Degree and height estimates for modular equations on PEL Shimura varieties - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Degree and height estimates for modular equations on PEL Shimura varieties

Résumé

We define modular equations in the setting of PEL Shimura varieties as equations describing Hecke correspondences, and prove degree and height bounds for them. This extends known results about classical modular polynomials. In particular, we obtain tight degree bounds for modular equations of Siegel and Hilbert type for abelian surfaces. One step consists in proving tight bounds on the heights of rational fractions over number fields in terms of the heights of their evaluations; the results we obtain are of independent interest.
Fichier principal
Vignette du fichier
paper.pdf (501.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02436057 , version 1 (12-01-2020)
hal-02436057 , version 2 (06-03-2020)
hal-02436057 , version 3 (14-05-2021)
hal-02436057 , version 4 (16-08-2021)

Identifiants

Citer

Jean Kieffer. Degree and height estimates for modular equations on PEL Shimura varieties. 2020. ⟨hal-02436057v2⟩
233 Consultations
160 Téléchargements

Altmetric

Partager

More