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1 Introduction and summary

Among the plethora of integrable systems, the elliptic Calogero-Moser types (eCM) have

continuously fascinated mathematicians and physicists (see [1] for a good introduction).

Of our particular interests, it is well-known that the classical spectral curve of the eCM

integrable system associated with Lie algebra Lie(G) can be directly identified with the

Seiberg-Witten curve of four dimensional N = 2∗ theory with gauge group G [2–4], see

also [5, 6]. Indeed, this correspondence serves as one of the earliest examples demonstrating

the close connections between certain integrable systems and the gauge theories with eight
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supersymmetries. Moreover with the tremendous advances in the localization computations

for supersymmetric partition functions and other protected observables (see [7] for extensive

reviews), we can extend the correspondence to the quantum level. In general, there can

be multiple deformation parameters {ǫa} in these localization computations depending on

the dimensionality of the supersymmetric gauge theories considered. It was proposed that

{ǫa} can be identified in general with the Planck constants when quantizing the original

classical integrable systems, such that turning off one or more of {ǫa} can be interpreted

as recovering certain semi-classical limit [8]. In such a limit, the Bethe Ansatz equation

(BAE) of the quantum integrable system can be recovered from the saddle point equation

of the corresponding gauge theory partition function computed by localization techniques.

In the full quantum case with all {ǫa} kept finite, the instanton partition function can

be identified as the eigenfunction of quantum integrable system’s Hamiltonian. Such a

quantity is computed by using the so called qq-characters [9, 10].

One of the hallmarks of the integrability in a dynamical system is the existence of the

commuting Hamiltonians, the generating function of them is a finite degree polynomial in

the appropriate spectral parameter, known as the “characteristic polynomial” or “transfer

matrix”. The gauge theoretic counterpart of the characteristic polynomial has been shown

in certain cases to be the generating function of chiral rings, such as N = 2 SQCD/XXX-

spin chain and its linear quiver generalization [4, 11–13]. It is also very natural to consider

the quantum version of this story in the same vein as discussed in the previous paragraph,

and identify the commuting quantum Hamiltonians with the chiral ring operators [8, 14, 15].

However it is unsatisfactory that eCM systems and their corresponding gauge theories have

somehow evaded this general line of developments. As we will review later in section 2,

even though we can readily recover the BAE for the eCM system through the saddle point

analysis of partition function [8], a naive gauge theoretic construction of characteristic

polynomial however failed to yield the correct commuting quantum Hamiltonians. The

situation can be rectified by constructing a certain regular function of spectral parameter

with the appropriate degree, which will be named X-function.1 More precisely this con-

struction is a two step process as we will discuss in section 3. First, we will introduce the

co-dimension two surface defects into the gauge theory through the orbifolding [18–21],

this also has the effect of splitting the original gauge theory into multiple orbifolded copies.

The X-function then arises from summing over a suitable instanton partition function for

each orbifolded copy. We will demonstrate that the commuting Hamiltonians of the eCM

system can indeed be extracted from the resultant X-function.

We next apply our story to an inherently quantum generalization of the eCM system,

known as the elliptic double Calogero-Moser system (edCM) [10].2 This implies its corre-

sponding gauge theory is necessarily well-defined only when at least one of {ǫi} is turned

on. Indeed, the consistent gauge theoretic construction related to the edCM system is

1This X-function itself is also known as the fundamental q-character of Â0 quiver constructed in [16].

See also [17] for another construction through the quantum toroidal algebra of gl1. As mentioned in this

paper, we need to consider the orbifolded version of the X-function in order to extract the commuting

Hamiltonians of the eCM system.
2The trigonometric version is studied, e.g., in [22, 23].
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known as “Gauge Origami” [24].3 This arises from the intersecting D-brane configuration

in the presence of background fluxes, which corresponds to turning on {ǫi} [25], as we will

review this in section 4. In section 5, we will explicitly construct the resultant instanton

partition functions, derive the possible BAE from its saddle point equation, and follow our

earlier procedures for the eCM system to construct the X-function in this case. Finally we

demonstrate the validity of X-function by recovering the correct commuting Hamiltonians

which are expressed in terms of the Dunkl operators generalized to the edCM system. We

should comment here that the connection between edCM systems and the so-called “folded

instanton” configuration derived from gauge origami construction was noticed in [10], in

this work we firmly established this connection by working out the relevant details in steps.

We discuss various future directions in section 6. We relegate our various definitions

of functions and some of the computational details in a series of appendices.

2 Elliptic Calogero-Moser model and N = 2∗ theory

It is well known that the elliptic Calogero-Moser (eCM) model (see [1] for an excellent

review), which is an one-dimensional quantum mechanical system of N particles with

Hamiltonian of the form:

ĤeCM = −
~2

2

N∑

α=1

∂2

∂x2α
+m(m+ ~)

∑

1≤α<β≤N

℘(xα − xβ), (2.1)

is closely related to four dimensional N = 2∗ SU(N) gauge theory.4 Here the interacting

potential is given in terms of Weierstrass ℘(u)-function defined in eq. (A.8).

When ~
m → 0, (2.1) approaches its classical limit,

HeCM =
1

2

N∑

α=1

p2α +m2
∑

1≤α<β≤N

℘(xα − xβ). (2.2)

It has been proven that this system encodes the underlying classical integrable structure

of N = 2∗ super Yang-Mills theory by identifying its spectral curve with the gauge theory

Seiberg-Witten curve in many early literature such as [5, 26] and see [6] for a more complete

list of references. In this note, we aim to extend in several directions the quantum version

of such a correspondence from various new results in gauge theories.

2.1 Bethe Ansatz equation from instanton partition function

As a warm up example setting up our subsequent notations and terminologies, as well

as illustrating the problem, we first recall how the BAE of the eCM model can arise

from the instanton partition function of N = 2∗ SU(N) gauge theory. The instanton

partition function can be obtained from the localization computation in Ω-background and

is expressed in terms of a summation over all allowed instanton configurations [27, 28], each

3Translation: ゲージ折紙 (日本語); 規範摺紙 (中文 繁體字); 规范折纸 (中文 简体字).
4We choose this notation intentionally. We will identify adjoint mass m of N = 2∗ with potential

coupling of Calogero-Moser system in the end of section 3.
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of them is labeled by a set of N Young diagrams ~λ = (λ(1), . . . , λ(N)). Each Young diagram

λ(α) for α = 1, . . . , N is labeled by row vectors: λ(α) = (λ
(α)
1 , λ

(α)
2 , . . . ) with non-negative

entries such that:

λ
(α)
i ≥ λ

(α)
i+1, i = 1, 2, . . . , (2.3)

which denote the number of box of each row. Let us define the following parameters:

xαi = aα + (i− 1)ǫ1 + λ
(α)
i ǫ2, x

(0)
αi = aα + (i− 1)ǫ1, (2.4)

where (ǫ1, ǫ2) are the Ω background deformation parameters. The instanton partition

function is now written as the summation:

Zinst =
∑

{~λ}

q|
~λ|Zinst[~λ], (2.5a)

Zinst[~λ] =
∏

(αi) 6=(βj)

Γ(ǫ−1
2 (xαi − xβj − ǫ1))

Γ(ǫ−1
2 (xαi − xβj))

·
Γ(ǫ−1

2 (x
(0)
αi − x

(0)
βj ))

Γ(ǫ−1
2 (x

(0)
αi − x

(0)
βj − ǫ1))

×
Γ(ǫ−1

2 (xαi − xβj −m))

Γ(ǫ−1
2 (xαi − xβj −m− ǫ1))

·
Γ(ǫ−1

2 (x
(0)
αi − x

(0)
βj −m− ǫ1))

Γ(ǫ−1
2 (x

(0)
αi − x

(0)
βj −m))

, (2.5b)

with

q = e2πiτ (2.6)

where τ is the complexified gauge coupling, and m is the complex adjoint mass.

Let us consider the so-called Nekrasov-Shatashvili limit (or NS limit for short) [8],

such that ǫ2 → 0 with ǫ1 =: ǫ fixed, and take the Stirling approximation on Γ-function, we

obtain:

lim
ǫ2→0

Zinst[~λ] = exp

[
1

2ǫ2

∑

(αi) 6=(βj)

f((xαi − xβj − ǫ)− f((xαi − xβj + ǫ)

− f(x
(0)
αi − x

(0)
βj − ǫ) + f(x

(0)
αi − x

(0)
βj + ǫ)

+ f(xαi − xβj −m)− f(xαi − xβj +m)

− f(x
(0)
αi − x

(0)
βj −m) + f(x

(0)
αi − x

(0)
βj −m)

− f(xαi − xβj −m− ǫ) + f(xαi − xβj +m+ ǫ)

+ f(x
(0)
αi − x

(0)
βj −m− ǫ)− f(x

(0)
αi − x

(0)
βj −m+ ǫ)

]
, (2.7)

where f(x) = x(log x − 1). In this limit, the combination ǫ2λ
(α)
i becomes continuous,

such that the sum over the discrete Young diagrams can be approximated by a continuous

integral over a set of infinite integration variables {xαi},

lim
ǫ2→0

Zinst =

∫ ∏

(αi)

dxαi exp

[
1

ǫ2
Hinst(xαi)

]
. (2.8)
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The instanton functional Hinst(xαi) takes the form of:

Hinst(xαi) = U(xαi)− U(x
(0)
αi ), (2.9)

where we have also defined:

U(xαi) = log q
∑

(αi)

xαi +
1

2

∑

(αi) 6=(βj)

{f(xαi − xβj − ǫ)− f(xαi − xβj + ǫ)

+ f(xαi − xβj −m)− f(xαi − xβj +m)

− f(xαi − xβj −m− ǫ) + f(xαi − xβj +m+ ǫ)}.

(2.10)

Here we have introduced the instanton density ρ(x) which is a non-vanishing constant along

J =
⋃

αi[x
(0)
αi , xαi] and zero everywhere else to rewrite Hinst. Furthermore we can define

the combinations:

R(x) =
P (x−m)P (x+m+ ǫ)

P (x)P (x+ ǫ)
; G(x) =

d

dx
log

(x+m+ ǫ)(x−m)(x− ǫ)

(x−m− ǫ)(x+m)(x+ ǫ)
, (2.11)

where P (x) =
∏N

α=1(x − aα). Together, the instanton partition functional Hinst can be

written as:

Hinst(xαi) = −
1

2
PV

∫

J×J

dxdyρ(x)G(x− y)ρ(y) +

∫

J

dxρ(x) log qR(x), (2.12)

where the symbol PV means the principal value integral. In ǫ2 → 0 limit, the integration

should be dominated by saddle point configurations, which yield:

δHinst[ρ]

δxαi
= −

∫

J

dyG(xαi − y)ρ(y) + log(qR(xαi)) = 0. (2.13)

As G(x) is a total derivative, one obtains

1 = −q
Q(xαi +m+ ǫ)Q(xαi −m)Q(xαi − ǫ)

Q(xαi −m− ǫ)Q(xαi +m)Q(xαi + ǫ)
, (2.14)

where

Q(x) =

N∏

α=1

∞∏

j=1

(x− xαj). (2.15)

We often call the Young diagram ~λ∗ satisfying eq. (2.14) the “Limit shape configuration,”

which dominates the summation in eq. (2.5) under NS-limit:

Zinst ≈ Zinst[~λ∗]. (2.16)

To see how BAE of the quantum eCM model emerges, we consider the twisted su-

perpotential arising from the full partition function Z
Â0

: W
Â0

= limǫ2→0[ǫ2 logZÂ0
] =

Wclassical +W1-loop +Winst. For the non-perturbative part we have:

Winst(aα) = Hinst(xαi) = U(xαi)− U(x
(0)
αi ), (2.17)
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where U(x) is defined in eq. (2.10). While the remaining classical twisted superpotential is

Wclassical(aα) = − log q
N∑

α=1

a2α
2ǫ

, (2.18)

and the perturbative one-loop twisted superpotential is

W1-loop(aα) = U(x
(0)
αi )− log q

∑

(αi)

x
(0)
αi . (2.19)

Unlike the gauge theories with massive fundamental hypermultiplets [15], there is no nat-

ural truncation condition on the Young diagrams labeling instanton partition function.

Instead, the equation of motion for the functional W
Â0

is given by:

1

2πi

∂W
Â0

(aα)

∂aα
= nα; nα ∈ Z, (2.20)

explicitly one obtains:

−
aα
ǫ

log q+
∑

β 6=α

log
Γ
(
aα−aβ

ǫ

)

Γ
(
−

aα−aβ
ǫ

)
Γ
(
−m−(aα−aβ)

ǫ

)

Γ
(
−m+aα−aβ

ǫ

) = 2πinα, (2.21)

using the following identity:

∂

∂aα

1

2

∑

(αi) 6=(βj)

(f(xαi − xβj − ǫ)− f(xαi − xβj + ǫ)) =
∑

β 6=α

log
Γ
(
aα−aβ

ǫ

)

Γ
(
−

aα−aβ
ǫ

) . (2.22)

Exponentiating both sides of equation (2.21) gives

1 = q−
aα
ǫ

∏

β 6=α

Γ
(
aα−aβ

ǫ

)

Γ
(
−

aα−aβ
ǫ

)
Γ
(
−m−(aα−aβ)

ǫ

)

Γ
(
−m+aα−aβ

ǫ

) , (2.23)

this is the BAE of the eCM system [8].

Here we would like to introduce the following T (x)-function:

T (x) =
Q(x+ ǫ)

Q(x)

[
1 + q

Q(x+m+ ǫ)Q(x−m)Q(x− ǫ)

Q(x+m)Q(x−m− ǫ)Q(x+ ǫ)

]
, (2.24)

which will be proposed as a tentative characteristic polynomial for generating the commut-

ing Hamiltonians of the eCM system later. We can also recast T (x) in a more illuminating

form by defining:

Y (x) =
Q(x)

Q(x− ǫ)
, (2.25)

and rewrite T (x) as

T (x) = Y (x+ ǫ)

[
1 + q

Y (x−m)Y (x+m+ ǫ)

Y (x)Y (x+ ǫ)

]
. (2.26)

While similar T (x) works as the characteristic polynomial for XXX spin chain arising

from superconformal QCD, see e.g. [15], we will see momentarily that in order to correctly

reproduce the commuting Hamiltonians for the eCM system, we need to further enhance

T (x) as defined in (2.26).
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2.2 Finding the commuting Hamiltonians: warm up

After demonstrating how the BAE can arise from four dimensional N = 2∗ SU(N) gauge

theory, it is natural to consider if it is possible to similarly obtain the commuting Hamilto-

nians. To this end, we first consider the T (x) function defined in (2.14) and (2.26) which

is a natural candidate for generating all commuting Hamiltonians of the eCM system by

identifying its expansion coefficients in appropriate asymptotic regime.

2.2.1 T-function from gauge theory

As a simplification to illustrate the procedures, let us consider pure N = 2 SU(N) gauge

theory by setting m → ∞ to integrate out the adjoint hypermultiplet, it is known that the

associated integrable system is ÂN−1 Toda lattice (戸田格子) system:

ĤToda = −
~2

2

N∑

α=1

∂2

∂x2α
+ Λ2

N∑

α=1

exα−xα−1 ; xα ∼ xα+N , q = Λ2N . (2.27)

Now in the m → ∞ limit, the saddle point equation (2.14) now becomes BAE for ÂN−1-

Toda system:

1 = −q
Q(xαi − ǫ)

Q(xαi + ǫ)
, (2.28)

such that T (x) defined in (2.26) reduces to:

T (x) =
Q(x+ ǫ)

Q(x)

[
1 + q

Q(x)

Q(x− ǫ)

]
= Y (x+ ǫ) + q

1

Y (x)
, (2.29)

as can also be deduced from limm→∞ Y (x±m) → 1.

We will now show that T (x) is a degree N polynomial in spectral parameter x. Us-

ing (2.28), we can see that the apparent poles of T (x) coming from poles of Y (x + ǫ) are

canceled by the corresponding zeros in the bracket. This proves that T (x) is analytic in

the complex x-plane (excluding x = ∞). To prove T (x) has the correct degree, we first

consider large x behavior of Y (x). When x is large, we may approximate xαi ≈ x
(0)
αi . Thus

the asymptotic behavior of Y (x) behaves as:

Y (x) ∼
N∏

α=1

∞∏

i=1

x− aα − (i− 1)ǫ

x− aα − (i− 1)ǫ− ǫ
=

N∏

α=1

(x− aα) ∼ xN at x → ∞. (2.30)

We conclude that (2.29) constructed based on saddle point equation is a degree N polyno-

mial. Next we would like to see if it can be directly related to the characteristic polynomial

of Toda lattice by checking if we can recover Hamiltonian given in (2.27).

2.2.2 Surface defect via orbifolding

Here we would like to introduce a co-dimension two surface defect on C1 ⊂ R4 = C1 ×C2,

with ZN orbifolding on the coordinates of C2 by (z1, z2) → (z1, ζz2) where ζN = 1. This

orbifolding procedure commutes with NS limit.5 We will restore ǫ2 dependence for a mo-

ment, and take NS limit after orbifolding. Such orbifolding maps the original gauge theory

5The introduction of full surface defects into pureN = 2 SYM andN = 2∗ theories, and their connections

with quantum integrable systems was also considered earlier in [29].
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(which can be considered as A1 quiver) into so called handsaw quiver structure [30]. Shown

in [10], the instanton partition function with surface defect inserted is an eigenfunction of

Hamiltonian for both Calogero-Moser and Toda cases (eq. (2.1) for Calogero-Moser and

eq. (2.27) for Toda). On the other hand, N = 2 with fundamental hypermultiplet does not

require such a orbifolding procedure, as discussed in [15]. It should be noted however that

it is possible to relate these two different types of surface defects via the brane creation

process similar to Hanany-Witten transition in M-theory, as discussed in [31, 32].

A ZN type surface defect in a U(N) gauge theory [21] can be characterized by a coloring

function: c : {α = 1, 2, . . . , N} → ZN , which assigns a color α labeling Coulomb parameter

aα to an irreducible representation Rω of ZN , ω = 0, 1, . . . , N − 1. Here we choose the

simplest form of c:

c(α) = α− 1, (2.31)

this implies we can assign the Coulomb parameter aα to the representation Rα−1 of ZN .

One may take other form of coloring function c if needed. In principle, one can consider the

lower degree orbifolding as the quotient by Zn<N . The defect corresponding to ZN is called

the full-type surface defect, which is relevant to our purpose. More detailed discussions can

be found in [18–21]. Under ZN orbifolding, the complex coupling q splits into N copies:

q = q0q1 · · · qN−1; qω+N = qω, (2.32)

each qω is assigned to the representation Rω of ZN for complex gauge coupling. Under

Orbifolding, counting in the instanton partition function becomes

q|
~λ| =

∏

ω

qkωω (2.33)

with the definition

Kω := {(α, (i, j)) | α = 1, . . . , N ; (i, j) ∈ λ(α); α+ j − 1 ≡ ω mod N} (2.34)

and the following definition of notations:

kω = |Kω|, νω = kω − kω+1. (2.35)

We will show how the introduction of full surface defect affects T (x). Starting from

its building block Y (x), under orbifolding, Y (x) becomes Y (x) =
∏

ω Yω(x) where each

orbifold copy is:

Yω(x) = (x− aω)
∏

(α,(i,j))∈Kω

[
(x− aα − (i− 1)ǫ1 − (j − 1)ǫ2 − ǫ1)

(x− aα − (i− 1)ǫ1 − (j − 1)ǫ2)

]

×
∏

(α,(i,j))∈Kω+1

[
(x− aα − (i− 1)ǫ1 − (j − 1)ǫ2 − ǫ2)

(x− aα − (i− 1)ǫ1 − (j − 1)ǫ2 − ǫ2 − ǫ1)

]
, (2.36)

For more general coloring function, the condition in (2.34) should be c(α) + j ≡ ω. Kω

is a collection of Young diagram boxes which are assigned to the representation Rω un-

der orbifolding. Remember that orbifolding is imposed in C2, with ǫ2 charged. Adding

– 8 –
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or subtracting an ǫ2 moves the representation by ±1. For instance if aα is assigned to

representation Rα−1, then aα + ǫ2 is of representation Rα. This essentially splits boxes

in Young diagram into different collections of Kω based on its location as in (2.34). Each

Young diagram box in Kω is labeled by orbifolded instanton counting parameter qω. For

each Rω, we now have orbifolded T -functions as

Tω(x) = Yω+1(x+ ǫ+) +
qω

Yω(x)
; T (x) =

N−1∏

ω=0

Tω(x). (2.37)

The presence of such a surface defect is necessary for both Calogero-Moser and Toda cases

for their instanton partition function to become eigenfunctions, detailed discussions can be

found in [10].

2.2.3 NS limit under orbifolding

Now we resume to take the NS limit and further consider the large x asymptotic of Tω(x),

each individual copy Yω(x) becomes:

Yω(x) = (x− aω) exp
[ ǫ
x
νω−1 +

ǫ

x2
Dω−1 + · · ·

]
, (2.38)

with the definition in (2.34), (2.35), and

σω =
ǫ

2
kω +

∑

(α,(i,j))∈Kω

(aα + (i− 1)ǫ); Dω = σω − σω+1. (2.39)

Together with its inverse, we have:

Tω(x) = x+ ǫ− aω+1 + ǫνω +
1

x

[
1

2
ǫ2ν2ω − ǫνωaω+1 + ǫDω − ǫ2νω + qω

]
+ · · · , (2.40)

Multiplying together all the orbifold copies, we obtain that:

T (x) =
N−1∏

ω=0

Tω(x)

= xN +

(
∑

ω

ǫ− aω+1 + ǫνω

)
xN−1

+

[ ∑

ω<ω′

(ǫ− aω+1 + ǫνω)(ǫ− aω′+1 + ǫνω′)

+
∑

ω

1

2
ǫ2ν2ω − ǫνωaω+1 + ǫ1Dω − ǫ2νω + qω

]
+ . . . .

(2.41)

The first two commuting Hamiltonians of the Toda system are coming from the leading

two non-trivial coefficients:

h1 =
∑

ω

(ǫ− aω+1 + ǫνω) , (2.42a)

h2 =
∑

ω

[
1

2
(ǫ− aω+1 + ǫνω)

2 −
1

2
(aω − ǫ)2 + ǫDω + qωΛ

2

]

=
∑

ω

[
1

2
(ǫ− aω+1 + ǫνω)

2 + ǫDω + qω

]
−

1

2

N∑

α=1

p2α. (2.42b)
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Now using the definitions in (2.35), we see that if we treat h1 as an operator, when acting

on orbifolded instanton partition function and using (2.33), we may replace

νω = kω − kω+1 → qω
∂

∂qω
− qω+1

∂

∂qω+1
. (2.43)

Let us define

qω = Λ2exω+1−xω . (2.44)

and we may replace

νω →
∂

∂xω+1
(2.45)

As for h2, by the definition of Dω, we can set
∑

ω Dω = 0. Now we have

h2 =
ǫ2

2

N∑

α=1

(
∂

∂xα
+ 1−

aω
ǫ

)2

+ Λ2

(
N∑

ω=α

exα+1−xα

)
; xN+α = xα, (2.46)

acting on orbifolded instanton partition function. If we further take the classical limit

ǫ → 0, the kinetic term becomes
∑

α
1
2a

2
α. This means aα must be real in order to have a

non-negative kinetic energy term. We have thus recovered the Hamiltonians of the periodic

Toda chain eq. (2.27). T (x) defined in eq. (2.29) using the instanton partition function is

indeed the characteristic polynomial of the corresponding integrable system. Calculation

without taking NS-limit can be found in [33].

3 The characteristic polynomial of eCM Model

3.1 The need for X-function

With success of ÂN−1 Toda system, we would like to ask whether T (x) defined for N = 2∗

system in (2.26) can similarly reproduce commuting Hamiltonians of the eCM system,

hence be identified as the characteristic polynomial?

The short answer is: NO. This is because T (x) defined earlier in (2.26) is not a finite

degree polynomial. There exist additional poles coming from Y (x − m)Y (x + m + ǫ) in

the numerator, which render it non-analytic. Explicit calculation also verifies our claim.

As with Toda lattice, here we introduce the full surface defect on C1 ⊂ C1 × C2 = R4

and ZN orbifolding which maps (z1, z2) → (z1, ζz2), ζ
N = 1. Following similar orbifolding

procedures from eq. (2.36) to eq. (2.40), we found for ω = 0, . . . N − 1:

Tω(x)=Yω+1(x+ ǫ) + qω
Yω(x−m)Yω+1(x+m+ ǫ)

Yω(x)

=

[
x+ ǫ− aω+1 + qω

(
(x+m+ ǫ− aω+1)

x− aω −m

x− aω

)]
exp

( ǫ

x
νω +

ǫ

x2
Dω + · · ·

)

=(1 + qω)(x+ ǫ− aω+1) exp
( ǫ

x
νω +

ǫ

x2
Dω + · · ·

)
+

qω

x
(−m(m+ ǫ) +maω+1 − aω)

= (1 + qω)

[
x+ ǫ− aω+1 + ǫνω +

1

x

[
1

2
ǫ2ν2ω − ǫνωaω+1 + ǫ1Dω − ǫ2νω

]]

+
qω

x
(−m(m+ ǫ) +maω+1 − aω) + · · ·

(3.1)
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If we normalize Tω(x) by 1 + qω to set the coefficient of the leading term to unity:

∏

ω

Tω(x)

1 + qω
= xN + h1x

N−1 + h2x
N−2 + · · · (3.2)

then we will have the first few hj ’s as

h1 = −
∑

ω

(aω − ǫ), (3.3a)

h2 =
1

2
h21 −

1

2

∑

ω

(aω − ǫ)2 + ǫ1Dω +
qω

1 + qω
(−m(m+ ǫ) +maω+1 − aω). (3.3b)

Here we see that h2 obtained clearly does not resemble eq. (2.1). Also since eq. (2.26)

consists poles, eq. (3.2) is NOT a polynomial.

The failure of reproducing the correct eCM Hamiltonian leads us to consider a certain

modification of T (x), which we will denote it as X(x).6 In the construction of this function,

we again temporarily restore the ǫ2 dependence:

X(x) = Y (x+ ǫ+)
∑

{µ}

q|µ|B[µ]
∏

(i,j)∈µ

Y (x+ sij −m)Y (x+ sij +m+ ǫ+)

Y (x+ sij)Y (x+ sij + ǫ+)
(3.4)

where ǫ+ = ǫ1 + ǫ2, and µ is one single Young diagram, we denote it as:

µ = (µ1, µ2, . . . , µℓ(µ)). (3.5)

Since µ is only one Young diagram, we will not use vector notation like ~λ = (λ(1), . . . , λ(N)),

the latter denotes a vector with N Young diagrams λ(α), α = 1, . . . , N as its entries. Note

that µ has no relation to ~λ labeling the fixed point on the original instanton moduli space.

We will see later in section 5 that Young diagram µ has an interpretation as the “dual”

instanton configuration in the eight-dimensional gauge origami construction. Each box of

µ is labeled by:

sij = (i− 1)m− (j− 1)(m+ ǫ+) (3.6)

where i = 1, . . . , ℓ(µ) and j = 1, . . . , µi with a given i. Let us define

B[µ] =
∏

(i,j)∈µ

B1,2(mhij + ǫ+aij); B12(x) = 1 +
ǫ1ǫ2

x(x+ ǫ+)
. (3.7)

Here aij = µi− j denotes the “arm” associated with a given a box (i, j) in a Young diagram,

lij = µT
ij−i for the “leg” associated with the same box. We have also defined hij = aij+lij+1.

Under NS limit, limǫ2→0B[µ] = 1 for all µ. The relation between T (x) defined in (2.26)

and X(x) defined in eq. (3.4) has been mentioned in [17]. One may identify our T (x) with

the T -function denoted by T6v there and X(x) with the other T -function denoted as T.

Comparing with [10] and [9] , we see that X-function (3.4) is the qq-character of N = 2∗

system defined on limit shape, and becomes the q-character when NS limit is taken.

6The X-function with generic (ǫ1, ǫ2) and ~λ is also known as the fundamental qq-character of Â0

quiver [9, 34], which is reduced to the corresponding q-character in the NS limit, ǫ2 → 0 [16].
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We will now continue to take NS-limit and show that X(x) is a degree N polynomial.

Using the large x-asymptotic behavior of Y (x), it is obvious that X(x) is of order N . To

prove its analyticity, let us consider one specific µ configuration µ = (µ1, µ2, · · · , µℓ(µ))

under NS-limit, its contribution to X(x) is denoted as

X(x)[µ] = q|µ|Y (x+ ǫ)

ℓ(µ)∏

i=1

µi∏

j=1

Y (x+ sij −m)Y (x+ sij +m+ ǫ)

Y (x+ sij)Y (x+ sij + ǫ)

= q|µ|Y (x+ ℓ(µ)m)

ℓ(µ)∏

i=1

Y (x+ (i− 1)m− µi(m+ ǫ) + ǫ)

Y (x+ im− µi(m+ ǫ) + ǫ)

= q|µ|
Q(x+ ℓ(µ)m)

Q(x+ ℓ(µ)m− ǫ)

ℓ(µ)∏

i=1

Q(x+ (i− 1)m− µi(m+ ǫ) + ǫ)

Q(x+ (i− 1)m− µi(m+ ǫ))

Q(x+ im− µi(m+ ǫ))

Q(x+ im− µi(m+ ǫ) + ǫ)
,

(3.8)

such that the total X-function is given by:

X(x) =
∑

{µ}

X(x)[µ]. (3.9)

The poles of X(x)[µ] are located at

• {xαi − ℓ(µ)m+ ǫ} from zeros of Q(x+ ℓ(µ)m− ǫ),

• {xαi − (i− 1)m+ µi(m+ ǫ)} from zeros of Q(x+ (i− 1)m− µi(m+ ǫ)), and

• {xαi − im+ µi(m+ ǫ)− ǫ} form zeros of Q(x+ im− µi(m+ ǫ)),

where xαi is defined in (2.4). For each i there exists an infinity number of poles from

infinity many {xαi}, α = 1, . . . , N , i ∈ N.

Let us focus on the poles located at xαi − (l − 1)m + µl(m + ǫ) of some 1 ≤ l ≤

ℓ(µ). Adding an additional box to µ located at (l, µl) gives a new Young diagram µ′ =

(µ1, · · · , µl−1, µl + 1, µl+1, · · · , µℓ(µ)), whose contribution to X(x) is:

X(x)[µ′] = X(x)[µ]× q
Y (x+ (l− 2)m− µl(m+ ǫ))Y (x+ (l− 1)m− (µl − 1)(m+ ǫ))

Y (x+ (l− 1)m− µl(m+ ǫ))Y (x+ (l− 1)m− µl(m+ ǫ) + ǫ1)
.

(3.10)

Both X(x)[µ′] and X(x)[µ] are contained in X(x) (3.9) and share the same poles xαi − (l−

1)m+ µl(m+ ǫ). The sum of the two Young diagram contributions gives us

X(x)[µ] + X(x)[µ′]

= X(x)[µ]

[
1 + q

Y (x+ (l− 2)m− µl(m+ ǫ))Y (x+ (l− 1)m− (µl − 1)(m+ ǫ))

Y (x+ (l− 1)m− µl(m+ ǫ))Y (x+ (l− 1)m− µl(m+ ǫ) + ǫ1)

]

−→ 0 (x → xαi − (l− 1)m+ µl(m+ ǫ)) . (3.11)

The poles located at xαi − (l − 1)m + µl(m + ǫ) from X(x)[µ] are now canceled by the

denominator using eq. (2.14). The other two sets of poles can be dealt with similarly.

Since X(x) is summed over all Young diagram configuration, X(x) is analytic.
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3.2 Commuting Hamiltonians from X(x)

Finally we would like to see that the correct commuting Hamiltonians of the eCM system

can be obtained directly from X(x) we just constructed. Following the same procedure we

performed with Toda system in the end of previous section, a full-type surface defect is

again introduced in C1 ⊂ R4 with orbifolding. Each orbifolded copy of X(x) under NS-limit

becomes:

Xω(x) = Yω+1(x+ ǫ)
∑

{µ}

Bµ
ω

∏

(i,j)∈µ

Yω+1−j(x+ sij −m)Yω+1−j+1(x+ sij +m+ ǫ)

Yω+1−j(x+ sij)Yω+1−j+1(x+ sij + ǫ)
. (3.12)

The full X-function can be recovered via

X(x) =
∏

ω

Xω(x), (3.13)

where each Xω(x) is of degree one.

Here we would like to address further the factor B
µ
ω appearing in the summation, it

is the orbifolded version of q|µ|B[µ] appearing in (3.4). Consider the summation over all

possible partition configurations, which we denote as B:

B =
∑

{µ}

q|µ|B[µ] (3.14)

This is equivalent to a single N = 2∗ U(1) instanton partition function with (m,−m− ǫ+)

identified as its Ω-background parameters as pointed out in [9]. This observation will

eventually lead us to so called “Gauge Origami” construction, for which we will discuss in

section 4. After orbifolding, each individual Bµ
ω becomes

Bµ
ω =

∏

(i,j)∈µ

qω+1−jB1(mhij)

∣∣∣∣
aij=0

(3.15)

with

B1(x) = 1 +
ǫ

x
, (3.16)

and here we define the following:

Kµ
ω := {(α, (i, j)) | α = 1, . . . , N ; (i, j) ∈ µ; α− j+ 1 ≡ ω mod(N)};

kµω = |Kµ
ω |; νµω = kµω − kµω+1.

(3.17)

Let us define a new set of variables (instead of (2.44))

qω =
zω
zω−1

; zω+N = qzω (3.18)

such that (3.15) can now be rewritten as

Bµ
ω(~z; τ) =

µ1∏

l=1

µT
l
−µT

l+1∏

h=1

zω
zω−l

B1(mh). (3.19)
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One way to think about this configuration is that the orbifolding now splits the instanton

partition into N copies of U(1) sub-partitions. Each element in Kω is counted by orbifolded

coupling qω instead of the original q. To evaluate the summation over all possible Young

diagrams, we will introduce a new representation for a Young diagram µ:

µ = (1l02l1 . . . (N − 1)lN−2(N)l). (3.20)

Each lr−1 =
∑∞

J=0 lr−1,J , where lr−1,J =
(
µT
r+NJ − µT

r+1+NJ

)
is the difference between

number of boxes of two neighboring columns, r = 1, . . . , N − 1 and the last one l =∑∞
J=1 µ

T
NJ counts for how many times a full combination of q0 · · · qN−1 = q shows up.

Define the summation over all possible partition configuration of each ω as:

Bω(~z; τ) =
∑

{µ}

Bµ
ω(~z; τ) =

∑

l0,...,lN−1,l≥0

N−1∏

α=0

(
lα + ǫ1

m

)
!

(lα)!
(
ǫ1
m

)
!

(
zω
zα

)lα

ql, (3.21)

and their total product

B(~z, τ) =
∏

ω

Bω(~z, τ) = Q
m+ǫ
m (~z; τ)F (τ), (3.22)

is the orbifolded version of B defined in eq. (3.14), i.e. the orbifolded instanton partition

function of U(1) N = 2∗ theory in the NS limit. The function Q(~z; τ) is defined in (A.17)

in terms of elliptic theta functions. The explicit form of the ~z independent function F (τ)

will not be used in the following derivation of commuting Hamiltonians and we will show

it can be absorbed by shifting the zero point energy.

We again consider the large x expansion of Xω in (3.12) and we normalize Xω(x) with

respect to the coefficient of the leading x term, which is Bω(~z, τ). A similar computation

yields:

1

Bω(~z, τ)
Xω(x) = x+ ǫ− aω+1 + ǫ1νω +

1

x

[
1

2
(ǫνω − aω+1)

2 −
1

2
(aω+1)

2 + ǫDω

−m
∑

{µ}

B
µ
ω(~z, τ)

Bω(~z, τ)

N−1∑

ω′=0

(
(m+ ǫ)kµω′ + (ǫνω′ − aω′+1) ν

µ
ω′

)
]
+ . . .

(3.23)

As stated in (3.13), the full X-function carrying the information of the conserved Hamil-

tonians is the product of all the orbifolded pieces Xω(x). From above we will take the

normalization to be:

X(x)

B(~z, τ)
=

∏
ω Xω(x)∏

ω Bω(~z, τ)
= xN + h1x

N−1 + h2x
N−2 + · · ·+ hN . (3.24)

To express the commuting Hamiltonians, let us define the following derivative operators

for ω = 1, . . . , N :

∇q
ω = qω

∂

∂qω
. (3.25)
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and differential operators for z:

∇z
ω = zω

∂

∂zω
; ∆~z =

N−1∑

ω=0

∇z
ω∇

z
ω. (3.26)

Based on (3.18), it implies the relation:

∇z
ω = ∇q

ω −∇q
ω+1. (3.27)

Using definition of Bω(~z, τ) in (3.15), and (3.17), we can express the first commuting

Hamiltonians as:

h1 =
N−1∑

ω=0

(ǫ− aω+1 + ǫνω) = Nǫ+
N−1∑

ω=0

Pω; (3.28a)

h2 =
1

2
h21 +

N−1∑

ω=0

−
1

2
(aω)

2 −m

(
(m+ ǫ)

N−1∑

ω′=0

∇q
ω′ +

N−1∑

ω′=0

(ǫνω′ − aω′+1)∇
z
ω′

)
logB(~z; τ),

=
1

2

N−1∑

ω=0

P 2
ω −

1

2

N−1∑

ω=0

(aω)
2 −m

(
(m+ ǫ)

N−1∑

ω=0

∇q
ω +

N−1∑

ω=0

Pω∇
z
ω

)
logB(~z; τ). (3.28b)

Again like the case of Toda, we may treat h1 as operator acting on orbifolded instanton

partition function and replace νω → ∇z
ω, thus we have the momentum.

Pω = ǫ∇z
ω − aω+1. (3.29)

We claim that we have recovered eq. (2.1) up to the following canonical transformation

between the generalized coordinate q and its conjugate momentum P , which satisfy the

commutation relation [q, P ] = ǫ:

H =
1

2
P 2 + Pf(q) + V (q)

=
1

2
(P + f(q))2 + V (q) +

[P, q]

2
f ′(q)−

1

2
f(q)2

=
1

2
(P + f(q))2 + V (q)−

ǫ

2
f ′(q)−

1

2
f(q)2. (3.30)

We can rewrite potential terms in h2 as

V (~z) = −m(m+ ǫ)
N−1∑

ω=0

∇q
ω logB(~z; τ)−

1

2
m2

N−1∑

ω=0

(∇z
ω logB(~z; τ))2 −

1

2
mǫ∆~z logB(~z; τ).

(3.31)

By using eq. (3.22) and eq. (A.19), we may finally rewrite

h2 =
N−1∑

ω=0

P 2
ω+1

2
+

(m+ ǫ)2 − ǫ(m+ ǫ)

2
∆~z logQ(~z; τ)−Nm(m+ ǫ1)∇

qF (τ)

=
1

2

N∑

α=1

P 2
α +m(m+ ǫ)

∑

α>β

℘(zα/zβ ; τ)−Nm(m+ ǫ1)∇
qF (τ),

(3.32)

– 15 –



J
H
E
P
0
2
(
2
0
2
0
)
1
0
8

in particular F (τ) may be removed by shifting the zero energy level, its explicit form is

not important as noted earlier. We have thus successfully recovered the quantum eCM

Hamiltonian given in eq. (2.1). Here we summarize the explicit parameter identifications

in N = 2∗ SU(N) gauge theory and the N -particle eCM system:

Gauge Theory Integrable System

aα Coulomb Moduli Momenta

τ Complex gauge coupling Elliptic modulus

ǫ Ω-deformation parameter Planck constant

m Adjoint mass Coupling constant

N Gauge group rank Number of particles

zα Ratio between orbifolded couplings Exponentiated coordinates

By using second property in (3.18) that zω+N = qzω, the coordinates {zα} and complex

coupling q = e2πiτ are independent.

Let us end this section by commenting that one way to identify eigenfunction of h2
is to use the fact X(x) is N = 2∗ q-character. In the NS-limit, the VEV of q-character is

dominated by following limiting shape configuration

t(x) = 〈X (x)〉 =

∑
~λ
X (x)[~λ]Zinst[~λ]

Zinst
=

X(x)Zinst[~λ∗]

Zinst[~λ∗]
(3.33)

where t(x) = xN + E1x
N−1 + E2x

N−2 + · · · + EN . When treating Hamiltonians as the

operators (and thus X(x)), we have

X(x)Zinst[~λ∗](~x) = t(x)Zinst[~λ∗](~x). (3.34)

By matching the coefficients, we conclude Zinst[~λ∗] is the eigenfunction of Hamiltonians

hiZinst[~λ∗](~x) = EiZinst[~λ∗](~x); i = 1, 2, . . . , N. (3.35)

The canonical transformation performed in (3.30) gives an additional factor to the orb-

ifolded instanton partition function. h2 has the eigenfunction as:

Ψ(~x) = Q−m+ǫ
ǫ (~x)Zinst[~λ∗](~x); h2Ψ(~x) = E2Ψ(~x). (3.36)

Detailed calculations and discussion can be found in [8, 10].

4 Elliptic double Calogero-Moser system

Let us begin by introducing the basic information about the elliptic double Calogero-

Moser system (edCM), it is an one dimensional quantum mechanical system consisting of
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P = N +M particles governed by the following Hamiltonian:

1

~2
ĤedCM =−

1

2

N∑

α=1

∂2

∂x2α
−

k

2

M∑

β=1

∂2

∂y2β

+ k(k + 1)
∑

1≤α′<α≤N

℘(xα − xα′) +

(
1

k
+ 1

) ∑

1≤β′<β≤M

℘(yβ − yβ′)

+ (k + 1)
N∑

α=1

M∑

β=1

℘(xα − yβ).

(4.1)

The constant k is the ratio of masses between two sets of identical particles, i.e. the mass

of the first N -particles labeled by {xα}
N
α=1 is k times of the mass of the remaining M -

particles labeled by {yβ}
M
β=1. Simultaneously k also acts as a single coupling constant.

The Hamiltonian (4.1) was initially mentioned in the context of the gauge origami in [10],

and the trigonometrical limit of eq. (4.1) is studied in various papers such as [22, 23]. Notice

that (4.1) inherits the following symmetry: swapping {xα} ↔ {yβ} while simultaneously

flipping k ↔ 1
k (up to over all k factor).

Let us look more closely at Hamiltonian given in eq. (4.1). In particular comparing

with eq. (2.1) and coefficients of their potential when there is only one group of particles.

• As M = 0, we identify k = m
~
;

• As N = 0, we identify 1
k = m

~
.

Here we see that the meaning of “classical” limit is somewhat ambiguous among the two

sets of particles. For particles labeled by {xα}
N
α=1, the classical limit means taking k ≫ 1

while keeping m finite. As for particles labeled by {yβ}
M
β=1, the classical limit is taken

under k ≪ 1. This is the first hint that Hamiltonian in eq. (4.1) has no natural classical

limit. Suppose we take k = m
~
, taking the classical limit ~ → 0 is equivalent to have k ≫ 1.

In such a limit, the mass of the first N particles labeled by {xα}
N
α=1 is much heavier than

the remaining M particles. In the classical approach, those objects with much larger mass

can be treated as non-dynamical in the leading order. eq. (4.1) now becomes:

ĤedCM
k→∞
−→ −

k

2

M∑

β=1

∂2

∂y2β
+ k

N∑

α=1

M∑

β=1

℘(xα − yβ) + k2
∑

1≤α′<α≤N

℘(xα − xα′). (4.2)

Even though the last term is of k2 order, it is just a constant as the heavy particles are

non-dynamical. The resultant quantum Hamiltonian describes M non-interacting particles

in a potential well. Similar argument applies to k = ~
m ≪ 1. We conclude that the system

defined by eq. (4.1) has no classical limit. In particular taking large mass limit with ~

fixed is equivalent to take large k. Thus unlike eCM we do not recover double Toda under

such limit by the fact edCM has no classical limit. This analysis also indicates that the

connection of such an inherently quantum system with the supersymmetric gauge theories

is much more subtle as we will reveal shortly.
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4.1 Quantum integrability of elliptic double Calogero-Moser system

Before constructing the supersymmetric gauge theory associated with the edCM system

however, let us first further investigate its integrability and we will employ the so-called

Dunkl operators [35]. The Dunkl operators are quantum version of Lax pairs [36–38] which

pairwise commute. In particular the Dunkl operators for Calogero-Sutherland integrable

models were explicitly worked out in [38], and their equivalence to the quantum pair Lax

operators [39] was shown in [40] for all root systems. To explicitly define them, let us

consider the following family of functions:

σt(x) =
θ11(x− t)θ′11(0)

θ11(x)θ11(−t)
; t ∈ C/(Z⊕ τZ), (4.3)

where τ is a modular parameter and θ11 is the theta function defined in (A.6) (Recall

that we have identify complex gauge coupling with elliptic modulus at the end of previous

section.). The function σt(x) has the following properties

σt(x+ 2πi) = σt(x), (4.4a)

σt(x) = −σ−t(−x), (4.4b)

σt(x) = −σx(t), (4.4c)

σt(x)σ−t(x) = ℘(x)− ℘(t), (4.4d)

lim
t→0

d

dx
σt(x) = −℘(x)− 2ζ

(
1

2

)
. (4.4e)

Let tα, α = 1, . . . , N , and uβ, β = 1, . . . ,M , be P = N +M complex numbers, tα, uβ ∈

C/(Z⊕ τZ). The elliptic double Dunkl operators are defined as:

dxα =
∂

∂xα
+ k

N∑

α′=1
(α′ 6=α)

σtα−tα′
(xα − xα′)Sxx

αα′ +
M∑

β=1

σtα−uβ
(xα − yβ)S

xy
αβ , (4.5a)

dyβ = k
∂

∂yβ
+ k

N∑

α=1

σuβ−tα(yβ − xα)S
xy
αβ +

M∑

β′=1
(β′ 6=β)

σuβ−uβ′
(yβ − yβ′)Syy

ββ′ . (4.5b)

Here Sxx
αα′ , S

xy
αβ , and Syy

ββ′ are the permutation operators acting on {exα} and {eyβ}:

• xαS
xx
αα′ = Sxx

αα′xα′ , xα′Sxx
αα′ = Sxx

αα′xα,

• xαS
xy
αβ = Sxy

αβyβ , yβS
xy
αβ = Sxy

αβxα,

• yβS
yy
ββ′ = Syy

ββ′yβ′ , yβ′Syy
ββ′ = Syy

ββ′yβ.
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Here we show the Dunkl operators defined in (4.5) are pairwise commuting:

[dxα, d
x
α′ ] =


 ∂

∂xα
, k

N∑

l=1,l 6=α′

σtα′−tl(xα′ − xl)S
xx
α′l +

M∑

β=1

σtα′−uβ
(xα′ − yβ)S

xy
α′β




+


k

N∑

l=1,l 6=α

σtα−tl(xα − xl)S
xx
αl +

M∑

β=1

σtα−uβ
(xα − yβ)S

xy
αβ ,

∂

∂xα′




=

[
∂

∂xα
, kσtα′−tα(xα′ − xα)S

xx
αα′

]
+

[
kσtα−tα′

(xα − xα′)Sxx
αα′ ,

∂

∂xα′

]

= k
∂

∂xα
σtα′−tα(xα′ − xα)S

xx
αα′ − kσtα′−tα(xα′ − xα)

∂

∂xα′

∂

∂xα
Sxx
αα′

+ kσtα−tα′
(xα − xα′)

∂

∂xα
Sxx
αα′ −

∂

∂xα′

kσtα−tα′
(xα − xα′)Sxx

αα′

= k

[
∂

∂xα
, σtα′−tα(xα′ − xα)

]
Sxx
αα′ + k

[
∂

∂xα′

, σtα′−tα(xα′ − xα)

]
Sxx
αα′ = 0. (4.6)

We use (4.4b) for the 4th equal sign. Similarly for the other combinations:

[
dxα, d

y
β

]
=

[
∂

∂xα
, kσuβ−tβ (yβ − xα)S

xy
αβ

]
+

[
σtα−uβ

(xα − yβ)S
xy
αβ , k

∂

∂yβ

]

= k

[
∂

∂xα
, σuβ−tα(yβ − xα)

]
Sxy
αβ + k

[
σtα−uβ

(xα − yβ),
∂

∂yβ

]
Sxy
αβ = 0, (4.7a)

[
dyβ , d

y
β′

]
=

[
k

∂

∂yβ
, σuβ′−uβ

(yβ′ − yβ)S
yy
ββ′

]
+

[
σuβ−uβ′

(yβ − yβ′)Syy
ββ′ , k

∂

∂yβ′

]

= k

[
∂

∂yβ
, σuβ′−uβ

(yβ′ − yβ)

]
Syy
ββ′ + k

[
∂

∂yβ′

, σuβ−uβ′
(yβ − yβ′)

]
Syy
ββ′ . (4.7b)

For later convenience of calculating conserved commuting Hamiltonians, we will use the

combined coordinates {xj}Pj=1 denoted by:

xj =

{
xj j = 1, . . . , N,

yj−N j = N + 1, . . . , N +M.
(4.8)

We also define the parity:

p(j) =

{
0 j = 1, . . . , N,

1 j = N + 1, . . . , N +M.
(4.9)

Thus one may rewrite Dunkl operators in eq. (4.5) into a single compact formula for all

j ∈ [P ] = [N +M ]

dj = kp(j)
∂

∂xj
+

P∑

l=1,l 6=j

k1−p(l)σtj−tl(xj − xl)Sjl; xiSij = Sijxj . (4.10)

The conserved charges are now given as:

L(r) =
P∑

j=1

k−p(j)(dj)
r. (4.11)
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Since djs are commuting, it is easy to see that L(r) are also pairwise commuting

[
L(r), L(s)

]
= 0, ∀r, s = 1, . . . , P. (4.12)

In particular, to recover the original edCM Hamiltonian, we consider:

L(2)=
P∑

i=1

k−p(j)(di)
2 =

N∑

α=1

(dxα)
2 +

1

k

M∑

β=1

(dyβ)
2

=

N∑

α=1

∂2

∂x2α
+ k

∑

α 6=α′

∂

∂xα
σtα−tα′

(xα − xα′) + k2
∑

α 6=α′

σtα−tα′
(xα − xα′)σtα′−tα(xα′−xα)

+
N∑

α=1

M∑

β=1

∂

∂xα
σtα−uβ

(xα − yβ) + σtα−uβ
(xα − yβ)σtα−uβ

(yβ − xα)

+
k2

k

M∑

β=1

∂2

∂y2β
+
k

k

∑

β 6=β′

∂

∂yβ
σuβ−uβ′

(yβ−yβ′)+
1

k

∑

β 6=β′

σuβ−uβ′
(yβ−yβ′)σuβ′−uβ

(yβ′−yβ)

+
k2

k

N∑

α=1

M∑

β=1

∂

∂xα
σtα−uβ

(xα − yβ) + σtα−uβ
(xα − yβ)σuβ−tα(yβ − xα).

(4.13)

We got Derivatives and product of σ-function. In the limit of all tα and uβ are equal, we may

use the 4th and 5th properties of σt(z)-function (4.4) to obtain the edCM Hamiltonian (4.1)

L(2) = 2Ĥ. (4.14)

We thus established the quantum integrability of the edCM system.

4.2 Gauge origami and localization

Here we review the relevant details about the so-called gauge origami construction which

is an extension of ADHM construction of gauge instantons, more details can be found

in [24, 25, 41] (See also [33]). Let start with four complex planes with coordinates {za},

a = 1, 2, 3, 4 and consider picking two out of them such that the six possible copies C2
A ⊂ C4

are denoted by the following double index notation:

A ∈ {(12), (13), (14), (23), (24), (34)} = 6. (4.15)

Define the complement of A as Ā = {1, 2, 3, 4}\A, for instance if A = (12), Ā = (34).

We can thus use C2
Ā
to denote the complementary two complex planes transverse to C2

A,

such that the total space C4 = C2
A ⊕ C2

Ā
. One can imagine that the six copies of sub-

spaces C2
A are sitting on the six edges of a tetrahedral and its four faces are labeled by

the four complex coordinates {za}, hence the name “折紙 (origami)”. This construction is

motivated by the intersecting D-brane configurations using D1-D5-D5 branes [25], here we

consider the following D(-1)-D3-D3 intersecting configuration which can be obtained via

T-duality transformations:
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Brane Type # of Branes 1 2 3 4 5 6 7 8 9 10

D(-1) κ

D3(12) n12 x x x x

D3(13) n13 x x x x

D3(14) n14 x x x x

D3(23) n23 x x x x

D3(24) n24 x x x x

D3(34) n34 x x x x

We labeled each stack of nA D3 or D3 branes by D3A or D3A indicating its four dimension

world volume is in C2
A, and gives U(nA) gauge group. Notice that the presence of two out

of six anti-D3 branes D3 is necessary for this intersecting brane configuration to partially

preserve 1
16 of supersymmetries or two supercharges. We also introduced κ D(-1) branes,

which will play the role of “spiked instantons” in this configuration. Similar to ADHM

construction, each gauge group is associated to a vector space NA = CnA , and one addi-

tional vector space K = Cκ is associated to κ D(-1) branes. The analogous maps acting

on {NA} and K are:

IA : NA → K; (4.16a)

JA : K → NA; (4.16b)

Ba : K → K; a = 1, 2, 3, 4, (4.16c)

and we can understand these from the world volume theory of κ D(-1) branes. Here {IA}

and {JA} are the bi-fundamental fields arising from the open string stretching among the

D3A/D3A and D(-1) branes, while Ba are the complex U(κ) adjoint fields whose diagonal

entries label the positions of κ D(-1) branes in the transverse C4. The analogous real

moment map µR and complex moment map µC equations to ADHM construction in C4 can

thus be identified respectively with the so-called D-term, E-term and J-term conditions [25].

Starting with the D-term, which gives the real momentum map µR

{
µR =

∑

a∈4

[Ba, B
†
a] +

∑

A∈6

IAI
†
A + J†

AJA = ζ · 1κ

}
/U(κ), ζ > 0. (4.17)

Here in such an intersecting D-brane configuration, we also turn on constant background

NS-NS B-field, it generates the FI parameter in the D(-1) brane world volume theory. Next

we would like to discuss the E- and J-term conditions together. To do so, for each NA, let

us define the following combinations:

µA = [Ba, Bb] + IAJA; a, b ∈ A (4.18)

and we define sA as:

sA = µA + εAĀµ
†
Ā
, (4.19)

– 21 –



J
H
E
P
0
2
(
2
0
2
0
)
1
0
8

where εAĀ is a four indices totally antisymmetric tensor ranging over A and its complement

Ā. The analogue to the complex momentum maps are now given by:

{sA = 0}/U(κ). (4.20)

Notice that while µA = 0 can encode six complex equations, however sA consist both µA

and µ†
Ā
which are mapped into each other under hermitian conjugation, there are therefore

only six real equations encoded in (4.20). The reason of using sA instead of µA is because

sA gives the correct number of degree of freedom, we will show this in a moment. In

addition, there are equations which do not exist in the usual ADHM construction:

{σāA = BāIA + εāb̄B
†

b̄
J†
A = 0}/U(κ) : NA → K, (4.21)

where ā ∈ Ā denotes the single index contained in the double index Ā. For every A, there

are two such equations. These equations (4.21) appear when one considers the D(-1) and

intersecting D3 instanton configurations [41]. Now we would like to claim that equations

in (4.20), (4.17), and (4.21) are sufficient to fix the solution uniquely by showing the number

of degrees of freedom and the number of conditions are equal. Let us start with counting

the real degrees of freedom:

1. IA:
∑

A 2× κ×NA real d.o.f.

2. JA:
∑

A 2× κ×NA real d.o.f.

3. Ba: 4× 2× κ2 real d.o.f.

which together precisely equals to the number of the conditions:

1. Eq. (4.20): 6× κ2 real conditions

2. Eq. (4.17): κ2 real condition

3. Eq. (4.21):
∑

A 2× 2× κ×NA real conditions

4. U(κ) Symmetry: κ2 real condition.

Hence we may show that the dimensions of moduli space defined by

Mκ = {( ~B, ~I, ~J) | (4.17), (4.20), (4.21)} is

∑

A

2× κ×NA +
∑

A

2× κ×NA + 8× κ2 − 6× κ2 − κ2 −
∑

A

4× κ×NA − κ2 = 0.

(4.22)

Essentially Mκ only consists of only discrete points. Comparing to ADHM construction

which has a moduli space of dimensions 4κN , additional eq. (4.21) reduces instanton moduli

space to be zero dimensional.

However, there also exist open strings stretching between D3-D3 branes which gives

additional maps/fields from D-brane construction. These terms are not related to instanton

and thus not being considered when constructing instanton moduli space. For instance,
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when one considers the D(-1)-D3-brane realization of ADHM construction, the open strings

with both ends attached to D3 branes are not taken into account. Here we also consider the

open strings stretching between D3A-D3Ā branes and D3A-D3Ā, giving rise to the following

conditions:

ΥA = JĀIA − I†
Ā
J†
A = 0 : NA → NĀ, (4.23)

these act as the transversality conditions [41]. The matrices {sA}, {σāA} and {ΥA}

in (4.20), (4.21), and (4.23) need to be subjected to the following matrix consistency iden-

tity [41]:
∑

A∈6

Tr(sAs
†
A) +

∑

A∈6,ā∈4

Tr(σāAσ
†
āA) +

∑

A∈6

Tr(ΥAΥ
†
A)

= 2
∑

A∈6

(
‖µA‖

2 + ‖JĀIA‖
2
)
+

∑

A∈6,ā∈Ā

(‖BāIA‖
2 + ‖JABā‖

2), (4.24)

where ‖µA‖
2 = Tr

(
µAµ

†
A

)
. By setting each term in the l.h.s. of (4.24) vanishes us-

ing (4.20), (4.21), and (4.23), we can deduce the following constraints:

{sA = 0}/U(κ) =⇒ µA = 0, (4.25a)

{σāA = 0}/U(κ) =⇒ BāIA = 0; JABā = 0, (4.25b)

{ΥA = 0}/U(κ) =⇒ JĀIA = 0, (4.25c)

which are equivalent to the E- and J-term constraints considered in [25].

It is known that the combination of imposing ζ > 0 and dividing by U(κ) in (4.17) is

equivalent to replacing D-term equation (4.17) by the stability condition [41], which states

that for any subspace K′ ⊂ K, such that IA(NA) for all A ∈ 6 and BaK
′ ⊂ K for all

a = 1, 2, 3, 4, coincides with K, i.e. K′ = K. In other words,

K =
∑

A

C[B1, B2, B3, B4]IA(NA)/GL(K). (4.26)

The equations (4.25b) and (4.25c) further shows that K can be decomposed into

K =
⊕

A

KA; KA = C[Ba, Bb]IA(NA), (4.27)

The equation (4.27) is essentially the stability condition for familiar ADHM construction.

Combining (4.25a) and (4.27), we have shown that gauge origami is actually six independent

copies of ADHM construction of instantons. Finally, the moduli space is now defined as

Mκ(~n) = {( ~B, ~I, ~J) | (4.25a), (4.26)}//GL(K) (4.28)

There is a symmetry (4.20), (4.17), (4.21), and (4.23) enjoys, and thus a symmetry of

the moduli space (4.28): we can multiply Ba by a phase Ba 7→ qaBa, and compensate with

JA 7→ qAJA, qA = qaqb for A = (ab) as long as the product of qa is subject to:

4∏

a=1

qa = 1. (4.29)
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If we view q = diag(q1, q2, q3, q4) as diagonal matrix, it belongs to the maximal torus U(1)3ǫ
of the group SU(4) rotating the C4. In the ADHM construction in four dimensions, we

usually consider SO(4) rotation acting on R4, whose maximal torus U(1)2 give rise to two

generic Ω-background parameters for complex momentum map. In the gauge origami, if

we start with SO(8) rotation acting on R8 = C4 with maximal torus U(1)4, one might

expect four generic Ω-background parameters. However conditions defining the moduli

space (4.20), (4.21), and (4.23) are real equations, which removes over all U(1) phase

rotation (4.29), leaving maximal torus U(1)3, which preserves some supersymmetry that act

q · [Ba, IA, JA] = [qaBa, IA, qAJA]. (4.30)

As stated, the gauge origami can be viewed as a composition of six copies of ADHM

instanton constructions. Each sub-instanton vector space KA has its fixed-points labeled

by a set of Young diagrams ~λA = (λ
(1)
A , . . . , λ

(nA)
A ), each Young diagram is labeled by

λ
(α)
A = (λA,α,1, λA,α,2, . . . ), α = 1, . . . , nA, such that:

KA =

nA⊕

α=1

KA,α; KA,α =

ℓ(λA,α)⊕

i=1

λA,α,i⊕

j=1

Bi−1
a Bj−1

b (IAeA,α); NA = CnA =

nA⊕

α=1

CeA,α. (4.31)

where eA,α is the fixed basis of the vector space CnA . We will also use λ = {~λA} to denote

the set of all gauge origami Young diagrams.

As in the usual ADHM construction, we denote the character on each NA and KA as:

NA :=

nA∑

α=1

eaA,α ; KA :=

nA∑

α=1

eaA,α

∑

(i,j)∈λ
(α)
A

qi−1
a qj−1

b . (4.32)

The character on the tangent space of the moduli space defined in eq. (4.28) can be writ-

ten as

Tλ = NK∗ − P1P2P3KK∗ − qAN
∗
ANĀ, (4.33)

with the following definition

N =
∑

A∈6

PĀNA; K =
∑

A∈6

KA, (4.34)

and the following notation:

qa = eǫa ; Pa = 1− qa; qA = qaqb; PA = PaPb. (4.35)

Using (4.29), it shows (ǫa)a=1,...,4 are subject to the constraint:

4∑

a=1

ǫa = 0. (4.36)
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Example 1. Consider all nA ≡ 0 except n12 = N , the character is given as

Tλ12 = NK∗ − P1P2P3KK∗

= (1− q3)(1− q4)N12K
∗
12 − P1P2(1− q3)K12K

∗
12

= (1− q3 − q4 − q3q4)N12K
∗
12 − P1P2(1− q3)K12K

∗
12

= (1− q3)[N12K
∗
12 + qN∗

12K12 − P1P2K12K
∗
12],

(4.37)

Define the operation E as:

E


∑

i∈I+

eW
+
i −

∑

i∈I−

eW
−

i


 =

∏
i∈I−

(W−
i )

∏
i∈I+

(W+
i )

. (4.38)

We found that the instanton partition function of 4d U(N) N = 2∗ theory defined in (2.5)

can be obtained from this character:

Zinst[~λ = ~λ12] = E [Tλ12 ] (4.39)

under the identification of the adjoint mass m = ǫ3.

Example 2. Consider all nA ≡ 0 except n12 = N , n34 = 1. Take N34 = ex, and we have

Tλ12,λ34 = NK∗ − P1P2P3KK∗

=[(1−q3)(1−q4)N12 + (1−q1)(1−q2)N34](K12+K34)
∗ − P (1−q3)(K12+K34)(K12+K34)

∗

=(1−q3)[N12K
∗
12+qN∗

12K12−PK12K
∗
12] + (1−q1)[N34K

∗
34+q3q4N

∗
34K34−P3P4K34K

∗
34]

+ (1− q3)(1− q4)N12K
∗
34 + (1− q1)(1− q2)N34K

∗
12 − P (1− q3)(K12K

∗
34 +K34K

∗
12).

(4.40)

Comparing with X(x) in eq. (3.4), we realize that

X(x)[µ = λ34] (4.41)

= E [(1− q3)(1− q4)N12K
∗
34 + (1− q1)(1− q2)N34K

∗
12 − P (1− q3)(K12K

∗
34 +K34K

∗
12)]

is the fundamental qq-character of Â0 quiver, with m = ǫ3 and −m − ǫ = ǫ4 a.k.a. the

crossed instanton configuration [41]. For n34 > 1, one obtains higher order qq-character of

Â0 quiver [9].

5 Elliptic double Calogero-Moser system from folded instanton

Now we would like to see how a special case of the gauge origami construction reviewed

earlier is naturally connected with the edCM system. Let us consider a special case with

only two stacks of overlapping D3 branes, i.e.

n12 = N, n23 = M, (5.1)

while all the remaining nA 6=(12),(23) = 0. The Young diagrams associated with such a gauge

origami configuration are denoted as:

~λ12 = (λ
(1)
12 , . . . , λ

(N)
12 ); ~λ23 = (λ

(1)
23 , . . . , λ

(M)
23 ), (5.2)

– 25 –



J
H
E
P
0
2
(
2
0
2
0
)
1
0
8

with each individual Young diagram represented by

λ
(α)
12 = (λ12,α,1, λ12,α,2, . . . ); λ

(β)
23 = (λ23,β,1, λ23,β,2, . . . ) (5.3)

where α = 1, . . . , N , β = 1, . . . ,M . For each gauge group, we can define the following

combinations:

xαi = aα + (i− 1)ǫ1 + λ12,α,iǫ2; x
(0)
αi = aα + (i− 1)ǫ1, (5.4a)

xβj = bβ + (j − 1)ǫ3 + λ23,β,jǫ2; x
(0)
βj = bβ + (j − 1)ǫ3. (5.4b)

This special configuration is also called the folded instanton [10, 41, 42]. The partition

function of such a gauge origami configuration is given by:

Zinst =
∑

{~λ12}

∑

{~λ23}

q|
~λ12|+|~λ23|Z11[~λ12]Z33[~λ23]Z13[~λ12, ~λ23]Z31[~λ23, ~λ12], (5.5)

where

Z11[~λ12] =
∏

(αi) 6=(α′i′)

Γ(ǫ−1
2 (xαi − xα′i′ − ǫ1))

Γ(ǫ−1
2 (xαi − xα′i′))

·
Γ(ǫ−1

2 (xαi − xα′i′ − ǫ3))

Γ(ǫ−1
2 (xαi − xα′i′ − ǫ1 − ǫ3))

×
Γ(ǫ−1

2 (x
(0)
αi − x

(0)
α′i′))

Γ(ǫ−1
2 (x

(0)
αi − x

(0)
α′i′ − ǫ1))

·
Γ(ǫ−1

2 (x
(0)
αi − x

(0)
α′i′ − ǫ1 − ǫ3))

Γ(ǫ−1
2 (x

(0)
αi − x

(0)
α′i′ − ǫ3))

, (5.6a)

Z33[~λ23] =
∏

(βj) 6=(β′j′)

Γ(ǫ−1
2 (xβj − xβ′j′ − ǫ1))

Γ(ǫ−1
2 (xβj − xβ′j′))

·
Γ(ǫ−1

2 (xβj − xβ′j′ − ǫ3))

Γ(ǫ−1
2 (xβj − xβ′j′ − ǫ1 − ǫ3))

×
Γ(ǫ−1

2 (x
(0)
βj − x

(0)
β′j′))

Γ(ǫ−1
2 (x

(0)
βj − x

(0)
β′j′ − ǫ1))

·
Γ(ǫ−1

2 (x
(0)
βj − x

(0)
β′j′ − ǫ1 − ǫ3))

Γ(ǫ−1
2 (x

(0)
βj − x

(0)
β′j′ − ǫ3))

, (5.6b)

Z13[~λ12, ~λ23] =
∏

(αi)

∏

(βj)

Γ(ǫ−1
2 (xαi − xβj − ǫ1))

Γ(ǫ−1
2 (xαi − xβj))

·
Γ(ǫ−1

2 (xαi − xβj − ǫ3))

Γ(ǫ−1
2 (xαi − xβj − ǫ1 − ǫ3))

×
Γ(ǫ−1

2 (x
(0)
αi − x

(0)
βj ))

Γ(ǫ−1
2 (x

(0)
αi − x

(0)
βj − ǫ1))

·
Γ(ǫ−1

2 (x
(0)
αi − x

(0)
βj − ǫ1 − ǫ3))

Γ(ǫ−1
2 (x

(0)
αi − x

(0)
βj − ǫ3))

, (5.6c)

Z31[~λ23, ~λ12] =
∏

(βj)

∏

(αi)

Γ(ǫ−1
2 (xβj − xαi − ǫ1))

Γ(ǫ−1
2 (xβj − xαi))

·
Γ(ǫ−1

2 (xβj − xαi − ǫ3))

Γ(ǫ−1
2 (xβj − xαi − ǫ1 − ǫ3))

×
Γ(ǫ−1

2 (x
(0)
βj − x

(0)
αi ))

Γ(ǫ−1
2 (x

(0)
βj − x

(0)
αi − ǫ1))

·
Γ(ǫ−1

2 (x
(0)
βj − x

(0)
αi − ǫ1 − ǫ3))

Γ(ǫ−1
2 (x

(0)
βj − x

(0)
αi − ǫ3))

. (5.6d)

We take NS limit ǫ2 → 0 while keeping ǫ1 and ǫ3 fixed. Following the similar procedures

in section 2.1, one finds the saddle point configuration satisfies

1 + q
Q(xγk − ǫ4)Q(xγk − ǫ3)Q(xγk − ǫ1)

Q(xγk + ǫ4)Q(xγk + ǫ3)Q(xγk + ǫ1)
= 0; (γk) = {(αi), (βj)}, (5.7)

where

Q(x) =
N∏

α=1

∞∏

i=1

(x− xαi)
M∏

β=1

∞∏

j=1

(x− xβj). (5.8)
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We denote the Young diagrams which satisfy (5.7) the limit shape configurations ~λ∗
12 and

~λ∗
23, they dominate the full folded instanton partition function given in (5.5) in NS limit:

Zinst ≈ q|
~λ∗

12|+|~λ∗

23|Z11[~λ
∗
12]Z33[~λ

∗
23]Z13[~λ

∗
12,

~λ∗
23]Z31[~λ

∗
23,

~λ∗
12] = q|

~λ∗

12|+|~λ∗

23|Zinst[~λ
∗
12,

~λ∗
23].

(5.9)

To find the resultant BAE, we consider the twisted superpotential arising in the NS limit:

W = limǫ2→0[ǫ2Z] = Wclassical+W1-loop+Winst, whose equation of motion is now given by:

1

2πi

∂W(gγ)

∂gγ
= nγ ; nγ ∈ Z, (5.10)

with gγ ∈ {aα, bβ}, gγ = aα for γ = 1, . . . , N and gγ = bβ for γ = N + 1, . . . N +M . The

classical twisted superpotential is given as

Wclassical = − log q
N∑

α=1

a2α
2ǫ1

− log q
M∑

β=1

b2β
2ǫ3

, (5.11)

and the perturbative one-loop twisted superpotential is

W1-loop =
1

2

∑

(γk) 6=(γ′k′)

{f(x
(0)
γik − x

(0)
γ′k′ − ǫ1)− f(x

(0)
γk − x

(0)
γ′k′ + ǫ1)

+ f(x
(0)
γk − x

(0)
γ′k′ − ǫ3)− f(x

(0)
γk − x

(0)
γ′k′ + ǫ3)

+ f(x
(0)
γk − x

(0)
γ′k′ + ǫ4)− f(xγk − x

(0)
γ′k′ − ǫ4)}, (5.12)

with x
(0)
γk ∈ {x

(0)
αi , x

(0)
βj }. The BAE now can be obtained after some elaborated calculations,

following the same procedures as in (2.22):

1 = q
− aα

2ǫ1

∏

α′( 6=α)

Γ
(
aα−aα′

ǫ1

)

Γ
(
−

aα−aα′

ǫ1

)
Γ
(
−ǫ3−(aα−aα′ )

ǫ1

)

Γ
(
−ǫ3+aα−aα′

ǫ1

)
∏

β

Γ
(
aα−bβ

ǫ3

)

Γ
(
−

aα−bβ
ǫ3

)
Γ
(
−ǫ1−(aα−bβ)

ǫ3

)

Γ
(
−ǫ1+aα−bβ

ǫ3

) , (5.13a)

1 = q
−

bβ
2ǫ3

∏

α

Γ
(
bβ−aα

ǫ1

)

Γ
(
−

bβ−aα
ǫ1

)
Γ
(
−ǫ3−(bβ−aα)

ǫ1

)

Γ
(
−ǫ3+bβ−aα

ǫ1

)
∏

β′( 6=β)

Γ
(
bβ−bβ′

ǫ3

)

Γ
(
−

bβ−bβ′

ǫ3

)
Γ
(
−ǫ1−(bβ−bβ′)

ǫ3

)

Γ
(
−ǫ1+bβ−bβ′

ǫ3

) . (5.13b)

Comparing with the BAE of eCM in eq. (2.23), eq. (5.13) consists of two copies of the eCM

systems. To the best of our knowledge, the BAE for the edCM system has not appeared in

the literature, we therefore propose that (5.13) is a possible one. We will provide supporting

evidence this statement by deriving the commuting Hamiltonians explicitly from the folded

instanton configuration in the following section.

5.1 X(x) for elliptic double Calogero-Moser system

As we have shown in the previous sections that, X-function was constructed upon auxil-

iary lattice as an enhanced version of the original T -function, and it is the characteristic

polynomial for the eCM system. We would like to see if similar construction also applies

for the edCM system, using the gauge origami partition function.
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We claim that the resultant X(x) should be of the following factorizable form:

X(x) = X1(x)× X3(x). (5.14)

When we restore ǫ2 dependence, the two factors are:

X1(x)=
∑

{µ1}

Q(x+ ǫ1)

Q(x)
q|µ1|B12[µ1]

∏

(i,j)∈µ1

Q(x+ s1,ij − ǫ4)Q(x+ s1,ij − ǫ3)Q(x+ s1,ij − ǫ1)

Q(x+ s1,ij + ǫ4)Q(x+ s1,ij + ǫ3)Q(x+ s1,ij + ǫ1)
,

X3(x)=
∑

{µ3}

Q(x+ ǫ3)

Q(x)
q|µ3|B32[µ3]

∏

(i,j)∈Λµ
3

Q(x+ s3,ij − ǫ4)Q(x+ s3,ij − ǫ3)Q(x+ s3,ij − ǫ1)

Q(x+ s3,ij + ǫ4)Q(x+ s3,ij + ǫ3)Q(x+ s3,ij + ǫ1)
,

(5.15)

with the parameters given by:

s1,ij = iǫ3 + jǫ4; B12[µ1] =
∏

(i,j)∈µ1

[
1 +

ǫ1ǫ2
(ǫ3(lij + 1)− ǫ4aij)(ǫ3(lij + 1)− ǫ4aij + ǫ1 + ǫ2)

]
,

(5.16a)

s3,ij = iǫ1 + jǫ4; B32[µ3] =
∏

(i,j)∈µ3

[
1 +

ǫ3ǫ2
(ǫ1(lij + 1)− ǫ4aij)(ǫ1(lij + 1)− ǫ4aij + ǫ3 + ǫ2)

]
,

(5.16b)

and the constraint (4.36) applies. Comparing with the gauge origami construction, we

see that X1(x) corresponds to the configuration n12 = N , n23 = M , and n34 = 1, with

µ1 = λ34, while X3(x) corresponds to the configuration n12 = N , n23 = M , and n14 = 1,

with µ3 = λ14. The x-independent terms in X1(x) (or X3(x)) can be viewed as auxiliary

instanton partition of U(1) gauge theory living on C3 × C4 (or C1 × C4) four-dimensional

subspace. Here we would like to stress that X(x) is not equivalent to having a single gauge

origami consisting n12 = N , n23 = M , n34 = 1, n14 = 1, rather a product of two different

gauge origami systems. The configuration with n12 = N , n23 = M , n34 = 1, n14 = 1

can only be factorizable under NS limit, and without orbifolding. If either orbifolding is

implemented or we keep ǫ2 finite, it is not factorizable.

To show that X(x) has the correct degree P , let us define the analogous functions to

eq. (2.25):

Y1(x) =
Q1(x)

Q1(x− ǫ1)
, Q1(x) =

N∏

α=1

∞∏

i=1

(x− xαi);

Y3(x) =
Q3(x)

Q3(x− ǫ3)
, Q3(x) =

M∏

β=1

∞∏

j=1

(x− xβj). (5.17)

We may now take large x limit for both Y1(x) and Y3(x) and find:

Y1(x) ≈
N∏

α=1

∞∏

i=1

(x− x
(0)
αi )

(x− x
(0)
αi − ǫ1)

=
N∏

α=1

(x− aα) ≈ xN , (5.18a)

Y3(x) ≈
M∏

β=1

∞∏

j=1

(x− x
(0)
βj )

(x− x
(0)
βj − ǫ3)

=
M∏

β=1

(x− bβ) ≈ xM . (5.18b)
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Following the similar argument given for the ordinary eCM model, one can prove that X(x)

is analytic in the complex plane. We may now rewrite X(x) using Y1(x) and Y3(x):

X(x) =
∑

{µ1,µ3}

[
Y1(x+ ǫ1)

∞∏

n=1

Y3(x+ nǫ3)

Y3(x+ ǫ1 + nǫ3)
q|µ1|B[µ1]

×
∏

(i,j)∈µ1

Q(x+ s1,ij − ǫ4)Q(x+ s1,ij − ǫ3)Q(x+ s1,ij − ǫ1)

Q(x+ s1,ij + ǫ4)Q(x+ s1,ij + ǫ3)Q(x+ s1,ij + ǫ1)

]

×

[
Y3(x+ ǫ3)

∞∏

n=1

Y1(x+ nǫ1)

Y1(x+ ǫ3 + nǫ1)
q|µ3|B[µ3]

×
∏

(i,j)∈µ3

Q(x+ s3,ij − ǫ4)Q(x+ s3,ij − ǫ3)Q(x+ s3,ij − ǫ1)

Q(x+ s3,ij + ǫ4)Q(x+ s3,ij + ǫ3)Q(x+ s3,ij + ǫ1)

]
.

(5.19)

In large x limit, we have

Y1(x+ ǫ1)Y3(x+ ǫ3) ≈ xNxM = xP , (5.20)

which is the desired degree. We will next show that X(x) indeed reproduces the commuting

Hamiltonians of the edCM system.

5.2 Commuting Hamiltonians from X(x) for edCM system

Here we again introduce ZP -type full surface defect on C2
13 ⊂ C4 with orbifolding in

C2
24 ⊂ C4, such that the orbifolding acts on the coordinate of C4 by (z1, z2, z3, z4) →

(z1, ζz2, z3, ζ
−1z4) with ζP = 1. This is not a co-dimension two defect, but rather it should

be interpreted as a generalization of the surface defects. Similar to what we had done for

Toda and eCM systems, we define the coloring function on the indices of moduli parameters

c : {α}Nα=1 ∪ {β}Mβ=1 → ZP which assigns each color α and β to a representation Rω of ZP ,

ω = 0, 1, . . . , P − 1. In the simplest case, c is defined as

c(α) = α− 1; c(β) = N + β − 1. (5.21)

For this coloring function, we will denote [α] = {0, . . . , N−1} and [β] = {N, . . . , N+M−1}

such that [α] ∪ [β] = {0, . . . , P − 1}, which is the range of the index ω. Orbifolding also

splits coupling q into P -copies denoted by

q =
P−1∏

ω=0

qω; qω =
zω

zω−1
, (5.22)

with

zω =

{
zα = exα , c−1(ω + 1) = α ∈ {α = 1, . . . , N}

wβ = eyβ , c−1(ω + 1) = β ∈ {β = 1, . . . ,M}.
(5.23)

Under the orbifolding, we have

Y1(x) =
P−1∏

ω=1

Y1,ω(x); Y3(x) =
P−1∏

ω=0

Y3,ω(x), (5.24)
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with

Y1,ω(x) = (x− aω)
∏

(α,(i,j))∈K12
ω

[
(x− aα − (i− 1)ǫ1 − ǫ1)

(x− aα − (i− 1)ǫ1)

]

×
∏

(α,(i,j))∈K12
ω+1

[
(x− aα − (i− 1)ǫ1)

(x− aα − (i− 1)ǫ1 − ǫ1)

]
, (5.25a)

Y3,ω(x) = (x− bω)
∏

(β,(i,j))∈K32
ω

[
(x− bβ − (i− 1)ǫ3 − ǫ3)

(x− bβ − (i− 1)ǫ1

]

×
∏

(β,(i,j))∈K32
ω+1

[
(x− bβ − (i− 1)ǫ3)

(x− bβ − (i− 1)ǫ3 − ǫ3)

]
, (5.25b)

under NS limit ǫ2 → 0 while keeping ǫ1 and ǫ3 finite. We also consider the following Young

diagram boxes under orbifolding:

K12
ω := {(α, (i, j)) | α = 1, . . . , N ; (i, j) ∈ λ

(α)
12 ; c(α) + j ≡ ω mod P}, (5.26a)

K32
ω := {(β, (i, j)) | β = 1, . . . ,M ; (i, j) ∈ λ

(β)
32 ; c(β) + j ≡ ω mod P}, (5.26b)

where K12
ω and K32

ω are the collections of Young diagram boxes from ~λ12 and ~λ32 which are

assigned to the representation Rω under orbifolding. They are the same as the definition

in eq. (2.34). Denoting

k12ω = |K12
ω |, ν12ω = k12ω − k12ω+1, σ12

ω =
ǫ1
2
k12ω +

∑

(α,(i,j))∈K12
ω

(aα + (i− 1)ǫ1), (5.27a)

k32ω = |K32
ω |, ν32ω = k32ω − k32ω+1; σ32

ω =
ǫ3
2
k32ω +

∑

(β,(i,j))∈K32
ω

(bβ + (i− 1)ǫ3), (5.27b)

as the generalization to eq. (2.34) and eq. (2.35). Performing the large x expansion of

Y1,ω(x) and Y3,ω(x) under orbifolding gives

Y1,ω(x) = [x− ac−1(ω)] exp
[ǫ1
x
ν12ω−1 +

ǫ1
x2

(σ12
ω−1 − σ12

ω ) + · · ·
]
; c(ω) ∈ [α], (5.28a)

Y3,ω(x) = [x− bc−1(ω)] exp
[ǫ3
x
ν32ω−1 +

ǫ3
x2

(σ32
ω−1 − σ32

ω ) + · · ·
]
; c(ω) ∈ [β]. (5.28b)

The notation here follows eq. (5.27). Under orbifolding, X1(x) and X3(x) now splits into

X1,ω(x) = Y1,ω+1(x+ ǫ1)

∞∏

n=1

Y3,ω(x+ nǫ3)

Y3,ω(x+ ǫ1 + nǫ3)

∑

{µ1}

B12
ω [µ1]×

∏

(i,j)∈µ1

Y1,ω+1−j(x+ sij − ǫ3)Y1,ω+1−j+1(x+ sij − ǫ4)

Y1,ω+1−j(x+ sij)Y1,ω+1−j+1(x+ sij + ǫ1)

Y3,ω+1−j(x+ sij − ǫ1)Y3,ω+1−j+1(x+ sij − ǫ4)

Y3,ω+1−j(x+ sij)Y3,ω+1−j+1(x+ sij + ǫ3)
,

(5.29a)

X3,ω(x) = Y3,ω+1(x+ ǫ3)

∞∏

n=1

Y1,ω(x+ nǫ1)

Y1,ω(x+ ǫ3 + nǫ1)

∑

{µ3}

B32
ω [µ3]×

∏

(i,j)∈µ3

Y1,ω+1−j(x+ sij − ǫ3)Y1,ω+1−j+1(x+ sij − ǫ4)

Y1,ω+1−j(x+ sij)Y1,ω+1−j+1(x+ sij + ǫ1)

Y3,ω+1−j(x+ sij − ǫ1)Y3,ω+1−j+1(x+ sij − ǫ4)

Y3,ω+1−j(x+ sij)Y3,ω+1−j+1(x+ sij + ǫ3)
.

(5.29b)
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Here B12
ω [µ1] and B32

ω [µ3] are the U(1) orbifolded instanton partitions living on C3 × C4

and C1 × C4 with instanton configuration µ1 and µ3 respectively, where

B12
ω [µ1] =

∏

(i,j)∈µ1

qω+1−jB1(ǫ3lij)

∣∣∣∣∣∣
aij=0

=

µ1,1∏

l=1

µT
1,l−µT

1,l+1∏

h=1

zω

zω−l
B1(ǫ3h); B1(x) = 1 +

ǫ1
x
,

(5.30a)

B32
ω [µ3] =

∏

(i,j)∈µ3

qω+1−jB3(ǫ1lij)

∣∣∣∣∣∣
aij=0

=

µ3,1∏

l=1

µT
3,l−µT

3,l+1∏

h=1

zω

zω−l
B3(ǫ1h); B3(x) = 1 +

ǫ3
x
.

(5.30b)

We will consider the summation over all possible partition

B12
ω =

∑

{µ1}

B12
ω [µ1], (5.31a)

B32
ω =

∑

{µ3}

B32
ω [µ3], (5.31b)

we can regard B1(x) and B3(x) are orbifolded version of (5.16a) and (5.16b).

After some tedious but similar calculations, one gets for (ω + 1) ∈ [α], the large x

expansion gives

1

B12
ω

X1,ω(x) =x+ ǫ1−ac−1(ω+1)+ǫ1ν
12
ω +

1

x

[
1

2
(ǫ1ν

12
ω −ac−1(ω+1))

2−
1

2
(ac−1(ω+1))

2+ǫ1D
12
ω

+
∑

{µ1}

B12
ω [µ1]

B12
ω

(
ǫ3

∑

(ω′+1)∈[α]

ǫ4k
µ
1,ω′ −

(
ǫ1ν

12
ω′ − ac−1(ω′+1)

)
νµ1,ω′

+ ǫ1
∑

(ω′+1)∈[β]

ǫ4k
µ
1,ω′ −

(
ǫ3ν

12
ω′ − bc−1(ω′+1)

)
νµ1,ω′

)]
+ · · · (5.32)

with D12
ω = σ12

ω − σ12
ω+1. We divide the X1,ω(x)-function by the factor B12

ω for the normal-

ization. Similarly for (ω + 1) ∈ [β], we have large x expansion:

1

B32
ω

X3,ω(x) =x+ ǫ3−bc−1(ω+1) + ǫ3ν
32
ω +

1

x

[
1

2
(ǫ3ν

32
ω −bc−1(ω+1))

2−
1

2
(bc−1(ω+1))

2 + ǫ3D
32
ω

+
∑

{µ3}

B32
ω [µ3]

B32
ω

(
ǫ3

∑

(ω′+1)∈[α]

ǫ4k
µ
3,ω′ −

(
ǫ1ν

32
ω′ − ac−1(ω′+1)

)
νµ3,ω′

+ ǫ1
∑

(ω′+1)∈[β]

ǫ4k
µ
3,ω′ −

(
ǫ3ν

32
ω′ − bc−1(ω′+1)

)
νµ3,ω′

)]
+ · · · (5.33)

with D32
ω = σ32

ω − σ32
ω+1. Again we normalize X3,ω(x) by diving the overall expression with

B32
ω . For all ω = 0, . . . , P − 1, we can define:

∇q = q
∂

∂q
; ∇q

ω = qω
∂

∂qω
; ∇z

ω = zω
∂

∂zω
. (5.34)
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The following combination gives a degree P function of x.

∏

(ω+1)∈[α]

X1,ω

ǫ1B12
ω

∏

(ω+1)∈[β]

X3,ω

ǫ3B32
ω

, (5.35)

this can be seen from the fact that each
X1,ω

B12
ω

or
X3,ω

B32
ω

factor in the product above is of degree

one. Denote the first commuting Hamiltonian as

h1 =
∑

(ω+1)∈[α]

ǫ1ν
12
ω −ac−1(ω+1)+

∑

(ω+1)∈[β]

ǫ3ν
32
ω −bc−1(ω+1) =

∑

(ω+1)∈[α]

P 12
ω +

∑

(ω+1)∈[β]

P 32
ω , (5.36)

the conjugated momentum is denoted as P 12
ω = (ǫ1∇z

ω − ac−1(ω+1)) when (ω + 1) ∈ [α],

P 23
ω = (ǫ3∇w

ω − bc−1(ω+1)) when (ω + 1) ∈ [β].

We may also write the second commuting Hamiltonian h2 as

h2 =
∑

(ω+1)∈[α]

1

2ǫ1
(P 12

ω )2 −
1

2ǫ1
(ac−1(ω+1))

2 +
∑

(ω+1)∈[β]

1

2ǫ3
(P 23

ω )2 −
1

2ǫ3
(bc−1(ω+1))

2

+ k
∑

(ω+1)∈[α]

(ǫ4∇
q
ω − P 12

ω ∇z
ω) logB

12
αα(~z; τ) +

∑

ω

(ǫ4∇
q
ω − Pω∇

z
ω) logB

12
αβ(~z, ~w; τ)

+
∑

ω

(ǫ4∇
q
ω − Pω∇

z
ω) logB

32
βα(~w, ~z; τ) +

1

k

∑

(ω+1)∈[β]

(ǫ4∇
q
ω − P 23

ω ∇z
ω) logB

32
ββ(~w; τ),

(5.37)

with k = ǫ3/ǫ1. Let us define:

B12 =
∏

(ω+1)∈[α]

B12
ω = B12

αα(~z; τ)B
12
αβ(~z, ~w; τ); B32 =

∏

(ω+1)∈[β]

B32
ω = B32

βα(~w, ~z; τ)B
32
ββ(~w; τ),

(5.38)

where the zα and wβ dependent functions are

B12
αα′(~z; τ) =


 ∏

N≥α>α′≥0

1

1− zα
zα′

N∏

α=0

N∏

α′=0

1

(q zα
zα′

; q)∞



−

ǫ4
ǫ3

;

B12
αβ(~z, ~w; τ) =




N∏

α=1

M∏

β=1

1

(q zω
wβ

; q)∞


 ;

B32
βα(~w, ~z; τ) =




N∏

α=1

M∏

β=1

1

1−
wβ

zα

N∏

α=1

M∏

β=1

1

(q
wβ

zα
; q)∞


 ;

B32
ββ′(~w; τ) =


 ∏

M≥β>β′≥0

1

1−
wβ

wβ′

M∏

β=1

M∏

β′=1

1

(q
wβ

wβ′
; q)∞



−

ǫ4
ǫ1

. (5.39)

We remark ǫ4 = −(ǫ1+ ǫ3) in the NS limit ǫ2 → 0 due to the constraint (4.36). Notice that

B12
αβ is not symmetrical to B32

βα for q-independent part. The reason of this is due to the

specific coloring function c we chose in eq. (5.21), and we will now explain how this works.
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Based on (5.30a) and (5.30b) before summing over all Young diagrams, the q independent

part comes from the product:

ω′∏

j=1

qω+1−j =
zω

zω−ω′

; ω > ω′ ≥ 1. (5.40)

Using the coloring function defined in eq. (5.21) for zα = zα−1 and wβ = zN+β−1, there is

no such way to have

zα
wβ

=
zα−1

zN+β−1
=

1

qαqα+1 · · · qN+β−1
(5.41)

since this expression contributes negative number of instantons (inverse power on counting

qω), while its inverse is legit. This is the cause of asymmetry between B12
αβ and B32

βα in the

q-independent factor.

As before we dropped the z-independent factors (which appeared in eq. (3.22)), since

they can be removed in the final stage by redefining zero point of energy level as shown

previously. The q-Pochhammer notation is defined in eq. (A.3). We may therefore denote

the z-dependent parts as:

logB12
αα = −

ǫ4
ǫ3

logQαα; logB12
αβB

32
βα = logQαβ ; logB32

ββ = −
ǫ4
ǫ1

logQββ, (5.42)

such that Q12 and Q32 combine to give a full θ-function, i.e.

Q12Q32 = Qαα(~z)Qαβ(~z, ~w)Qββ(~w)η(τ)
P qP

2/24

~z~ρ
. (5.43)

with ~ρ now is the P -dimensional Weyl vector. One may refer to how the additional factors

appears in eq. (A.17). This structure also shows up in trigonometric limit [23],with

Q−1
αα =


 ∏

N≥α>α′≥1

θ11

(
zα
zα′

; τ
)

η(τ)


 ; (5.44a)

Q−1
αβ =




N∏

α=1

M∏

β=1

θ11

(
zα
wβ

; τ
)

η(τ)


 ; (5.44b)

Q−1
ββ =


 ∏

M≥β>β′≥1

θ11

(
wβ

wβ′
; τ
)

η(τ)


 . (5.44c)

Following a similar calculation as in the previous section, the potential after canonical

transformation (3.30) can be written as

V =
∑

(ω+1)∈[α]

kǫ4
2

(∇z
ω)

2 logQαα +
∑

(ω+1)∈[β]

ǫ4
2k

(∇z
ω)

2 logQββ +
ǫ4
2

∑

(ω+1)∈[α]∪[β]

(∇z
ω)

2 logQαβ

=− ǫ1k(k+1)
∑

α>α′

℘(zα/zα′ ; τ)− ǫ1(k + 1)
∑

α,β

℘(zα/wβ ; τ)−
ǫ1
k
(k+1)

∑

β>β′

℘(wβ/wβ′ ; τ)

(5.45)
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with ǫ4 = −(ǫ1 + ǫ3). We now have the second Hamiltonian written as:

−
1

ǫ1
h2 =

N∑

α=1

1

2

(
∇z

α −
aα
ǫ1

)2

+
M∑

β=1

k

2

(
∇w

α −
bβ
ǫ3

)2

(5.46)

− k(k+1)
∑

α>α′

℘(zα/zα′ ; τ)− (k+1)
∑

α,β

℘(zα/wβ ; τ)−

(
1

k
+1

)∑

β>β′

℘(wβ/wβ′ ; τ).

Similar to eCM system, using the fact that (5.14) is the q-character defined upon limit

shape, which dominates in the NS-limit.

t(x) = 〈X (x)〉 =
X(x)Zinst[~λ

∗
12,

~λ∗
23]

Zinst[~λ∗
12,

~λ∗
23]

. (5.47)

where t(x) = xP + E1x
P−1 + E2x

P−2 + · · · + EP is the characteristic polynomial. When

Hamiltonian are treated as operators, we have

X(x)Zinst[~λ
∗
12,

~λ∗
23](~x,~y) = t(x)Zinst[~λ

∗
12,

~λ∗
23](~x,~y), (5.48)

and the Canonical transformation gives a prefactor to the ground state wave function

Ψ(x,y) of the edCM model:

Ψ(~x,~y) =

[
Qαα(~x)

ǫ1+ǫ3
ǫ1 Qαβ(~x,~y)Qββ(~y)

ǫ1+ǫ3
ǫ3

]−1

Zinst[~λ
∗
12,

~λ∗
23](~x,~y);

h2Ψ(~x,~y) = E2Ψ(~x,~y). (5.49)

We have thus successfully reproduced the potential of the edCM system defined in eq. (4.1).

The parameter dictionary can be summarized into the following table:

Gauge Theory Integrable System

aα, bβ Coulomb Moduli Momenta

τ Complex gauge coupling Elliptic modulus

ǫ1, ǫ3 Ω-deformation parameters Coupling constant (in the form of k = ǫ3/ǫ1)

N , M Gauge group rank Number of particles

zα, wβ Ratios between orbifolded couplings Exponentiated coordinates

6 Discussions

Let us end this work by discussing a few possible future directions.

1. The edCM was shown to have no natural classical limits in section 4. This also implies

that the usual story of identifying the gauge theoretic Seiberg-Witten curve with the

spectral curve of classical integrable system does not apply here. Due to the same

reason, the quantum Dunkl operators, rather than the classical Lax matrices, were

used to construct commuting Hamiltonians. However we have also shown that we can

use intersecting D-brane configuration to construct the gauge-origami theory which

are directly related to the edCM systems. It would be very interesting to consider the
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possible M-theory lift of such a configuration, this should illuminate the construction

of the inherently quantum Seiberg-Witten curve of gauge-origami theory hence the

spectral curves of the edCM systems. It would be also interesting to explore a direct

gauge theoretic interpretation of the (double) Dunkl operator.

2. Double Calogero-Moser system was first constructed by considering root system of

supergroup. When coupling constant k < 0, the gauge theory associated to the edCM

system with Hamiltonian in eq. (4.1) should be a supergroup gauge theory, whose

partition function is obtained in [43]. We hope to report on this and other related

topics in our forthcoming work.

3. The gauge groups we discussed in this paper are of SU-type. In principle one may also

consider SO/Sp gauge groups. It will be nice if one can find commuting Hamiltonians

of corresponding integrable system using the orbifolding and large x expansion. The

same argument also extend to various types of quiver gauge theory (several A-types

quiver gauge theory has been considered in [33]). In addition, we would like to know if

the gauge origami construction can be generalized to SO/Sp gauge groups. This will

involve introducing orientifolds to the intersecting D-brane construction for SU case.

4. In the single eCM system, the quantization condition m = ǫ3 = Z × ~ = Z × ǫ1
can be implemented. How does this arrangement affect both the integrable system

and gauge theory? And we would like to know whether the edCM shares the same

quantization condition?
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A List of relevant mathematical functions

A.1 Random partition

A partition is defined as a way of expressing a non-negative integer n as summation over

other non-negative integers. Each partition can be labeled by a Young diagram λ =
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(λ1, λ2, . . . , λℓ(λ)) with λi ∈ N such that

n = |λ| =

ℓ(λ)∑

i=1

λi. (A.1)

We define the generating function of such a partition as

∑

λ

q|λ| =
1

(q; q)∞
, (q; q)∞ =

∞∏

n=1

(1− qn) ; (A.2a)

∑

λ

tℓ(λ)q|λ| =
1

(qt; q)∞
; (qt; q)∞ =

∞∏

n=1

(1− tqn). (A.2b)

The q-shifted factorial (the q-Pochhammer symbol) is defined as

(z; q)n =

n−1∏

m=0

(1− zqm) (A.3)

A.2 Elliptic function

Here we fix our notation for the elliptic functions. The so-called Dedekind eta function is

denoted as

η(τ) = e
πiτ
12 (q; q)∞. (A.4)

The first Jacobi θ function is denoted as:

θ11(z; τ) = ie
πiτ
4 z

1
2 (q; q)∞(qz; q)∞(z−1; q)∞, (A.5)

whose series expansion

θ11(z; τ) = i
∑

r∈Z+ 1
2

(−1)r−
1
2 zreπiτr

2
= i

∑

r∈Z+ 1
2

(−1)r−
1
2 erxeπiτr

2
, (A.6)

implies that it obeys the heat equation

1

πi

∂

∂τ
θ11(z; τ) = (z∂z)

2θ11(z; τ). (A.7)

The Weierstrass ℘-function

℘(z) =
1

z2
+

∑

p,q≥0

{
1

(z + p+ qτ)2
−

1

(p+ qτ)2

}
, (A.8)

is related to theta and eta functions by

℘(z; τ) = −(z∂z)
2 log θ11(z; τ) +

1

πi
∂τ log η(τ). (A.9)
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A.3 Higher rank theta function

Let us define

ΘAN−1
(~z; τ) = η(τ)N

∏

α>β

θ11(zα/zβ ; τ)

η(τ)
(A.10)

as the rank N − 1 theta function, which also satisfies the heat equation [44]

N
∂

∂τ
ΘAN−1

(~z; τ) = πi∆~zΘAN−1
(~z; τ), (A.11)

with the N -variable Laplacian:

∆~z =
N−1∑

ω=0

(zω∂zω)
2. (A.12)

A.4 Orbifolded partition

For the purpose in the main text, we consider the orbifolded coupling

q =
N∏

ω=0

qω; qω+N = qω, (A.13)

and

qω =
zω
zω−1

; zω+N = qzω. (A.14)

We also consider the orbifolded version of the generating function of partitions (q; q)−1
∞

in (A.2). Given a finite partition λ = (λ1, . . . , λℓ(λ)), we define

Qλ
ω =

λ1∏

j=1

q
λt
j

ω+1−j =

ℓ(λ)∏

i=1

zω
zω−λi

, (A.15)

where we used the relation (3.18). The summation over all possible partition is given by

Qω =
∑

λ

Qλ
ω =

∑

λ

ℓ(λ)∏

i=1

(
zω

zω−λi

)
=

∑

l0,...,lN−1,l≥0

N−1∏

α=1

(
zω
zα

)lα

ql. (A.16)

The function Q(~z; τ) is the orbifolded version of the generating function of partitions (A.2),

Q =
N−1∏

ω=0

Qω(~z; τ)

=
∏

N−1≥α>β≥0

1

( zαzβ ; q)∞(q
zβ
zα
; q)∞

N−1∏

α=0

1

(q; q)∞

=
∏

N−1≥α>β≥0

q1/12η(τ)
√

zα/zβ
θ11(zα/zβ ; τ)

×

[
q1/24

η(τ)

]N

=


η(τ)−N

∏

N−1≥α>β≥0

η(τ)

θ11(zα/zβ ; τ)


 qN

2/24

~z~ρ

=
1

ΘAN−1
(~z; τ)

qN
2/24

~z~ρ
, (A.17)
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where ~ρ is the Weyl vector of SU(N) Lie group, whose entries are given as

~ρ = (ρ0, . . . , ρN−1); ρω = ω −
N − 1

2
; |~ρ|2 =

N−1∑

ω=0

ρ2ω =
N(N2 − 1)

12
; ~z~ρ =

N−1∏

ω=0

zρωω .

(A.18)

Using eq. (A.11), it is easy to prove that the Q-function satisfies

0 =
∑

ω

∇q
ω logQ−

1

2
∆~z logQ+

1

2

∑

ω

(∇z
ω logQ)2, (A.19)

with ∑

ω

∇q
ω = N∇q + ~ρ · ∇~z. (A.20)
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