Quantum Elliptic Calogero-Moser Systems from Gauge Origami - Archive ouverte HAL
Article Dans Une Revue Journal of High Energy Physics Année : 2020

Quantum Elliptic Calogero-Moser Systems from Gauge Origami

Résumé

We systematically study the interesting relations between the quantum elliptic Calogero-Moser system (eCM) and its generalization, and their corresponding supersymmetric gauge theories. In particular, we construct the suitable characteristic polynomial for the eCM system by considering certain orbifolded instanton partition function of the corresponding gauge theory. This is equivalent to the introduction of certain co-dimension two defects. We next generalize our construction to the folded instanton partition function obtained through the so-called “gauge origami” construction and precisely obtain the corresponding characteristic polynomial for the doubled version, named the elliptic double Calogero-Moser (edCM) system.
Fichier principal
Vignette du fichier
JHEP02(2020)108.pdf (863.57 Ko) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-02448747 , version 1 (19-01-2024)

Identifiants

Citer

Heng-Yu Chen, Taro Kimura, Norton Lee. Quantum Elliptic Calogero-Moser Systems from Gauge Origami. Journal of High Energy Physics, 2020, 02, pp.108. ⟨10.1007/JHEP02(2020)108⟩. ⟨hal-02448747⟩
61 Consultations
29 Téléchargements

Altmetric

Partager

More