Degree and height estimates for modular equations on PEL Shimura varieties - Archive ouverte HAL
Article Dans Une Revue Journal of the London Mathematical Society Année : 2022

Degree and height estimates for modular equations on PEL Shimura varieties

Résumé

We define modular equations in the setting of PEL Shimura varieties as equations describing Hecke correspondences, and prove upper bounds on their degrees and heights. This extends known results about elliptic modular polynomials, and implies complexity bounds for number-theoretic algorithms using these modular equations. In particular, we obtain tight degree bounds for modular equations of Siegel and Hilbert type for abelian surfaces.
Fichier principal
Vignette du fichier
heights-modpol.pdf (561.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02436057 , version 1 (12-01-2020)
hal-02436057 , version 2 (06-03-2020)
hal-02436057 , version 3 (14-05-2021)
hal-02436057 , version 4 (16-08-2021)

Identifiants

Citer

Jean Kieffer. Degree and height estimates for modular equations on PEL Shimura varieties. Journal of the London Mathematical Society, 2022, 105 (2), pp.1314-1361. ⟨10.1112/jlms.12540⟩. ⟨hal-02436057v4⟩
233 Consultations
160 Téléchargements

Altmetric

Partager

More