3.4. Global stability: weak flame cases
	3.5. Global stability: cellular flame cases

	4. Conclusions and future developments
	Acknowledgments
	Appendix
	References



