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Degree and height estimates for modular equations
on PEL Shimura varieties

Jean Kieffer

Abstract

We define modular equations in the setting of PEL Shimura varieties as equations describing
Hecke correspondences, and prove upper bounds on their degrees and heights. This extends
known results about elliptic modular polynomials, and implies complexity bounds for number-
theoretic algorithms using these modular equations. In particular, we obtain tight degree bounds
for modular equations of Siegel and Hilbert type for abelian surfaces.

1. Introduction

Modular equations encode the presence of isogenies between polarized abelian varieties. An
example is given by the elliptic modular polynomial Φℓ, where ℓ is a prime: this bivariate
polynomial vanishes on the j-invariants of ℓ-isogenous elliptic curves [9, §11.C], and can be
used to detect and compute such isogenies [11]. Elliptic modular polynomials are used for
instance in the SEA algorithm to count points on elliptic curves over finite fields [32], and in
multi-modular methods to compute class polynomials of imaginary quadratic fields [34]; being
able to compute isogenies also has applications in cryptography. Analogues of Φℓ for principally
polarized abelian surfaces, called Siegel and Hilbert modular equations in dimension 2, have
recently been defined and computed [24, 25, 21], and are of similar interest.

In the first part of this paper, we define modular equations in the general setting of
PEL Shimura varieties of finite level; these varieties are moduli spaces for abelian varieties
with polarization, endomorphisms, and level structure, hence the name. Choose connected
components S and T of such a Shimura variety of dimension n ≥ 1; they have a canonical
model over a certain number field L. Choose coordinates on S and T that are defined
over L. Let Hδ be an absolutely irreducible Hecke correspondence defined by an adelic
element δ of the underlying reductive group, and let d(δ) be the degree of Hδ. In the modular
interpretation, Hδ parametrizes isogenies of a certain degree l(δ) between abelian varieties
with PEL structure. Then the modular equations of level δ are a family of n+ 1 univariate
polynomials (Ψδ,m)1≤m≤n+1 with coefficients in the function field L(S) of S, of degree at
most d(δ), describing Hδ on S × T . This definition includes all the examples of modular
polynomials cited above, and provides a unified context to study them.

For each 1 ≤ m ≤ n+ 1, the coefficients of Ψδ,m can be seen as multivariate rational fractions
with coefficients in L. From an algorithmic point of view, two quantities are of interest: first,
the total degree of these fractions; and second, their height, which measures the size of their
coefficients. For instance, if F ∈ Q(Y1, . . . , Yn), write F = P/Q where P,Q ∈ Z[Y1, . . . , Yn] are
coprime; then the height h(F) of F is defined as the maximum of log |c|, where c runs through
the nonzero coefficients of P and Q.
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Our main result gives upper bounds on the degrees and heights of the coefficients of modular
equations on a given PEL Shimura variety in terms of d(δ) and l(δ). This provides complexity
bounds for algorithms involving these modular equations.

Theorem 1.1. Let S and T be connected components of a simple PEL Shimura variety of
type (A) or (C) of finite level and dimension n ≥ 1, with underlying reductive group G. Let L be
the field of definition of S and T , and choose coordinates on S and T that are defined over L.
Then there exist constants C1 and C2 such that the following holds. Let Hδ be an absolutely
irreducible Hecke correspondence on S × T defined by an adelic element δ of G; let d(δ) be
the degree of Hδ, and let l(δ) be the degree of the isogenies described by Hδ in the modular
interpretation. Let F be a multivariate rational fraction over L occuring as a coefficient of one
of the modular equations Ψδ,m for 1 ≤ m ≤ n+ 1. Then

(i) The total degree of F is bounded above by C1 d(δ).

(ii) The height of F is bounded above by C2 d(δ)max{1, log l(δ)}.

This result generalizes known bounds on the size of the elliptic modular polynomial Φℓ,
which has degree ℓ+ 1 in both variables. We have h(Φℓ) ∼ 6ℓ log ℓ as ℓ tends to infinity [8],
and explicit bounds can be given [4]. Since d(δ) = ℓ+ 1 and l(δ) = ℓ in this case, Theorem 1.1
seems optimal up to the value of the constants.

In the case of Siegel and Hilbert modular equations in dimension 2, this result is new, and
we can provide explicit values for the constants C1 and C2. In particular, the degree bounds
that we obtain match exactly with experimental data.

The strategy to prove part (i) of Theorem 1.1 is to exhibit a particular modular form that
behaves as the denominator of Ψδ,m, and to control its weight; then, we show that rewriting
quotients of modular forms in terms of the chosen coordinates transforms bounded weights
into bounded degrees. The proof of part (ii) is inspired by previous works on Φℓ [31]. We prove
height bounds on evaluations of modular equations at certain points using well-known results
on the Faltings height of isogenous abelian varieties [12]. Then we use a general tight relation
between the height of a rational fraction over a number field and the height of its evaluations
at sufficiently many points, proved by the author in a separate paper [18].

This paper is organized as follows. In Section 2, we recall the necessary background on PEL
Shimura varieties. In Section 3, we define the modular equations associated with a choice of
PEL setting and absolutely irreducible Hecke correspondence, and explain how we recover the
Siegel and Hilbert modular equations in dimension 2 as special cases. Sections 4 and 5 are
devoted to the proof of the degree and height bounds respectively.

2. Background on PEL Shimura varieties

Our presentation is based on Milne’s expository notes [27], which serve as a general reference
for this section. These notes are themselves based on Deligne’s reformulation of Shimura’s
works [10]. We use the following notation: if G is a connected reductive algebraic group over Q,
then

• Gder is the derived group of G,
• Z is the center of G,
• Gad = G/Z is the adjoint group of G,
• T = G/Gder is the largest abelian quotient of G,
• ν : G→ T is the natural quotient map,
• Gad(R)+ is the connected component of 1 in Gad(R) for the real topology,
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• G(R)+ is the preimage of Gad(R)+ in G(R), and finally
• G(Q)+ = G(Q) ∩G(R)+.

We write Af for the ring of finite adeles of Q.

2.1. Simple PEL Shimura varieties of type (A) or (C)

PEL data. Let (B, ∗) be a finite-dimensional simple Q-algebra with positive involution. The
center F of B is a number field; let F0 ⊂ F be the subfield of invariants under ∗. For simplicity,
we make the technical assumption that B is either of type (A) or (C) [27, Prop. 8.3]: this means
that for every embedding θ of F0 in an algebraic closure Q of Q, the algebra with positive
involution (B ⊗F0,θ Q, ∗) is isomorphic to a product of factors of the form, respectively,

(A) Mn(Q)×Mn(Q) with (a, b)∗ = (bt, at), or

(C) Mn(Q) with a∗ = at.

Let (V, ψ) be a faithful symplectic (B, ∗)-module. This means that V is a finite-dimensional
Q-vector space equipped with a faithful B-module structure and a nondegenerate alternating
Q-bilinear form ψ such that for all b ∈ B and for all u, v ∈ V ,

ψ(b∗u, v) = ψ(u, bv).

Let GLB(V ) denote the group of automorphisms of V respecting the action of B, and let G
be its reduced algebraic subgroup defined by

G(Q) =
{
g ∈ GLB(V ) | ψ(gx, gy) = ψ(µ(g)x, y) for some µ(g) ∈ F×

0

}
.

The group G is connected and reductive, and its derived group is Gder = ker(µ) ∩ ker(det) [27,
Prop. 8.7]. We warn the reader that our G is denoted by G1 in [27, §8 of the 2017 version]. In
Milne’s terminology, our G will define a Shimura variety (so that the results of [27, §5] apply),
but not strictly speaking a PEL Shimura variety. This choice of reductive group will allow us
to consider more Hecke correspondences later on.

Let x be a complex structure on V (R), meaning an endomorphism of V (R) such that
x2 = −1. We say that x is positive for ψ if it commutes with the action of B and if the
bilinear form (u, v) 7→ ψ

(
u, x(v)

)
on V (R) is symmetric and positive definite. In particular,

x ∈ G(R) and µ(x) = 1. Such a complex structure x0 exists [27, Prop. 8.14]. Define X+ to
be the orbit of x0 under the action of G(R)+ by conjugation; the space X+ is a hermitian
symmetric domain [27, Cor. 5.8]. We call the tupe (B, ∗, V, ψ,G,X+) a simple PEL Shimura
datum of type (A) or (C), or simply a PEL datum. To simplify notations, we abbreviate PEL
data as pairs (G,X+), the underlying data (V, ψ) and (B, ∗) being implicit.

PEL Shimura varieties. Let (G,X+) be a PEL datum as above, let K be a compact open
subgroup of G(Af ), and let K∞ be the stabilizer of x0 in G(R)+. The PEL Shimura variety
associated with (G,X+) of level K is the double quotient

ShK(G,X+)(C) = G(Q)+\(X+ ×G(Af ))/K

= G(Q)+\(G(R)+ ×G(Af ))/K∞ ×K.
(2.1)

Actually, this quotient will be the set of C-points of the Shimura variety, hence the notation.
In the first line of (2.1), the group G(Q)+ acts on both X+ and G(Af ) by conjugation and left
multiplication respectively, and K acts on G(Af ) by right multiplication. When the context
is clear, we omit (G,X+) from the notation. The set ShK(C) is given the quotient topology
obtained from the real topology on G(R)+ and the adelic topology on G(Af ).

In order to describe ShK(C) more explicitly, we study its connected components. The
projection to the second factor induces a map with connected fibers from ShK(C) to the double
quotient G(Q)+\G(Af )/K, which is finite [27, Lem. 5.12]. Let C be a set of representatives
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in G(Af ) for this double quotient. The connected component Sc of ShK(C) indexed by c ∈ C can
be identified with Γc\X+, where Γc = G(Q)+ ∩ cKc−1 is an arithmetic subgroup of Aut(X+)
[27, Lem. 5.13]. Thus, the Shimura variety ShK(C) has a natural structure of a complex analytic
space, and is an algebraic variety by the theorem of Baily and Borel [27, Thm. 3.12].

Since Gder is simply connected, by [27, Thm. 5.17 and Lem. 5.20] (the assumption that K
is sufficiently small is not actually needed there), the map ν induces an isomorphism

G(Q)+\G(Af )/K ≃ ν(G(Q)+)\T (Af)/ν(K).

Therefore the set of connected components of ShK(C) is a finite abelian group. Moreover, each
connected component is itself a Shimura variety with underlying group Gder [27, Rem. 5.23].

A fundamental theorem states that ShK(G,X+) exists as an algebraic variety defined over
the reflex field E(G,X+), which is a number field contained in C, depending only on the PEL
datum [27, §12-14]. The field of definition of the individual connected components of ShK(C)
depends on K, and is a finite abelian extension of E(G,X+).

2.2. The modular interpretation

Our motivation in constructing PEL Shimura varieties is to obtain moduli spaces of
complex abelian varieties with polarization, endomorphism, and level structures. This modular
interpretation of PEL Shimura varieties is usually formulated in terms of isogeny classes of
abelian varieties [27, Thm. 8.17]. In order to obtain a modular interpretation in terms of
isomorphism classes of abelian varieties in the spirit of [6, §2.6.2], we fix

• a PEL datum (G,X+),
• a lattice Λ0 ⊂ V ,
• a compact open subgroupK ⊂ G(Af ) which stabilizes the lattice Λ̂0 = Λ0 ⊗ Ẑ ⊂ V (Af ),

and
• a set C ⊂ G(Af ) of representatives for the finite double quotient G(Q)+\G(Af )/K.

By definition, a lattice in V is a subgroup of V (Q) generated by a Q-basis of V , hence a
free Z-module of rank dimV . If p is a prime number, then a lattice in V (Qp) is a subgroup
of the form

⊕
i∈I Zpei where (ei)i∈I is a Qp-basis of V (Qp). Finally, a lattice in V (Af ) is a

product of lattices in V (Qp) for each p that are equal to V (Zp) for all p but finitely many.

Recall that the local-global principle for lattices holds: the map Λ 7→ Λ̂ = Λ⊗ Ẑ is a bijection
between lattices in V and lattices in V (Af ), and its inverse is intersection with V (Q). The

assumption that K stabilizes Λ̂0 does not imply a loss of generality, because every compact
open subgroup of G(Af ) stabilizes some lattice in V (Af ).

To complete the setup, let O be the largest order in B stabilizing Λ0. We keep the notation
of §2.1: for every c ∈ C, we write Γc = G(Q)+ ∩ cKc−1, and we denote by Sc = Γc\X+ the
connected component of ShK(C) associated with c.

We define a polarized lattice to be a pair (Λ, φ) where Λ is a free Z-module of finite rank
and φ : Λ× Λ→ Z is a nondegenerate alternating form. Given a polarized lattice (Λ, φ), we
can extend φ to the Q-vector space Λ ⊗Q, and we define

Λ⊥ = {v ∈ Λ⊗Q | ∀w ∈ Λ, φ(v, w) ∈ Z}.

Then Λ⊥/Λ is a finite abelian group called the polarization type of (Λ, φ). We say that φ is a
principal polarization on Λ if Λ⊥ = Λ.

A modular interpretation in terms of lattices. Using the data above, we define a standard
polarized lattice for every connected component of ShK(C) as follows.
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Definition 2.1. For each c ∈ C, we define

Λ̂c = c(Λ̂0) and Λc = Λ̂c ∩ V (Q).

The action of c, or any other element of G(Af ), on adelic lattices is easily defined locally at each

prime. Since c respects the action of B on V (Af ), the order O is again the stabilizer of Λ̂c, and
thus of Λc. Let λc ∈ Q×

+ be such that the nondegenerate alternating form ψc = λcψ satisfies
ψc(Λc × Λc) = Z. We call (Λc, ψc) with its structure of O-module the standard polarized lattice
associated with (Λ0, c).

Choose c ∈ C, and let (Λc, ψc) be the standard polarized lattice associated with (Λ0, c). We
consider tuples (Λ, x, ι, φ, ηK) where

• Λ is a free Z-module of rank dimV ,
• x ∈ End(Λ⊗ R) is a complex structure on Λ⊗ R,
• ι is an embedding O →֒ EndZ(Λ),
• φ : Λ× Λ→ Z is a nondegenerate alternating Z-bilinear form on Λ,
• ηK is a K-orbit of Ẑ-linear isomorphisms of O-modules Λ̂0 → Λ⊗ Ẑ,

satisfying the following condition of compatibility with (Λc, ψc):

(⋆) There exists an isomorphism of O-modules a : Λ→ Λc, carrying ηK to cK and x to an
element of X+, such that

∃ζ ∈ µ(Γc), ∀u, v ∈ Λ, φ(u, v) = ψc

(
ζa(u), a(v)

)
.

For short, we will call such a tuple a lattice with PEL structure defined by (Λ0, c), or simply a
lattice with PEL structure when the dependency on (Λ0, c) is understood.

An isomorphism between lattices with PEL structure (Λ, x, ι, φ, ηK) and (Λ′, x′, ι′, φ′, η′K)
is an isomorphism of O-modules f : Λ→ Λ′ that sends x to x′, sends ηK to η′K, and such that
φ(u, v) = φ′

(
ζf(u), f(v)

)
for some ζ ∈ µ(Γc).

For every lattice with PEL structure (Λ, x, ι, φ, ηK), the compatibility condition (⋆) implies
in particular that the complex structure x is positive for φ, the adjunction involution defined
by φ coincides with ∗ on B, the action of B on Λ⊗Q leaves the complex structure x invariant,
and the polarized lattices (Λ, φ) and (Λc, ψc) have the same polarization type.

Proposition 2.2. Let c ∈ C, and let Zc be the set of isomorphism classes of lattices with
PEL structure defined by (Λ0, c). Then the map

Zc −→ Sc
(Λ, x, ι, φ, ηK) 7−→ [axa−1, c] where a is as in (⋆)

is well-defined and bijective. The inverse map is

[x, c] 7→ (Λc, x, ι, ψc, cK).

where ι is the natural action of O on Λc.

Proof. The proof is direct and omitted; the details are similar to [27, Prop. 6.3].

A modular interpretation in terms of isomorphism classes of abelian varieties. Giving an
abelian variety A over C is the same as giving the lattice Λ = H1(A,Z) and a complex structure
on the universal covering Λ⊗ R of A. Under this identification, endomorphisms of A correspond
to endomorphisms of Λ that respect the complex structure. Moreover, giving a polarization
on A is the same as giving a nondegenerate alternating form φ : Λ× Λ→ Z such that the
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bilinear form (u, v) 7→ φ(u, iv) is symmetric and positive definite. The polarization type of A is
the polarization type of (Λ, φ).

Recall that for every prime number p, the Tate module Tp(A) is defined as the projective
limit of the torsion subgroups A[pn] as n tends to infinity:

Tp(A) = lim←−A[p
n] = lim←−Λ/pnΛ = Λ⊗ Zp.

Therefore Λ⊗ Ẑ is canonically isomorphic to the global Tate module T̂ (A) of A, defined as

T̂ (A) =
∏

p prime

Tp(A).

Fix c ∈ C, and let (Λc, ψc) be the standard polarized lattice associated with (Λ0, c). We define
a complex abelian variety with PEL structure defined by (Λ0, c) to be a tuple (A, φ, ι, ηK) where

• (A, φ) is a complex polarized abelian variety of dimension dimV ,
• ι is an embedding O →֒ End(A),
• ηK is a K-orbit of Ẑ-linear isomorphisms of O-modules Λ̂0 → T̂ (A),

satisfying the following condition of compatibility with (Λc, ψc):

(⋆⋆) There exists an isomorphism of O-modules a : H1(A,Z)→ Λc, carrying φ to ψc,
carrying ηK to cK, and such that the complex structure induced by a on V (R) belongs
to X+.

If (A, φ, ι, ηK) is a complex abelian variety with PEL structure defined by (Λ0, c), then
condition (⋆⋆) implies that A and (Λc, ψc) have the same polarization type, and that the
Rosati involution on End(A)⊗ Q (which is adjunction with respect to φ) restricts to ∗ on B.

An isomorphism between complex abelian varieties with PEL structure (A, φ, ι, ηK) and
(A′, φ′, ι′, η′K) is an isomorphism of complex polarized abelian varieties f : (A, φ)→ (A,′ φ′)
respecting the action of O and sending ηK to η′K.

The difference with the setting of Proposition 2.2 is that isomorphisms of complex abelian
varieties with PEL structure must respect the polarizations exactly, rather than up to an
element of µ(Γc). In general, µ(Γc) 6= {1}, but there is the following workaround. If ε ∈ F× lies
in the center of B, then multiplication by ε defines an element in the center of G(Q). Therefore
it makes sense to define

EK = {ε ∈ F× | ε ∈ K} = {ε ∈ F× | ε ∈ Γc}, for every c ∈ G(Af ).

Proposition 2.3. Let c ∈ C, and let (Λc, ψc) be the standard polarized lattice associated
with (Λ0, c). If µ(EK) = µ(Γc), then the map

[x, c] 7−→
(
V (R)/Λc, ψc, ι, cK

)
,

where V (R) is seen as a complex vector space via x, and ι is the action of O on V (R)/Λc

induced by the action of B on V (R), is a bijection between Sc and the set of isomorphism
classes of complex abelian varieties with PEL structure defined by (Λ0, c).

Proof. When defining Zc as in Proposition 2.2, we can impose ζ = 1 in condition (⋆)
and strengthen the notion of isomorphism between lattices with PEL structure to respect
the polarizations exactly. Indeed, multiplying the isomorphism a by ε ∈ EK leaves everything
invariant except the alternating form, which is multiplied by µ(ε). The result follows then from
the equivalence of categories between lattices and complex abelian varieties outlined above.
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Remark 2.4. The group µ(EK) always has finite index in µ(Γc). Indeed, if Z×
F0

denotes
the unit group of F0, then

µ(EK) ⊂ µ(Γc) ⊂ Z×
F0

and µ(EK) contains a subgroup of finite index in Z×
F0

, namely all the squares of elements

in Z×
F0
∩K. By [7, Thm. 1], there exists a compact open subgroup M of µ(K) such that

Z×
F0
∩M = µ(EK). Define K ′ = K ∩ µ−1(M). Then EK′ = EK , and for every c ∈ G(Af ), we

have

G(Q)+ ∩ cK ′c−1 = {γ ∈ Γc | µ(γ) ∈ µ(EK)}.
Therefore the hypothesis of Proposition 2.3 will be satisfied for the smaller level subgroup K ′.

When considering the classical modular curves as Shimura varieties associated with the
reductive group G = GL2 acting on V = Q2, we can take Λ0 = Z2 and ψ =

(
0 1
−1 0

)
. Then

Proposition 2.3 applies, and we let the reader check that we recover the usual modular
interpretation of modular curves in terms of complex elliptic curves with level structure.

2.3. Modular forms on PEL Shimura varieties

Our definition of modular equations will involve choices of coordinates on connected
components of PEL Shimura varieties. These coordinates, also called modular functions, are
obtained as quotients of modular forms. This section briefly presents modular forms on PEL
Shimura varieties without going into technical details.

Let (G,X+) be a PEL datum, and let K∞ ⊂ G(R)+ be the stabilizer of a fixed complex
structure x0 ∈ X+. Attached to this data is a certain canonical character of K∞ [1, §1.8],
denoted by ρ : K∞ → C×. Let K be a compact open subgroup of G(Af ). A modular form of
weight w ∈ Z on ShK(G,X+)(C) is a function

f : G(Q)+\
(
G(R)+ ×G(Af )

)
/K → C

that satisfies suitable growth and holomorphy conditions [26, Prop. 3.2], and such that

∀x ∈ G(R)+, ∀g ∈ G(Af ), ∀k∞ ∈ K∞, f([xk∞, g]) = ρ(k∞)wf([x, g]).

The weight of f is denoted by wt(f). We also say that f is of level K.
Let S be a connected component of ShK(C), or a union of these, and let L be its field of

definition. A modular form of weight w on S is the restriction of a modular form of weight w
on ShK(C) to the preimage of S in G(Q)+\

(
G(R+)×G(Af )

)
/K by the natural projection.

There is a canonical notion of modular forms on S being defined over L [26, Chap. III]. A
modular function on S is the quotient of two modular forms of the same weight, the denominator
being nonzero on each connected component of S.

The following result is well known; since we did not find a precise reference in the literature,
we present a short proof.

Theorem 2.5. Let S be a connected component of the Shimura variety ShK(C), and let L
be its field of definition. Then the graded L-algebra of modular forms on S defined over L is
finitely generated, and there exists a weight w ≥ 1 such that modular forms of weight w defined
over L realize a projective embedding of S. Every element of the function field L(S) is a quotient
of two modular forms of the same weight defined over L.

Proof. Choose an element c ∈ C ⊂ G(Af ) defining the connected component S, so that
S = Γc\X+ where Γc = G(Q)+ ∩ cKc−1. Assume first that the level subgroup K of G(Af ) is
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sufficiently small, so that Γc is torsion-free. Then, by the Baily–Borel theorem [1, Thm. 10.11],
there exists an ample line bundle MC on S such that for every w ≥ 1, the algebraic sections
ofM⊗w

C are exactly the modular forms of weight w on S.
In fact, MC is the inverse determinant of the tangent bundle on S [1, Prop. 7.3]. Since S

has a model over L, there is a line bundle M on S defined over L such that M⊗L C =MC.
This is a particular case of a general result on the rationality of automorphic vector bundles
[26, Chap. III, Thm. 4.3]. For every w ≥ 1, the L-vector space modular forms of weight w on S
defined over L is H0(S,M⊗w). SinceM⊗L C is ample,M is ample too, and this implies the
conclusions of the theorem.

In general, we can always find a level subgroupK ′ of finite index inK such that the arithmetic
subgroups G(Q)+ ∩ cK ′c−1 for c ∈ G(Af ) are torsion free [27, Prop. 3.5], and we can assume
that K ′ is normal in K. Let S ′ be a connected component of ShK′(C) lying over S, and let L′

be its field of definition. Then the conclusions of the theorem hold for S ′. We can identify the
modular forms on S defined over L with the modular forms on S ′ defined over L′ that are
invariant under the action of a subgroup of K/K ′. Therefore the conclusions of the theorem
also hold for S by Noether’s theorem [29] on invariants under finite groups.

We can also consider modular forms that are symmetric under certain automorphisms of ShK .
Let Σ be a finite group of automorphisms of V as a Q-vector space that leaves the symplectic
form ψ invariant, and also acts on B in such a way that

∀u ∈ V, ∀b ∈ B, ∀σ ∈ Σ, σ(bu) = σ(b)σ(u).

This implies that the elements of Σ commute with the involution ∗, and hence leave F0 stable.
Under these assumptions, each σ ∈ Σ induces an automorphism of G defined over Q, also
denoted by σ. Assume further that these automorphisms leave G(R)+, X+, K, K∞, ν and the
character ρ invariant. Then Σ can be seen as a finite group of automorphisms of S, and one
can check as in [27, Thm. 13.6] that these automorphisms are defined over L. Then for every
modular form f of weight w on S defined over L, and every σ ∈ Σ, the function

σ · f : [x, g] 7→ f([σ−1(x), σ−1(g)])

is a modular form of weight w on S defined over L. We say that f is symmetric under Σ if
σ · f = f for every σ ∈ Σ.

Proposition 2.6. Let Σ be a finite group of automorphisms of G as above. Then the graded
L-algebra of symmetric modular forms on S defined over L is finitely generated, and every
symmetric modular function on S defined over L is the quotient of two symmetric modular
forms of the same weight defined over L.

Proof. This results from Theorem 2.5 and another application of Noether’s theorem.

2.4. Hecke correspondences

We fix a PEL datum (G,X+) as above, as well as a compact open subgroup K ⊂ G(Af ).
Let δ ∈ G(Af ), and let K ′ = K ∩ δKδ−1. Consider the diagram

ShK′(C) Shδ−1K′δ(C)

ShK(C) ShK(C)

p1

R(δ)

p2 (2.2)
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where the map R(δ) is [x, g] 7→ [x, gδ], and p1 and p2 are the natural projections. This
diagram defines a correspondence Hδ in ShK × ShK , called the Hecke correspondence of level δ,
consisting of all pairs of the form

(
p1(x), p2(R(δ)x)

)
for x ∈ ShK′ . Hecke correspondences are

algebraic: the diagram (2.2) is the analytification of a diagram existing at the level of algebraic
varieties. Moreover, Hecke correspondences are defined over the reflex field [27, Thm. 13.6].

We define the degree of Hδ to be the index

d(δ) = [K : K ′] = [K : K ∩ δKδ−1].

This index is finite as both K and K ′ are compact open subgroups of G(Af ), and is the degree
of the map ShK′ → ShK . One can also consider Hδ as a map from ShK to its d(δ)-th symmetric
power, sending z ∈ ShK to the set {z′ ∈ ShK | (z, z′) ∈ Hδ}.

It is easy to see how Hδ behaves with respect to connected components: if z lies in the
connected component indexed by t ∈ T (Af), then its images lie in the connected component
indexed by t ν(δ).

We call the Hecke correspondence Hδ absolutely irreducible if for every connected compo-
nent S of ShK(C) with field of definition L, the preimage of S in ShK′ is absolutely irreducible
as a variety defined over L (or equivalently, connected as a variety over C). A sufficient condition
for Hδ to be absolutely irreducible is that ν(K ′) = ν(K).

Modular interpretation of Hecke correspondences. In the modular interpretation, Hecke
correspondences describe isogenies of a certain type between polarized abelian varieties. Let Λ0,
C, and O be as in §2.2, and write

K =

d(δ)⊔

i=1

κiK
′,

where κi ∈ G(Af ) for each 1 ≤ i ≤ d(δ). Let c ∈ C, denote by Sc the connected component
of ShK(C) indexed by c, and consider the lattice with PEL structure (Λc, x, ι, ψc, cK) associated
with a point [x, c] ∈ Sc by Proposition 2.2.

In order to construct the lattices associated with [x, c] via the Hecke correspondence Hδ,
we partition the orbit cK into the K ′-orbits cκiK

′ for 1 ≤ i ≤ d(δ). Each element cκiδ ∈
G(Af ) is then a Ẑ-linear embedding of O-modules Λ̂0 →֒ V (Af ); it is well defined up to right

multiplication by δ−1K ′δ, hence by K. Let Λi ⊂ V (Q) be the lattice such that Λi ⊗ Ẑ is the
image of this embedding. There is still a natural action of O on Λi. The decomposition cκiδK =
qic

′K, with qi ∈ G(Q)+ and c′ ∈ C, is well defined, and the element c′ does not depend on i.

Proposition 2.7. Let δ ∈ G(Af ), let z = [x, c] ∈ Sc, and construct Λi, qi, c
′ as above.

Then the image of z under the Hecke correspondence Hδ in the modular interpretation of
Proposition 2.3 is given by the d(δ) isomorphism classes of tuples with representatives

(
Λi, x,

λc′

λc
ψc

(
µ(q−1

i ) · , ·
)
, cκiδK

)
for 1 ≤ i ≤ d(δ).

Proof. By construction, the images of [x, c] via the Hecke correspondence are the
points [q−1

i x, c′] of ShK(C). The relation cκiδK = qic
′K shows that the map q−1

i sends the
lattice Λi to Λc′ . This map also respects the action of O, and sends the complex structure x
to q−1

i x. Finally, it sends the polarization (u, v) 7→ ψc(u, v) on Λi to (u, v) 7→ ψc

(
µ(qi)u, v

)

on Λc′ .

After multiplying δ by a unique suitable element in Q×
+, which does not change Hδ, we can

assume that δ(Λ̂0) ⊂ Λ̂0 and δ(Λ̂0) 6⊂ pΛ̂0 for every prime p; we say that δ is normalized with
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respect to Λ0. In this case, we define the isogeny degree of Hδ as the unique integer l(δ) ≥ 1
such that l(δ)−1 det(δ) is a unit in Ẑ. In other words,

l(δ) = #
(
Λ̂0/δ(Λ̂0)

)
.

For a general δ ∈ G(Af ), we set l(δ) = l(λδ) where λ ∈ Q×
+ is chosen such that λδ is normalized

with respect to Λ0.

Corollary 2.8. Let δ ∈ G(Af ). Then, in the modular interpretation of Proposition 2.3,
the Hecke correspondence Hδ sends an abelian variety A with PEL structure to d(δ) abelian
varieties A1, . . . , Ad(δ) such that for every 1 ≤ i ≤ d(δ), there exists an isogeny Ai → A of
degree l(δ).

Proof. We can assume that δ is normalized with respect to Λ0. Then, in the result of
Proposition 2.7, each lattice Λi for 1 ≤ i ≤ d(δ) is a sublattice of Λc endowed with the same
complex structure x. Moreover, for every 1 ≤ i ≤ d(δ), we have Λc/Λi ≃ Λ̂0/δ(Λ̂0), so the index
of each Λi in Λc is l(δ).

A relation between degrees For later purposes, we state an inequality relating d(δ) and a
power of l(δ). Since K ⊂ G(Af ) is open, there exists a smallest integer N ≥ 1 such that

{
g ∈ G(Af ) ∩GL(Λ̂0) | g = 1 mod N Λ̂0

}
⊂ K,

that we call the level of K with respect to Λ̂0.

Proposition 2.9. There exists a constant C depending on K and Λ0 such that for every
δ ∈ G(Af ), we have d(δ) ≤ C l(δ)(dimV )2 . We can take C = N (dimV )2 , where N is the level

of K with respect to Λ̂0.

Proof. We can assume that δ is normalized with respect to Λ̂0. Then K ∩ δKδ−1 contains
all the elements g ∈ G(Af ) ∩GL(Λ̂0) that are the identity modulo Λ̂ = l(δ)N Λ̂0. In other
words we have a morphism K → GL(Λ0/N l(δ)Λ0) whose kernel is contained in K ∩ δKδ−1.
This yields the result since #GL(Λ0/N l(δ)Λ0) ≤ (N l(δ))(dimV )2 .

Remark 2.10. The upper bound on d(δ) given in Proposition 2.9 is far from optimal in
many cases: for instance, if δ is normalized with respect to Λ̂0, if l(δ) is prime to N , and if
moreover δ normalizes the image of K in GL(Λ0/NΛ0), then d(δ) ≤ l(δ)(dimV )2 . But in general,
the level of K does enter into account. As an example, take G = GL2, δ = ( 0 1

1 0 ), and

K =
{(

a b
c d

)
∈ GL2(Ẑ) | a = d = 1 mod N and c = 0 mod N

}
.

Then d(δ) = N even though l(δ) = 1. In the modular interpretation, the Hecke correspon-
dence Hδ has the effect of forgetting the initial K-level structure entirely.

3. Modular equations on PEL Shimura varieties

This section presents a general definition of modular equations on PEL Shimura varieties,
generalizing three examples mentioned in the introduction: the elliptic modular polynomials,
and the modular equations of Siegel and Hilbert type for abelian surfaces (see §3.3 and §3.4).
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3.1. The example of elliptic modular polynomials

Elliptic modular polynomials are the simplest example of modular equations. They are
usually defined in terms of classical modular forms [9, §11.C]. In order to motivate the general
definition, we translate this definition in the adelic language.

The underlying PEL datum is obtained by taking V = Q2, ψ =
(

0 1
−1 0

)
, and B = Q with ∗

the trivial involution. Then G = GL2, and G(Q)+ consists of all rational 2× 2 matrices
with positive determinant. We take Λ0 = Z2 and K = GL2(Ẑ), so that ShK(C) has only
one connected component S (indexed by the identity matrix) and the maximal order of B
stabilizing Λ0 is O = Z. If we take the complex structure x0 =

(
0 1
−1 0

)
as a base point, then X+

is naturally identified with the Poincaré upper half plane H1, with x0 corresponding to i ∈ H1.
Then S is identified with the modular curve SL2(Z)\H1, and modular forms on S in the sense
of §2.3 correspond exactly to modular forms of level SL2(Z) on H1 in the classical sense. The
reflex field E(G,X+) is equal to Q in this case, and the j-invariant realizes an isomorphism
between ShK and the affine line A1

Q; in particular j generates the function field of S over Q.
Let ℓ be a prime number. Then the function on H1 given by τ 7→ j(τ/ℓ) is invariant under

the following congruence subgroup of SL2(Z):

Γ0(ℓ) =
{(

a b
c d

)
∈ SL2(Z) | b = 0 mod ℓ

}
.

Therefore, the coefficients of the polynomial

Pℓ(τ) =
∏

γ∈Γ0(ℓ)\ SL2(Z)

(
Y − j(1ℓγτ)

)
, for τ ∈ H1

are modular functions of level SL2(Z). The elliptic modular polynomial Φℓ is the unique element
of C(X)[Y ] satisfying the relation Φℓ(j(τ), Y ) = Pℓ(τ) for every τ ∈ H1; actually Φℓ ∈ Z[X,Y ].
In other words, we have a map

Γ0(ℓ)\H1 → S × S, τ 7→ (τ, τ/ℓ), (3.1)

and the product S × S is birational to P1 × P1 via (j, j). The modular curve Γ0(ℓ)\H1 is
birational to its image in P1 × P1, and Φℓ is an equation of this image.

Remark that for every τ ∈ H1, we have

τ/ℓ = δ−1τ, where δ = ( ℓ 0
0 1 ) ∈ G(Q)+.

Therefore, if τ ∈ H1 corresponds to a point [x, I2] ∈ ShK(C), then τ/ℓ corresponds to the
point [x, δ]. Moreover Γ0(ℓ) = SL2(Z) ∩

(
δ SL2(Z)δ

−1
)
. Therefore the map (3.1) is precisely

the Hecke correspondence Hδ given in diagram (2.2).
The function τ 7→ j(τ/ℓ) corresponds to the modular function

jδ : G(Q)+\
(
G(Af )×G(R)+

)
→ C

[x, g] 7→ j([x, gδ]),

which is right-invariant under δKδ−1. Let K ′′ be a normal subgroup of finite index in K
contained in K ′ = K ∩ δKδ−1. We let K act (on the left) on the set of modular functions of
level K ′′ as follows: if k ∈ K and f is such a function, then we define

k · f : [x, g] 7→ f([x, gk]).

Since K ′ is contained in the stabilizer of jδ, the coefficients of the polynomial

Qℓ =
∏

γ∈K/K′

(
Y − γ · jδ

)
(3.2)

are modular functions of level K; the analogue of Qℓ in the classical world is exactly Pℓ, as
inversion induces a bijection between right cosets of Γ0(ℓ) in SL2(Z) and left cosets of K ′ in K.
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The general definition of modular equations involves analogues of the product (3.2) for other
Hecke correspondences.

3.2. General definition of modular equations

Let (G,X+) be a PEL datum, let K be a compact open subgroup of G(Af ), and let Σ be
a finite group of automorphisms of G as in §2.3. Let n be the complex dimension of X+; we
assume that n ≥ 1. Let S, T be connected components of ShK(G,X+)(C), and let L be their
field of definition.

To complete the picture, we also need to choose coordinates on S and T . Since the field L(S)
of modular functions on S has transcendence degree n over L, the field L(S)Σ of modular
functions on S that are symmetric under Σ also has transcendence degree n over L. Choose
a transcendence basis (j1, . . . , jn) of L(S)Σ over L, and another symmetric function jn+1 that
generates the remaining finite extension, whose degree is denoted by e. On S, the function jn+1

satisfies a minimal relation of the form

E(j1, . . . , jn+1) = 0 where E =

e∑

k=0

Ek(J1, . . . , Jn)J
k
n+1 ∈ L[J1, . . . , Jn+1] (3.3)

and E is irreducible. If L(S)Σ is purely transcendental over L (if Σ = {1}, this means that S
is birational to Pn

L), then we take jn+1 = 1, ignore eq. (3.3), and work with n invariants only.
We proceed similarly to define coordinates on T : no confusion will arise if we also denote

them by j1, . . . , jn+1. We refer to all the data defined up to now as the PEL setting. Throughout
the paper, our constants will depend on this data only.

Given a PEL setting as above, let δ ∈ G(Af ) be an adelic element of G defining an
absolutely irreducible Hecke correspondence Hδ that intersects S × T nontrivially. We want
to define explicit polynomials with coefficients in L(S), called the modular equations of
level δ, describing Hδ in the product S × T . To do this, we mimic the definition of elliptic
modular polynomials in the language of PEL Shimura varities given in §3.1. As in §2.4, we
write K ′ = K ∩ δKδ−1.

Let K ′′ be a normal subgroup of finite index in K, contained in K ′, and stabilized by Σ.
Let S ′′ be the preimage of S in ShK′′(C). There is a left action of K ⋊ Σ on the space of
modular functions on S ′′, given by

(k, σ) · f : [x, g] 7→ σ · f([x, gk]).

The modular functions that are invariant under K ′ ⋊ {1} (resp.K ⋊ Σ) are exactly the rational
functions on Hδ ∩ (S × T ) defined over C (resp. the rational functions on S defined over C and
invariant under Σ). The modular functions

ji,δ : [x, g] 7→ ji([x, gδ])

for 1 ≤ i ≤ n+ 1 are defined over L and generate the function field of Hδ ∩ (S × T ). We define
the decreasing chain of subgroups

K ⋊ Σ = K0 ⊃ K1 ⊃ · · · ⊃ Kn+1 ⊃ K ′

as follows: for each 1 ≤ i ≤ n+ 1, the subgroupKi is the stabilizer of the functions j1,δ, . . . , ji,δ.
In §3.1, we had K0 = K and K1 = K ′.

Galois theory applied to the Galois covering S ′′ → S tells us that for every 1 ≤ i ≤ n+ 1,
the field L(j1, . . . , jn+1, j1,δ, . . . , ji,δ) is the function field of the preimage of S in the Shimura
variety ShKi

, and consists of all modular functions on S ′′ defined over L that are invariant



DEGREE AND HEIGHT ESTIMATES FOR MODULAR EQUATIONS Page 13 of 41

under Ki. In other words, we have a tower of function fields:

L(j1, . . . , jn+1, j1,δ, . . . , jn+1,δ) = L(Hδ ∩ (S × T ))

...

L(j1, . . . , jn+1, j1,δ)

L(S)Σ.

degree dn+1

degree d2

degree d1

where di = [Ki−1 : Ki] for 1 ≤ i ≤ n+ 1. The modular equations of level δ are defining
equations for the successive extensions in the tower.

Definition 3.1. The modular equations of level δ on the product S × T are the tuple
(Ψδ,1,Ψδ,2, . . . ,Ψδ,n+1) defined as follows: for each 1 ≤ m ≤ n+ 1, Ψδ,m is the multivariate
polynomial in the m variables Y1, . . . , Ym defined by

Ψδ,m =
∑

γ∈K0/Km−1



(

m−1∏

i=1

∏

γi

(
Yi − γi · ji,δ

)) ∏

γm∈Km−1/Km

(
Ym − γγm · jm,δ

)



where the middle product is over all γi ∈ K0/Ki such that γi = γ modulo Ki−1, but γi 6= γ
modulo Ki. The expression for Ψδ,m makes sense, because multiplying γ on the right by an
element in Km−1 only permutes the factors in the last product.

In the case of the Hecke correspondence considered in §3.1, the polynomial Ψδ,1 is
precisely Qℓ. The precise formula is inspired from preexisting definitions of modular equations
for abelian surfaces [3, 24, 25, 21]. We will return to these examples in §3.3 and §3.4.

Let us give elementary properties of modular equations. First, we need a lemma.

Lemma 3.2. Let γ, γ′ ∈ K0 and 1 ≤ i ≤ n+ 1. Assume that the equality γ · ji,δ = γ′ · ji,δ
holds on one connected component of S ′′. Then it holds on all connected components of S ′′.

Proof. Write γ = (k, σ) and γ′ = (k′, σ′) where k, k′ ∈ K and σ, σ′ ∈ Σ. Let c ∈ G(Af ) be
an adelic element of G defining the connected component S in ShK(C), so that S = Γc\X+

with Γc = G(Q)+ ∩ cKc−1. By assumption, there exists an element g ∈ G(Af ) such that g = c
in the double quotient space G(Q)+\G(Af )/K, and

∀x ∈ X+, ji,δ
(
[σ−1(x), σ−1(gk)]

)
= ji,δ

(
[σ′−1(x), σ′−1(gk′)]

)
. (3.4)

Since Hδ is absolutely irreducible, we have G(Q)+\G(Af )/K = G(Q)+\G(Af )/K
′. Using the

description of connected components of a PEL Shimura variety in §2.1, and the fact that the
action Σ leaves ν invariant, we find that there exist γ1, γ2 ∈ G(Q)+ such that gk = γ1σ(c)
mod σ(K ′) and gk′ = γ2σ

′(c) mod σ′(K ′). Then equation (3.4) is equivalent to the following:

∀x ∈ X+, ji,δ
(
[x, c]

)
= ji,δ

(
[σ′−1(γ−1

2 γ1σ(x)), c]
)
. (3.5)

Note that γ−1
2 γ1 is well-defined and independent of g, up to multiplication on the left by

an element of G(Q)+ ∩ σ′(cK ′c−1), and on the right by an element of G(Q)+ ∩ σ(cK ′c−1).
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Therefore equation (3.5) holds for every g ∈ G(Af ) such that g = c in G(Q)+\G(Af )/K. In
other words, the equality γ · ji,δ = γ′ · ji,δ holds on every connected component of S ′′.

Proposition 3.3. Let 1 ≤ m ≤ n+ 1, and let γ ∈ K0/Km−1. Then, up to multiplication
by an element in L(j1, . . . , jn+1, γ · j1,δ, . . . , γ · jm−1,δ)

×, we have

Ψδ,m(γ · j1,δ , . . . , γ · jm−1,δ , Ym) =
∏

γm∈Km−1/Km

(
Ym − γγm · jm,δ

)
.

Proof. By Definition 3.1, the above equality holds true after multiplying the right hand
side by

f =

m−1∏

i=1

∏

γi∈K0/Ki

γi 6=γ
γi=γ mod Ki−1

(
γ · ji,δ − γi · ji,δ

)

The function f a product of nonzero modular functions on S ′′ defined over L. In order to show
that f ∈ L(j1, . . . , jn+1, γ · j1,δ, . . . , γ · jm−1,δ), we check that f is invariant under the action
of γKm−1γ

−1. By definition of the subgroups Ki, no factor of f is identically zero on S ′′.
Therefore f is invertible by Lemma 3.2.

Let 1 ≤ m ≤ n+ 1. Proposition 3.3 implies that up to scaling, the univariate polynomial
Ψδ,m(j1,δ, . . . , jm−1,δ, Ym) is the minimal polynomial of the function jm,δ over the field
L(j1, . . . , jn+1, j1,δ, . . . , jm−1,δ). In other words, when the multiplicative coefficient in Propo-
sition 3.3 does not vanish, which is generically the case, Ψδ,m provides all the possible values
for jm,δ once j1, . . . , jn+1 and j1,δ, . . . , jm−1,δ are known. In particular, modular equations
vanish on Hδ as promised.

We could also define other modular equations Φδ,m for which there is true equality in
Proposition 3.3, as in the case of the classical modular polynomial Φl, but they have a more
complicated expression. In practice, using the polynomials Ψδ,m is more convenient as they are
typically smaller.

Proposition 3.4. Let 1 ≤ m ≤ n+ 1. The coefficients of Ψδ,m lie in L(j1, . . . , jn+1). The
degree of Ψδ,m in Ym is [Km−1 : Km], and for each 1 ≤ i < m, the degree of Ψδ,m in Yi is at
most [Ki−1 : Ki]− 1.

Proof. It is clear from Definition 3.1 that the action of K0 leaves Ψδ,m invariant. Hence the
coefficients of Ψδ,m are rational functions on S invariant under Σ and defined over L, so the
first statement holds. The second part is obvious.

In general, using a nontrivial Σ increases the degree of modular equations. This has a
geometric interpretation: modular equations describe the Hecke correspondence Hδ and its
conjugates under Σ simultaneously.

Let J1, . . . , Jn+1 be indeterminates, and let 1 ≤ m ≤ n+ 1. By the equation (3.3) satisfied
by jn+1 on S, there exists a unique element of the ring L(J1, . . . , Jn)[Jn+1, Y1, . . . , Ym] with
degree at most e− 1 in Jn+1 which, when evaluated at Ji = ji for 1 ≤ i ≤ n+ 1, yields Ψδ,m.
In the sequel, we also denote it by Ψδ,m for simplicity. Therefore the coefficients of Ψδ,m will be
either functions on S, i.e. as elements of L(j1, . . . , jn+1), or multivariate rational fractions in
the indeterminates J1, . . . , Jn+1 that are polynomial in Jn+1 of degree at most e− 1, depending
on the context.
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Remark 3.5. In several cases, the function j1,δ already generates the whole extension of
function fields, so that K1 = · · · = Kn+1 = K ′,

Ψδ,1 =
∏

γ1∈K0/K′

(
Y1 − γ1 · j1,δ

)
,

and for every 2 ≤ m ≤ n+ 1,

Ψδ,m =
∑

γ∈K0/K′



(
∏

γ1 6=γ

(
Y1 − γ1 · j1,δ

)
)
(
Ym − γ · jm,δ

)

 . (3.6)

In this case, for each 2 ≤ m ≤ n+ 1, we have Ψδ,m(j1,δ) = ∂Y1Ψδ,1(j1,δ)(Ym − jm,δ), where ∂Y1

denotes derivative with respect to Y1. Therefore Ψδ,m is just the expression of jm,δ as an
element of L(S)Σ[ j1,δ] in a compact representation inspired from [14].

In this case, we often keep only the constant term in equation (3.6), and consider the modular
equations Ψδ,m for 2 ≤ m ≤ n+ 1 as elements of the ring L(J1, . . . , Jn)[Jn+1, Y ] with degree
at most e in Jn+1, defined by

Ψδ,m(j1, . . . , jn+1) =
∑

γ∈K0/K′

(
γ · jm,δ

) ∏

γ1 6=γ

(
Y − γ1 · j1,δ

)
.

Then, we simply have jm,δ = Ψδ,m(j1,δ)/∂Y1Ψδ,1(j1,δ).

3.3. Modular equations of Siegel type for abelian surfaces

The Siegel modular varieties are prominent examples of PEL Shimura varieties. They are
moduli spaces for complex abelian varieties of dimension g with a certain polarization and
level structure. Another example is given by the Hilbert modular varieties, for which the PEL
structure contains an additional real multiplication embedding. In this subsection and the next,
we explain how these examples fit in the general setting of PEL Shimura varieties, and we show
that modular equations of Siegel and Hilbert type in dimension 2 [24, 25] are special cases of
modular equations as defined above.

Siegel moduli spaces. Let g ≥ 1. The Siegel modular variety of dimension g [27, §6] is
obtained by taking B = Q, with trivial involution ∗, and taking the symplectic module (V, ψ)
to be V = Q2g with

∀u, v ∈ V, ψ(u, v) = ut
(

0 Ig
−Ig 0

)
v.

Then G = GSp2g. The Q-algebra B is simple of type (C). We can choose X+ to be the set of
all complex structures on V (R) that are positive for ψ [27, §6], and we have

G(R)+ = {g ∈ G(R) | µ(g) > 0}.
The reflex field is Q [27, §14]. Generalizing the example of modular curves, we can identify X+

with the Siegel upper half-space Hg endowed with the usual action of GSp2g(R)+:
(
a b
c d

)
· τ = (aτ + b)(cτ + d)−1

for every τ ∈ Hg and
(
a b
c d

)
∈ G(R)+, where a, b, c, and d are g × g blocks.

Let (e1, . . . , e2g) be the canonical basis of V (Q). Choose positive integers D1| · · · |Dg such
that D1 = 1, and let Λ0 ⊂ V (Q) be the lattice generated by e1, . . . , eg, D1eg+1, . . . , Dge2g.
Then the type of the polarization ψ on Λ0 is a product of cyclic groups of order D1, . . . , Dg;
we also say that ψ is of type (D1, . . . , Dg). Let K be a compact open subgroup of G(Af ) that

stabilizes Λ0 ⊗ Ẑ, and let S be the connected component of ShK(C) defined by the identity
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matrix in G(Af ). Then S is identified with the quotient Γ\Hg, where

Γ = GSp2g(Q)+ ∩K = Sp2g(Q) ∩K.
By Proposition 2.3, S is a moduli space for polarized abelian varieties with polarization

type (D1, . . . , Dg) and level K structure such that H1(A,Z) is isomorphic to the standard
polarized lattice to (Λ0, ψ). This modular interpretation coincides with the classical one [2,
§8.1]. Also, modular forms on S can be identified with Siegel modular forms in the classical
sense, as we mentioned in §3.1 in the case g = 1.

Siegel modular equations. We now focus on the special case given by

g = 2, D1 = D2 = 1, Λ0 = Z2g, K = GSp2g(Ẑ).

Then ShK(C) has only one connected component defined over Q, and classifies principally
polarized abelian surfaces over C. Modular forms on ShK are identified with classical Siegel
modular forms of level Sp4(Z). As shown by Igusa [17], the graded Q-algebra of these modular
forms is generated by four elements of respective weights 4, 6, 10, and 12. These generators
can be taken to be I4, I

′
6, I10, and I12 in Streng’s notation [33, p. 42]. The function field of ShK

over Q is therefore generated by the three algebraically independent Igusa invariants:

j1 =
I4I

′
6

I10
, j2 =

I24I12
I210

, j3 =
I54
I210

.

Let ℓ be a prime, and consider the Hecke correspondence of level

δ =

(
ℓI2 0
0 I2

)
as a 4× 4 matrix in 2× 2 blocks.

The group K ∩ δKδ−1 ∩G(Q)+ is usually denoted by Γ0(ℓ), and the degree of Hδ is

d(δ) = ℓ3 + ℓ2 + ℓ+ 1.

The Hecke correspondence Hδ is absolutely irreducible, and describes all principally polarized
abelian surfaces ℓ-isogeous to a given one; the degree of these isogenies is l(δ) = ℓ2. In this case,
the function j1,δ generates the function field on the Hecke correspondence [3, Lem. 4.2], so that
d1 = d(δ) and d2 = d3 = 1, in the notation of §3.2. The modular equations from Definition 3.1
are called the Siegel modular equations of level ℓ in Igusa invariants. They have been computed
for ℓ = 2 and ℓ = 3 [24].

3.4. Modular equations of Hilbert type for abelian surfaces

Hilbert moduli spaces. Let F be a totally real number field of degree g over Q, and let
B = F with trivial involution ∗. The Q-algebra B is simple of type (C). Let V = F 2, which is
a Q-vector space of dimension 2g, and define the symplectic form ψ on V as follows:

∀a, b, c, d ∈ F, ψ
(
(a, b), (c, d)

)
= TrF/Q(ad− bc).

Then (V, ψ) is a faithful symplectic (B, ∗)-module, where B acts on V by multiplication. The
associated algebraic group is G = GL2(F ). The g real embeddings of F induce identifications

V (R) = (R2)g and G(R) =

g∏

i=1

GL2(R).

The subgroup G(R)+ consists of matrices with totally positive determinant.
There is a particular complex structure x0 ∈ G(R) on V (R) given by

x0 =
((

0 1
−1 0

))
1≤i≤g

.
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Let X+ be the G(R)+-conjugacy class of x0. Then (G,X+) is called a Hilbert Shimura datum.
Its reflex field is Q: see [35, §X.4] when g = 2, and [27, Ex. 12.4] in general. The domain X+

can be identified with H
g
1, where H1 is the complex upper half-plane, endowed with the action

of GL2(R)+ on each coordinate.
Let ZF be the integer ring of F , and take Λ0 = ZF ⊕ Z∨

F , where Z∨
F is the dual of ZF with

respect to the trace form. Then the stabilizer of Λ0 in B is ZF , and ψ is principal on Λ0. Let K
be a compact open subgroup of GL(Λ0 ⊗ Ẑ).

Remark 3.6. In the Hilbert setting, the group µ(Γc) is not equal to µ(E) in general. For
instance, if K = GL(Λ0 ⊗ Ẑ), and c = ( 1 0

0 1 ), then

Γc = G(R)+ ∩K = {g ∈ GL(Λ0) | det(g) is totally positive},
so µ(Γc) is the set of totally positive units in ZF . On the other hand, µ(E) is the set of all
squares of units. For instance, if g = 2, then µ(E) = µ(Γc) if and only if the fundamental unit
in ZF has negative norm.

We now assume that K has been chosen in such a way that

G(Q)+ ∩K =
{
g ∈ GL(Λ0) | µ(g) ∈ Z×2

F

}
. (3.7)

The Shimura variety ShK(G,X+)(C) has several connected components: the narrow class group
of F is a quotient of π0(ShK(C)) [35, Cor. I.7.3]. Let S be the connected component defined
by the identity matrix in G(Af ). Then there is a natural isomorphism

S = (G(Q)+ ∩K)\Hg
1 ≃ SL(ZF ⊕ Z∨

F )\Hg
1.

By Proposition 2.3, the component S parametrizes principally polarized abelian varieties
with real multiplication by ZF and level K structure such that H1(A,Z) is isomorphic to
the polarized lattice (Λ0, ψ) with its additional data. The modular forms of weight w on S
are identified with the classical Hilbert modular forms of weight (w,w, . . . , w) for F and
level SL(ZF ⊕ Z∨

F ) [13, §4].
In the special case g = 2, let Σ = {1, σ}, where σ is the involution of V coming from real

conjugation in F . On G(R)+, the involution σ acts as permutation of the two factors. Modular
forms that are symmetric under Σ are symmetric Hilbert modular forms in dimension 2 in the
usual sense [5, §1.3].

Hilbert modular equations. Let F be a real quadratic field, and assume moreover that the
fundamental unit of F has negative norm; then K = GL(Λ0 ⊗ Ẑ) satisfies (3.7). Let β ∈ ZF be
totally positive and prime, and let

δ =

(
β 0
0 1

)
∈ G(Af ).

The Hecke correspondence Hδ is absolutely irreducible, has degree d(δ) = NF/Q(β) + 1, and
parametrizes isogenies of degree l(δ) = NF/Q(β). One can check that Hδ intersects S × S
nontrivially. Being able to consider this Hecke correspondence is the reason for our different
choice of G in §2 compared to [27, §8].

As invariants on S, one possibility is to use the pullback of Igusa invariants by the forgetful
map to the Siegel threefold, i.e. the Siegel moduli space for g = 2 [20]. They are symmetric with
respect to Σ, and the equation relating these three invariants is the equation of the associated
Humbert surface, the image of the Hilbert surface S inside the Siegel threefold. In this case,
the modular equations describe simultaneously β- and σ(β)-isogenies [25].

In special cases, the field of Σ-invariant modular functions can be generated by two elements
called Gundlach invariants. This reduction of the number of variables is interesting in practice.
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For instance, if F = Q(
√
5), then the graded Q-algebra of symmetric Hilbert modular forms

is free over three generators F2, F6, and F10 of respective weights 2, 6, and 10 [15]; therefore,
L(S)Σ = Q(g1, g2) where the Gundlach invariants g1 and g2 are defined by

g1 =
F 5
2

F10
, g2 =

F 2
2F6

F10
.

Moreover, g1 and g2 are algebraically independent. The associated modular equations are called
the Hilbert modular equations of level β in Gundlach invariants for F = Q(

√
5), and have been

computed up to NF/Q(β) = 59 [23]. They also describe both β- and σ(β)-isogenies.

4. Degree estimates for modular equations

We fix a PEL setting as in §3.2; in particular we make a choice of invariants j1, . . . , jn+1

on the Shimura components S and T . Let δ ∈ G(Af ), and assume that the Hecke correspon-
dence Hδ intersects S × T nontrivially. In Definition 3.1, we defined the modular equations
Ψδ,1, . . . ,Ψδ,n+1; they are multivariate polynomials in the variables Y1, . . . , Yn+1 describing Hδ

and its conjugates under Σ. Their coefficients are uniquely determined rational fractions
in L(J1, . . . , Jn)[Jn+1] of degree at most e in Jn+1, where the integer e is defined as in
equation (3.3). The goal of this section is to prove the upper bounds on the degree of the
coefficients of the modular equations Ψδ,m given in the first part of Theorem 1.1. We also
give explicit variants in the case of modular equations for abelian surfaces. As indicated in the
introduction, the proof works by identifying a denominator of the modular equations, then by
analyzing the degree of the rational fractions we obtain when rewriting a quotient of modular
forms of bounded weights in terms of the invariants j1, . . . , jn+1.

4.1. The common denominator of Ψδ,m

We keep the notation used in §3.2: in particular

K ′ = K ∩ δKδ−1, K0 = K ⋊ Σ,

and K ′′ is a normal subgroup of finite index in K, contained in K ′ and stabilized by Σ. The
natural action of K0 on modular functions of level K ′′ extends to an action on modular forms.

For each 1 ≤ i ≤ n+ 1, fix a nonzero modular form χi invariant under Σ and defined over L
such that χiji is again a modular form (i.e. has no poles); we say that χi is a denominator
of ji. This is possible by Proposition 2.6. For each i, the function

χi,δ : [x, g] 7→ χi([x, gδ])

is a modular form of weight wt(χi) on the preimage of S in ShK′(C). We define the
functions gδ,m on S for 1 ≤ m ≤ n+ 1 as follows:

gδ,m =

m∏

i=1

∏

γ∈K0/K′

γ · χi,δ.

Lemma 4.1. For every 1 ≤ m ≤ n+ 1, the function gδ,m is a nonzero symmetric modular
form on S, and

wt(gδ,m) = (#Σ) d(δ)

m∑

i=1

wt(χi).
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Proof. By construction, the function gδ,m is a modular form of level K ′′ and weight∑m
i=1 #(K0/K

′) wt(χi). We have #(K0/K
′) = (#Σ) d(δ). Each modular form γ · χi,δ is

nonzero on every connected component of ShK′′(C) above S, hence gδ,m is nonzero as well.
Acting by an element of K0 permutes the factors in the product defining gδ,m, so gδ,m is in

fact a symmetric modular form on S.

Proposition 4.2. For every 1 ≤ m ≤ n+ 1, the coefficients of the multivariate polyno-
mial gδ,mΨδ,m are symmetric modular forms on S.

Proof. By Definition 3.1, the polynomial Ψδ,m is a sum of terms of the form
(

m−1∏

i=1

∏

γi

(
Yi − γi · ji,δ

)) ∏

γm∈Km−1/Km

(
Ym − γγm · jm,δ

)

where γ ∈ K0 is fixed, and the middle product is over all γi ∈ K0/Ki such that γi = γ
modulo Ki−1, but γi 6= γ modulo Ki. In this expression, all the cosets γi and γγm are
simultaneously disjoint as subsets of K0/K

′. Each denominator is accounted for by some factor
in the product defining gδ,m, so the coefficients of gδ,mΨδ,m are modular forms.

When the modular functions j1, . . . , jn+1 have similar denominators, it is possible to make
a better choice for gδ,m.

Proposition 4.3. Assume that there exists a modular form χ on S such that for every i,
we have χi = χαi for some integer αi ≥ 0. Let 1 ≤ m ≤ n+ 1, and define

gδ,m =
( ∏

γ∈K0

γ · χδ

)α
, where α = max

1≤i≤m
αi.

Then gδ,m is a nonzero symmetric modular form on S, and

wt(gδ,m) = (#Σ) d(δ)αwt(χ).

Moreover, the coefficients of gδ,mΨδ,m are symmetric modular forms on S.

The proof is similar to that of Proposition 4.2, and omitted.

4.2. Writing quotients of modular forms in terms of invariants

Let f/g be a quotient of symmetric modular forms of weight w on S. We show that when
we rewrite such a quotient in terms of the invariants j1, . . . , jn+1, the degree of the rational
fractions we obtain is bounded linearly in w. To make the proportionality constant explicit, we
define the symmetric geometric complexity of our invariants as follows.

Definition 4.4. Let fk for 1 ≤ k ≤ r be nonzero generators over L for the graded ring of
symmetric modular forms on S, with respective weights wk. For each 1 ≤ k ≤ r − 1, let βk ≥ 1
be the minimal integer such that

βkwk ∈ Zwk+1 + · · ·+ Zwr .

We can find nonzero modular forms λk, ξk ∈ L[fk+1, . . . , fr] such that wt(λk)− wt(ξk) = βkwk.
For every 1 ≤ k ≤ r − 1, the function ξkf

βk

k /λk is a quotient of two symmetric modular forms
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of the same weight on S; hence there exist polynomials Pk, Qk ∈ L[J1, . . . , Jn+1] such that

ξkf
βk

k

λk
=
Pk(j1, . . . , jn+1)

Qk(j1, . . . , jn+1)
.

Denote the total degrees of Pk and Qk by deg(Pk) and deg(Qk) respectively. We define the
symmetric geometric complexity of j1, . . . , jn+1 relative to the choice of fk, λk, ψk, Pk, Qk to be
the positive rational number given by, either

(i) (
1 + max

1≤k≤r−1

wt(ξk)

βkwk

)
max

1≤k≤r−1

deg(Pk)

βkwk +wt(ξk)
,

if the following conditions are satisfied: for every 1 ≤ k ≤ r − 1, the modular forms λk
and ξk are powers of fr and fr−1 respectively (in particular ξr−1 = 1), and Qk = 1; or

(ii)

r−1∑

k=1

(
1

βkwk
max

{
deg(Pk), deg(Qk)

} k−1∏

l=1

(
1 +

wt(ξl)

βlwl

))
,

otherwise.

Note that formula (i), when it applies, yields a smaller result than formula (ii).
The symmetric geometric complexity of j1, . . . , jn+1, denoted by SGC(j1, . . . , jn+1), is

the infimum of this quantity over all possible choices of modular forms fk, λk, ξk and
polynomials Pk, Qk.

Given Definition 4.4, explicit upper bounds on the geometric complexity are easy to obtain
if a generating set of modular forms is known. Note that the symmetric geometric complexity
is invariant under permutations of the invariants j1, . . . , jn+1, in contrast with their geometric
complexity to be defined later, which takes into account the fact that jn+1 is considered
differently in equation (3.3).

Proposition 4.5. Let w ≥ 0, let f, g be symmetric modular forms on S of weight w, and
assume that g is nonzero. Then there exist polynomials P, Q ∈ L[J1, . . . , Jn+1] of total degree
at most SGC(j1, . . . , jn+1)w such that

f

g
=
P (j1, . . . , jn+1)

Q(j1, . . . , jn+1)
.

Moreover, Q can be chosen independently of f .

Proof. We keep the notation used in Definition 4.4, and make a choice of genera-
tors fk for 1 ≤ k ≤ r, modular forms λk, ξk for 1 ≤ k ≤ r − 1, and polynomials Pk, Qk ∈
L[J1, . . . , Jn+1] for 1 ≤ k ≤ r − 1. Let C be symmetric geometric complexity of j1, . . . , jn+1

relative to this choice.
Let f , g be as in the proposition. Then f and g can be expressed as a sum of monomial

terms of the form

cfα1
1 · · · fαr

r with c ∈ L and

r∑

k=1

αkwk = w.

We give algorithms to rewrite the fraction P/Q = f/g (currently a rational fraction in terms
of the modular forms fk) as a fraction of invariants, and bound the total degree of the output.
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Case (i) of Definition 4.4. We assume that λk and ξk are powers of fr and fr−1 respectively
for every 1 ≤ k ≤ r − 1. In this case, for each 1 ≤ k ≤ r − 2, the integer βk can be seen as the
order of wk in the group Z/(Zwr−1 + Zwr). We can write

w =

r−2∑

k=1

skwk (mod Zwr−1 + Zwr)

for some integers 0 ≤ sk < βk, and this determines the integers sk uniquely (if such a linear
combination vanishes, considering the smallest nonzero sk yields a contradiction). Then each
monomial appearing in P and Q is divisible by f s1

1 · · · f
sr−2

r−2 . After simplifying by this common
factor, we can assume that the common weight w of P and Q satisfies w ∈ Zwr−1 + Zwr . Then,
for each 1 ≤ k ≤ r − 2, the exponent of fk in each monomial of P and Q is divisible by βk. For
convenience, write

a = max
1≤k≤r−1

wt(ξk)

βkwk
.

In order to rewrite P/Q in terms of invariants, we proceed as follows.

(i) Multiply P and Q by f
⌊aw/wt(fr−1)⌋
r−1 .

(ii) For each 1 ≤ k ≤ r − 2, replace each occurence of fβk

k by λkPk/ξk in P and Q.

(iii) Let 0 ≤ sr−1 < βr−1 be such that w = sr−1wr−1 mod wr, and divide P and Q by f
sr−1

r−1 .

(iv) Replace each occurence of f
βr−1

r−1 by λr−1Pr−1 in P and Q.

(v) Finally, divide P and Q by f
(w−sr−1wr−1)/wr
r .

This algorithm runs independently on each monomial of P and Q. Let M = c
∏r

k=1 f
αk

k ,
with c ∈ L, be such a monomial after step (i). Let us show that the exponent of fr−1 in M
remains nonnegative after step (ii). In this step, we introduce a denominator given by

r−2∏

k=1

ξ
αk/βk

k =

r−2∏

k=1

f
wt(ξk)αk

wt(fr−1)βk

r−1 .

We have
r−2∑

k=1

wt(ξk)αk

wt(fr−1)βk
≤ a

r−2∑

k=1

αkwk

wt(fr−1)
≤ aw

wt(fr−1)
,

hence
r−2∑

k=1

wt(ξk)αk

wt(fr−1)βk
≤
⌊

aw

wt(fr−1)

⌋
≤ αr−1 by step (i)

because the left hand side is an integer. Therefore, at the end of step (ii), M belongs to the

polynomial ring L[J1, . . . , Jn+1][fr−1, fr]. Hence, we have M ∈ L[J1, . . . , Jn+1][f
βr−1

r−1 , fr] after
step (iii), and finally M ∈ L[J1, . . . , Jn+1] after step (v).

It remains to bound the total degree of M after step (v). To do this, we consider the total
weight of M in f1, . . . , fr−1. For each 1 ≤ k ≤ r − 1, the modular form λk is a power of fr;
hence replacing fβk

k by λkPk/ξk in steps (ii) or (iv) reduces this weight by βkwk +wt(ξk),
and increases the total degree of M in J1, . . . , Jn+1 by at most deg(Pk). At the beginning of
step (ii), the total weight of M in f1, . . . , fr−1 is at most (1 + a)w. Therefore the total degree
of M in J1, . . . , Jn+1 at the end of the algorithm is bounded above by

(1 + a)w max
1≤k≤r−1

deg(Pk)

βkwk + deg(ξk)
= Cw.

Case (ii) of Definition 4.4. In the general case, we perform replacements and simplifications
in a sequential way.
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We start by defining integers zk, dk for 0 ≤ k ≤ r − 1 and sk, ak for 1 ≤ k ≤ r − 1 by
induction as follows:

• z0 = w and d0 = 0;
• For each 1 ≤ k ≤ r, the integer 0 ≤ sk < βk is defined by the relation

zk−1 = skwk (mod Zwk+1 + · · ·+ Zwr);

• ak =

⌊
zk−1

βkwk

⌋
for each 1 ≤ k ≤ r − 1;

• zk = zk−1 − skwk + ak wt(ξk) for each 1 ≤ k ≤ r − 1;

• dk = dk−1 + ak max{deg(Pk), deg(Qk)} for each 1 ≤ k ≤ r − 1.

In order to rewrite P/Q in terms of invariants, we use the following algorithm. For k = 1 up
to k = r − 1, do:

(i) Divide P and Q by f sk
k ;

(ii) Replace each occurence of fβk

k by
λkPk

ξkQk
in P and Q;

(iii) Multiply P and Q by ξak

k Qak

k .

Finally, simplify the remaining occurences of fr. We prove the following statement (Hk) by
induction for every 1 ≤ k ≤ r:
(Hk) At the beginning of the k-th loop, P and Q are elements of L[J1, . . . , Jn+1][fk, . . . , fr] of
weight zk−1, with total degree at most dk−1 in J1, . . . , Jn+1, such that

f

g
=
P (j1, . . . , jn+1)

Q(j1, . . . , jn+1)
.

The statement (H1) is true by definition of z0 and d0; assume that (Hk) is true for some k ≥ 1.
Then we see, in order, that during the k-th loop:

• zk−1 ∈
∑r

i=k Zwi, so sk is well defined.
• In each monomial of P and Q, the exponent of fk is of the form aβk + sk for some

integer a ≤ ak. Therefore step (i) is an exact division, and after step (ii) there are no
more occurences of fk in P or Q.

• After step (iii), P and Q are elements of L[J1, . . . , Jn+1][fk+1, . . . , fr] of weight

zk−1 − skwk + ak wt(ξk) = zk.

It remains to show that the degree of P, Q in J1, . . . , Jn+1 is bounded by dk after step (iii).
This comes from the following observation: during the k-th loop, we only multiply the
polynomials in J1, . . . , Jn+1 already present by P b

kQ
ak−b
k for some 0 ≤ b ≤ ak. This proves

our claim (Hk) for all 1 ≤ k ≤ r.
At the end of the algorithm, all the occurences of fr cancel out. Therefore we obtain

polynomials P and Q of total degree at most dr−1 such that

f

g
=
P (j1, . . . , jn+1)

Q(j1, . . . , jn+1)
.

By induction, we obtain

zk ≤ w
k∏

l=1

(
1 +

wt(ξl)

βlwl

)

and

dr−1 ≤
r−1∑

k=1

(
w

βkwk
max{deg(Pk), deg(Qk)}

k−1∏

l=1

(
1 +

wt(ξl)

βlwl

))
= Cw.
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In both cases (i) and (ii), the algorithm runs independently on the numerator and
denominator, hence Q can be chosen independently of f .

4.3. Degree bounds in canonical form

Recall that the modular function jn+1 satisfies eq. (3.3): we have E(j1, . . . , jn+1) = 0 where

E =

e∑

k=0

Ek(J1, . . . , Jn)J
k
n+1 ∈ L[J1, . . . , Jn, Jn+1]

has degree e in Jn+1 and is irreducible. Let dE denote the total degree of E in the
variables J1, . . . , Jn. In this section, we work in the ring L(J1, . . . , Jn)[Jn+1] modulo E. We say
that a fraction R ∈ L(J1, . . . , Jn+1) is in canonical form if R is a polynomial in Jn+1 of degree
at most e− 1.

Proposition 4.6. Let d ≥ 0, let P, Q ∈ L[J1, . . . , Jn+1] be polynomials of total degree at
most d, and assume that Q(j1, . . . , jn+1) is not identically zero. Let R ∈ L(J1, . . . , Jn)[Jn+1]
be the fraction in canonical form such that P/Q = R mod E. Then the total degree of R
in J1, . . . , Jn is bounded above by (e+ 2dE)d.

Proof. In this proof, degrees and coefficients are taken with respect to the variable Jn+1

unless otherwise specified. First, we invert the denominator Q. Consider the resultant

Z = ResJn+1(Q,E) ∈ L[J1, . . . , Jn],
which is nonzero by hypothesis. Let U, V ∈ L[j1, . . . , jn+1] be the associated Bézout coefficients,
so that

Z = UQ+ V E.

The inverse of Q modulo E is U/Z, so we have P/Q = UP/Z mod E.
It is well-known that Z (resp. Q) has a polynomial expression of degree e (resp. e− 1) in

the coefficients of Q, and degree deg(Q) in the coefficients of E. Since the total degree of Q is
at most d, the total degrees of Z and UP in J1, . . . , Jn are bounded above by d(e + dE). The
degree of UP in Jn+1 is at most d+ e− 1.

Now, we reduce UP/Z modulo E to obtain a numerator of degree at most e− 1 in Jn+1.
We can decrease this degree by 1 by multiplying above and below by Ee(J1, . . . , Jn) and using
the relation

EeJ
e
n+1 = −

e−1∑

k=0

EkJ
k
n+1 mod E.

When doing so, the total degree in J1, . . . , Jn increases by at most dE . This operation is done
at most d times; therefore the result has total degree at most (e + 2dE)d in J1, . . . , Jn and
degree at most e − 1 in Jn+1.

Definition 4.7. We define the geometric complexity of the invariants j1, . . . , jn+1 to be

GC(j1, . . . , jn+1) = (e + 2dE) SGC(j1, . . . , jn+1) + e − 1.

This quantity depends on the choice of jn+1 as a distinguished invariant.

Proposition 4.8. Let w ≥ 0, let f, g be symmetric modular forms on S of weight w, and
assume that g is nonzero. Let R ∈ L(J1, . . . Jn)[Jn+1] be the rational fraction in canonical form
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such that
f

g
= R(j1, . . . , jn+1).

Then the total degree of R in J1, . . . , Jn+1 is bounded above by GC(j1, . . . , jn+1)w.

Proof. Combine Propositions 4.5 and 4.6.

We are ready to prove the first part of Theorem 1.1 on degree bounds for modular equations,
with an explicit expression for the constant C1.

Theorem 4.9. Let Hδ be an absolutely irreducible Hecke correspondence on S × T defined
by an adelic element δ of G, and let d(δ) be the degree of Hδ. For each 1 ≤ i ≤ n+ 1, let χi

be a denominator of ji as in §4.1. Let 1 ≤ m ≤ n+ 1. Finally, let

C1 = GC(j1, . . . , jn+1) (#Σ)

m∑

i=1

wt(χi).

Then there exists a polynomial Dm ∈ L[J1, . . . , Jn] of total degree at most C1 d(δ) such
that DmΨδ,m is a polynomial in J1, . . . , Jn+1, Y1, . . . , Ym whose total degree in J1, . . . , Jn+1 is
also bounded above by C1 d(δ). In particular, if F ∈ L(J1, . . . , Jn)[Jn+1] is a coefficient of Ψδ,m,
then the total degree of F is bounded above by C1 d(δ).

Proof. Let gδ,m be the modular form on S defined in §4.1, and let F be a coefficient of Ψδ,m.
By Proposition 4.2, the modular function F(j1, . . . , jn+1) is of the form f/gδ,m, where f is a
modular form on S of weight wt(gδ,m). By Lemma 4.1, we have

wt(gδ,m) = (#Σ) d(δ)
m∑

i=1

wt(χi),

so the degree bound on F follows from Proposition 4.8. By Proposition 4.5, the denominator
can be chosen independently of the coefficient of Ψδ,m we consider, hence the existence of a
common denominator Dm of the correct total degree.

4.4. Explicit degree bounds in dimension 2

Our methods provide new results about the degrees of the coefficients of modular equations
of Siegel and Hilbert type for abelian surfaces, introduced in §3.3 and §3.4 respectively. In the
Hilbert case, we restrict to the quadratic field F = Q(

√
5), and consider modular equations in

terms of Gundlach invariants.
In both cases, we can take jn+1 = 1 and E = Jn+1 − 1 in the notation of §3.2. Then the

notions of geometric complexity and symmetric geometric complexity coincide.

Lemma 4.10. Let j1, j2, and j3 denote the Igusa invariants on the Siegel threefold
Sp4(Z)\H2, as defined in §3.3. Then we have

GC(j1, j2, j3, 1) ≤
1

6
.

Proof. Recall that the graded Q-algebra of Siegel modular forms of level Sp4(Z) is generated
by

f1 = I ′6, f2 = I12, f3 = I4, and f4 = I10.



DEGREE AND HEIGHT ESTIMATES FOR MODULAR EQUATIONS Page 25 of 41

We are in case (i) of Definition 4.4, since

I ′6I4
I10

= j1,
I12I

2
4

I210
= j2, and

I54
I210

= j3.

The definition gives

SGC(j1, j2, j3, 1) ≤
(
1 +

2

3

)
· 1
10

=
1

6
.

Proposition 4.11. Let ℓ be a prime number, and let Ψℓ,m for 1 ≤ m ≤ 3 denote the Siegel
modular equations of level ℓ in Igusa invariants. Let F ∈ Q(J1, J2, J3) be a coefficient of Ψℓ,1

(resp. Ψℓ,2 or Ψℓ,3). Then the total degree of F is bounded above by 5 d(ℓ)/3 (resp. 10 d(ℓ)/3),
where d(ℓ) = ℓ3 + ℓ2 + ℓ+ 1.

Proof. The integer d(ℓ) is the degree of the Hecke correspondence. The denominators
of j1, j2, and j3 can be taken to be the modular forms I10, I

2
10, and I210. Let gℓ,m for 1 ≤ m ≤ 3

be the common denominators of the modular equations Ψℓ,m defined in Proposition 4.3, so
that gℓ,2 = gℓ,3 = g2ℓ,1 and wt(gℓ,1) = 10 d(ℓ).

Then F(j1, j2, j3) is the quotient of two modular forms of degree 10 d(ℓ) (resp. 20 d(ℓ)) on S,
by Proposition 4.3. Therefore the result follows from Lemma 4.10 and Proposition 4.8.

Lemma 4.12. Let F = Q(
√
5), and let g1, g2 denote the Gundlach invariants on the Hilbert

surface SL(ZF ⊕ Z∨
F )\H2

1, as defined in §3.4. Then we have

GC(g1, g2, 1) ≤
1

6
.

Proof. Choose F6, F2, and F10 as generators of the graded Q-algebra of Hilbert modular
forms of level SL(ZF ⊕ Z∨

F ). We have

F6F
2
2

F10
= g2 and

F 5
2

F10
= g1.

Therefore we are in case (i) of Definition 4.4, and

GC(g1, g2, 1) ≤
(
1 +

2

3

)
· 1

10
=

1

6
.

Proposition 4.13. Let F = Q(
√
5), let β ∈ ZF be a totally positive prime, and let Ψβ,m

for m ∈ {1, 2} denote the Hilbert modular equations of level β in Gundlach invariants.
Let F ∈ Q(J1, J2) be a coefficient of Ψβ,1 or Ψβ,2. Then the total degree of F is bounded
above by 10 d(β)/3, where d(β) = NF/Q(β) + 1.

Proof. The integer d(β) is the degree of the Hecke correspondence, and the automorphism
group Σ used to define the Hilbert modular equations has order 2. We can take the modular F10

as denominator of both g1 and g2; the common denominators gβ,1 = gβ,2 from Proposition 4.3
have weight 20 d(β), so the result follows from Lemma 4.10 and Proposition 4.8.
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The degree bounds in Propositions 4.11 and 4.13 are both reached experimentally. In the
Siegel case with ℓ = 2, the maximum degree is 25; in the Hilbert case with NF/Q(β) = 41, the
maximum degree is 140 [23].

5. Height estimates for modular equations

Another important information when manipulating modular equations, besides their degrees,
is the size of their coefficients. More precisely, we use the notion of heights of elements,
polynomials and rational fractions over a number field. The goal of this section is to prove
part (ii) of Theorem 1.1, giving height bounds on coefficients of modular equations.

As mentioned in the introduction, the proof is inspired by existing works on elliptic modular
polynomials [31]. First, we study the heights of modular equations evaluated at well-chosen
points, using the fact that the underlying Hecke correspondence describes isogenous abelian
varieties. Then we apply the main result of [18], which gives a tight relation between the height
of a rational fraction and the heights of sufficiently many of its evaluations.

5.1. Definition of heights

Let us recall the well-known definitions. We use the following notation:

• L is a number field of degree dL over Q;
• V0

L (resp. V∞
L ) is the set of all nonarchimedean (resp. archimedean) places of L; and

• VL = V0
L ⊔ V∞

L is the set of all places of L.

For each place v of L,

• Lv (resp. Qv) denotes the completion of L (resp. Q) at v,
• dv = [Lv : Qv] denotes the local extension degree of L/Q at v, and
• | · |v denotes the normalized absolute value associated with v.

We normalize the nonarchimedean absolute values of L in the following way: for each v ∈ V0
L,

if p ∈ PQ is the prime below v, then |p|v = 1/p.
The (absolute logarithmic Weil) height of projective tuples, affine tuples, elements, poly-

nomials and rational fractions over L is defined as follows.

Definition 5.1. Let n ≥ 1, and let y0, . . . , yn ∈ L.

(i) The projective height of (y0 : · · · : yn) ∈ Pn
L is

h(y0 : · · · : yn) =
∑

v∈VL

dv
dL

log
(
max
0≤i≤n

|yi|v
)
.

(ii) The affine height of (y1, . . . , yn) ∈ Ln is the projective height of (1 : y1 : · · · : yn):

h(y1, . . . , yn) =
∑

v∈VL

dv
dL

log
(
max{1, max

1≤i≤n
|yi|v}

)
.

In particular, for every y ∈ L, we have

h(y) =
∑

v∈VL

dv
dL

log
(
max{1, |y|v}

)
.

(iii) Let P ∈ L[Y1, . . . , Yn] be a multivariate polynomial over L, and write

P =
∑

k=(k1,...,kn)∈Nn

ckY
k1
1 · · ·Y kn

n .
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Let v ∈ VL. We write

|P |v = max
k∈Nn

|ck|v

and

h(P ) =
∑

v∈VL

dv
dL

log
(
max{1, |P |v}

)
.

In other words, h(P ) is the height of the affine tuple formed by all the coefficients of P .

(iv) Let F ∈ L(Y1, . . . , Yn) be a multivariate rational fraction over L, and choose coprime
polynomials P,Q ∈ L[Y1, . . . , Yn] such that F = P/Q. Then we define h(F) as the height
of the projective tuple formed by all the coefficients of P and Q.

Here are a few elementary properties of heights.

(1) Projective heights are well defined, by the product formula [16, Lem. B.2.1(a)]. Therefore
the height of a fraction is also well defined.

(2) Heights are independent of the ambient number field [16, Lem. B.2.1(c)], by another
application of the product formula. In particular we note that

∑

v∈V∞

L

dv
dL

= 1.

(3) If L = Q, then Definition 5.1 coincides with the naive one given in the introduction.

Informally, the height of an element y ∈ L measures the amount of information needed to
represent y.

5.2. Heights, evaluations and roots

In this section, we state relations between

(1) The height of a univariate polynomial over L and the height of its roots;

(2) The height of a multivariate polynomial or multivariate rational fraction over L with the
heights of its values at special points.

Several of the statements are easy consequences of the formulæ from Definition 5.1, while others
are more intricate and are proved by the author in a separate paper [18].

Let us start with the evaluation of polynomials; the following proposition is a slight
generalization of [16, Prop. B.7.1].

Proposition 5.2. Let d ≥ 0, let P ∈ L[Y1, . . . , Yn] be a polynomial of total degree at
most d, let 1 ≤ m ≤ n, and let y1, . . . , ym ∈ L. Write Q = P (y1, . . . , ym, Ym+1, . . . , Yn). Then

h(Q) ≤ h(P ) +m log(d+ 1) + d h(y1, . . . , yn).

More generally, if I1 ⊔ · · · ⊔ Ir is a partition of J1,mK, and if dk ≥ 0 denotes an upper bound
on the total degree of P in the variables Yi for i ∈ Ik, then

h(Q) ≤ h(P ) +
r∑

k=1

(#Ik) log(dk + 1) +
r∑

k=1

dk h
(
(yi)i∈Ik

)
.

Proof. It is enough to prove the second statement. If v ∈ V0
L, we have

∣∣P (y1, . . . , ym, Ym+1, . . . , Yn)
∣∣
v
≤ |P |v

r∏

k=1

(
max

{
1,max

i∈Ik

|yi|v
})dk

.
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If v ∈ V∞
L , the same estimate holds after multiplying the right hand side by the number of

possible monomials in Y1, . . . , Ym, which is
r∏

k=1

(dk + 1)#Ik .

Taking logarithms and summing gives the result.

As a consequence, we can bound the height of a monic polynomial by the height of its roots.

Proposition 5.3. Let Q ∈ L[Y ] be monic of degree d, and let α1, . . . , αd be its roots in the
algebraic closure of L. Then

h(Q) ≤
d∑

i=1

h(αk) + d log 2.

Proof. Apply Proposition 5.2 on the multivariate polynomial

P =

d∏

k=1

(Yd+1 − Yk)

with m = d, yk = αk, and Ik = {k}. Since the coefficients of P all belong to {−1, 0, 1}, we have
h(P ) = 0.

Conversely, the height of a univariate polynomial over L controls the height of its roots.

Proposition 5.4. Let P ∈ L[Y ]\{0}, and let α be a root of P . Then

h(α) ≤ h(P ) + log(2).

Proof. We reproduce the proof given in a lecture by F. Pazuki. We can assume that P is
monic. Let v ∈ VL. We want to show that |α|v ≤ |P |v if v ∈ V0

L, and |α|v ≤ 2|P |v if v ∈ V∞
L .

Since P is monic, we always have |P |v ≥ 1. Write P = Xn +
∑n−1

k=0 ckY
k, for some n ≥ 1.

If v ∈ V0
L, we can assume that |α|v ≥ 1. Then

|α|v =

∣∣∣∣∣

n−1∑

i=0

ckα
k

∣∣∣∣∣
v

≤ |P |v|α|n−1
v ,

so |α|v ≤ |P |v.
If v ∈ V∞

L , we can assume that |α|v ≥ 2. Then, by the triangle inequality, we obtain

|α|v ≤ |P |v|αv|n−1

(
1 +

1

|α|v
+ · · ·+ 1

|α|n−1
v

)
≤ 2|α|n−1

v |P |v,

so |α|v ≤ 2|P |v. Taking logarithms and summing over all places of L yields the result.

We now turn to the more difficult questions of giving upper bounds on the height of a
polynomial or rational fraction from its values at special points. Our choice is to consider
(almost) consecutive integers.

Proposition 5.5 ([18, Prop. 1.1]). Let JA,BK be an interval in Z. Write D = B −A and
M = max{|A| , |B|}. Let d ≥ 1, let P ∈ L[Y ] be a univariate polynomial of degree at most d,
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let N ≥ d+ 1, and let y1, . . . , yN be distinct elements of JA,BK. Let H ≥ 0, and assume that
h(P (yi)) ≤ H for every 1 ≤ i ≤ N . Then we have

h(P ) ≤ N

N − dH +D log(D) + d log(2M) + log(d+ 1).

Note that the bound on h(P ) is of the order of dH when N = d+ 1, as suggested by the
Lagrange interpolation formula. On the other hand, if we take for instance N = 2d, then the
bound on h(P ) is roughly in O(H). This remark will be crucial in §5.6, when we consider the
evaluation of multivariate polynomials in each variable successively.

Proposition 5.6 ([18, Prop. 1.2]). Let JA,BK be an interval in Z. Write D = B −A and
M = max{|A| , |B|}. Let d ≥ 1, and let F ∈ L(Y ) be a univariate rational fraction of degree
at most d. Let S be a subset of JA,BK containing no poles of F , let η ≥ 1, and let H ≥
max{4, log(2M)}. Assume that

(i) h(F(y)) ≤ H for every y ∈ S.

(ii) S contains at least D/η elements.

(iii) D ≥ max{ηd3H, 4ηddL}.
Then we have

h(F ) ≤ H + CLηd log(ηdH) + d log(2M) + log(d+ 1),

where CL is a constant depending only on L. We can take CQ = 960.

The bound on h(F) given in Proposition 5.6 is roughly in O(H) as well, but the number of
evaluation points that we have to consider is bounded from below in terms of H .

5.3. Heights of abelian varieties

We fix a PEL setting as in §3.2, and keep the notation used there. We also write S = Γ\X+,
where Γ is a subgroup of G(Q)+.

Different types of heights can be defined for an abelian variety A over Q. The Faltings
height hF (A) is defined in [12, §3] in terms of Arakelov degrees of metrized line bundles on A.
If A is given a principal polarization L, and r ≥ 2 is an even integer, we can also define the
Theta height of level r of (A,L), denoted by hΘ,r(A,L), as the projective height of level r theta
constants of (A,L) [30, Def. 2.6]. Finally, if A is an abelian variety with PEL structure over Q
given by a point z ∈ S where j1, . . . , jn+1 are well defined, we can define the j-height of A as

hj(A) = h
(
j1(A), . . . , jn+1(A)

)
.

We also write hF (A) = max{1, hF (A)} and define h, hΘ,r, and hj similarly.
The goal of this section is to relate the j-heights of isogenous abelian varieties, under mild

conditions related to the geometry of the moduli space. Such a relation is known for instance
in the case of elliptic curves, taking the usual j-invariant as coordinate [31, Thm. 1.1]. To this
end, we relate the j-height with the Faltings height, since the latter behaves well with respect
to isogenies. Theta heights are an intermediate step between concrete values of invariants and
the Faltings height. More precisely, we use the two following results.

Proposition 5.7. Let A, A′ be abelian varieties over Q, and assume that an isogeny
ϕ : A→ A′ exists. Then

∣∣hF (A) − hF (A′)
∣∣ ≤ 1

2
log(degϕ).
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Proof. This is a consequence of [12, Lem. 5].

Theorem 5.8 ([30, Cor. 1.3]). For every g ≥ 1, and every even r ≥ 2, there exists a
constant C(g, r) such that the following holds. Let (A,L) be a principally polarized abelian
variety of dimension g defined over Q. Then

∣∣∣hΘ,r(A,L)−
1

2
hF (A)

∣∣∣ ≤ C(g, r) log
(
min{hF (A), hΘ,r(A,L)} + 2

)
.

We can take

C(g, r) = 1000r2g log5(r2g).

5.4. Relating the j-height and the Faltings height

Using Theorem 5.8, we can prove that the j-height and the Faltings height of a generic
abelian variety with PEL structure are related.

Proposition 5.9. There exists a nonzero polynomial P ∈ L[Y1, . . . Yn+1] and a positive
constant C such that the following holds: if A is the abelian variety with PEL structure
associated with a point z ∈ S where j1, . . . , jn+1 are well defined and P (j1, . . . , jn+1) 6= 0, and
if A is defined over Q, then

1

C
hF (A) ≤ hj(A) ≤ C hF (A).

Proof. By [27, Thm. 5.17], we can write S = Γ′\X+ where Γ′ is a congruence subgroup
of Gder. Since Gder ⊂ ker(det), it embeds into GSp2g(Q), where 2g = dimQ V . Therefore, by
[27, Thm. 5.16], we can find a congruence subgroup Γ′′ of Gder and an even integer r ≥ 4
such that Γ′′\X+ embeds in the moduli space AΘ,r of principally polarized abelian varieties of
dimension g with level r Theta structure. We have a diagram

S̃ = Γ̃\X+

S = Γ′\X+ S ′′ = Γ′′\X+ AΘ,r

p′ p′′

ι

(5.1)

where Γ̃ = Γ′ ∩ Γ′′. The maps p′ and p′′ are finite coverings. All the varieties and maps in this
diagram are defined over Q.

The modular interpretation of diagram (5.1) is the following. Let (Λ, ψ) be the standard
polarized lattice associated with the connected component S, as in Proposition 2.2. We
can find a sublattice Λ′′ ⊂ Λ, and λ ∈ Q× such that (Λ′′, λψ) is principally polarized. A
point z ∈ S defines a complex structure x on Λ ⊗ R = V (R), up to action of Γ. Lifting z
to z̃ ∈ S̃ corresponds to considering x up to action of Γ̃ only, and this group leaves Λ′′ and its
level r Theta structure stable. Then the image of z̃ in AΘ,r is then given by (Λ′′, x, λψ).

In particular, if z̃ ∈ S̃, and if A and A′′ are the abelian varieties corresponding to the
points p′(z̃) ∈ S and ι ◦ p′′(z̃) ∈ AΘ,r respectively, then A and A′′ are linked by an isogeny
of degree d = #(Λ/Λ′′). Hence, by Proposition 5.7 and Theorem 5.8, we have

∣∣hF (A)− 2 hΘ,r(A
′′)
∣∣ ≤ log(d)

2
+ C(g, r) log

(
min{hF (A), hΘ,r(A

′′)}+ 2 +
log(d)

2

)

≤ CF min{hF (A), hΘ,r(A
′′)}
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with CF = (2 + log(d))C(g, r). Therefore

hF (A) ≤ (2 + CF ) hΘ,r(A
′′), hΘ,r(A

′′) ≤ 1 + CF

2
hF (A). (5.2)

Now we relate the Theta height and the j-height using relation between modular functions;
the genericity hypothesis encoded in the polynomial P appears in this step. Denote by θ0, . . . , θk
the Theta constants of level r. They define a projective embedding of AΘ,r, therefore the
pullbacks of θ1/θ0, . . . , θk/θ0 generate the function field of S ′′. By definition, j1, . . . , jn+1 are
coordinates on S. To ease notation, we identify all these functions with their pullbacks to S̃.

By the primitive element theorem, there exists a function f on S̃ such that both
(j1, . . . , jn+1, f) and (θ1/θ0, . . . , θk/θ0, f) are generating families for the function field of S̃
over Q. We choose polynomials

PJ ∈ Q[Y1, . . . , Yn+1, X ] and PΘ ∈ Q[Y1, . . . , Yk, X ]

such that PJ(j1, . . . , jn+1, X) and PΘ(θ1/θ0, . . . , θk/θ0, X) are (non necessarily monic) minimal
polynomials of f over the function fields of S and S ′′ respectively. We also choose polynomials
NJ,i, DJ,i ∈ Q[Y1, . . . , Yk, X ] for each 1 ≤ i ≤ n+ 1, and NΘ,i, DΘ,i ∈ Q[Y1, . . . , Yn+1, X ] for

each 1 ≤ i ≤ k, such that the following equalities hold on S̃:

ji =
NJ,i

DJ,i
(θ1/θ0, . . . , θk/θ0, f) for each 1 ≤ i ≤ n+ 1, and

θi/θ0 =
NΘ,i

DΘ,i
(j1, . . . , jn+1, f) for each 1 ≤ i ≤ k.

Let F̃ be the smallest Zariski closed subset of S̃ such that outside F̃ , the following properties
are all satisfied:

• all the functions f , ji for 1 ≤ i ≤ n+ 1 and θi/θ0 for 1 ≤ i ≤ k are well defined;
• the polynomials PJ (j1, . . . , jn+1, X) and PΘ(θ1/θ0, . . . , θk/θ0, X) do not vanish;
• the quantitiesDJ,i(θ1/θ0, . . . , θk/θ0, f) for 1 ≤ i ≤ k andDΘ,i(j1, . . . , jn+1, f) for 1 ≤ i ≤ k

do not vanish.

Then F̃ has codimension 1 in S̃, hence U = S\p′(F̃ ) is open dense in S. Let P ∈ L[j1, . . . , jn+1]
be a polynomial such that {P 6= 0} ⊂ U .

Let z ∈ S be a point where j1, . . . , jn+1 are well defined, take values in Q, and satisfy
P (j1, . . . , jn+1) 6= 0. We look at the diagram (5.1), from left to right. Lift z to a point z̃ ∈ S̃;
by construction, z̃ /∈ F̃ . By Propositions 5.2 and 5.4, we have

h
(
j1(z̃), . . . , jn+1(z̃), f(z̃)

)
≤ C h

(
j1(z), . . . , jn+1(z)

)
(5.3)

with C = h(PJ ) + (n+ 1) log(dJ + 1) + dJ + 1, where dJ denotes the total degree of PJ

in Y1 . . . , Yn+1. Writing z′′ = p′′(z̃), we also have for every 1 ≤ i ≤ k,
h(θi/θ0(z̃)) ≤ C h

(
j1(z̃), . . . , jn+1(z̃), f(z̃)

)
(5.4)

with

C = h(NΘ,i) + h(DΘ,i) + (n+ 2)
(
log(deg(NΘ,i) + 1) + log(deg(DΘ,i) + 1)

)

+ deg(NΘ,i) + deg(DΘ,i),

where deg denotes the total degree. Combining equations (5.3) and (5.4), we obtain

h

(θ1
θ0

(z′′), . . . ,
θk
θ0

(z′′)
)
≤ CΘ h

(
j1(z), . . . , jn+1(z)

)

where CΘ has an explicit expression in terms of the heigts and degrees of the polynomials PJ

and NΘ,i, DΘ,i for 1 ≤ i ≤ k. Equivalently, in the notation above, we have

hΘ,r(A
′′) ≤ CΘ hj(A),
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so by (5.2)

hF (A) ≤ (2 + CF )CΘ hj(A).

Going through the diagram from right to left gives the reverse inequality

hj(A) ≤
(1 + CF )CJ

2
hF (A)

where CJ is defined in a similar way to CΘ in terms of the polynomials PΘ and NJ,i, DJ,i

for 1 ≤ i ≤ n+ 1.

Assume that the integers r and d, the modular function f , as well as the polynomi-
als PJ , PΘ, NJ,i, DJ,i, NΘ,i, andDΘ,i can be explicitly determined. Then both the polynomial P
and the constant C in Proposition 5.9 can be determined explicitly as well. We will do this
computation in a slightly different way in §5.7 in the case of Igusa invariants on the Siegel
threefold.

From now on, we define U to be the Zariski open set in S where j1, . . . , jn+1 are well defined
and P (j1, . . . , jn+1) 6= 0.

Corollary 5.10. Let C be the constant from Proposition 5.9, let z and z′ be points
of U and let A and A′ be the abelian varieties with PEL structure associated with z and z′

respectively. Assume that A and A′ are defined over Q, and are linked by an isogeny of degree d.
Then

hj(A
′) ≤ C2(hj(A) + log d).

Proof. Combine Propositions 5.7 and 5.9.

Remark 5.11. We can presumably do better than Corollary 5.10. For instance, when
studying j-invariants of isogenous elliptic curves, one can prove that |h(j(E)) − h(j(E′))| is
bounded by logarithmic terms [31, Thm. 1.1]. This is also the kind of bound provided by
Theorem 5.8. The rough estimate in Corollary 5.10 is sufficient for our purposes, but has the
drawback that the constants we derive from it are very pessimistic.

5.5. Heights of evaluated modular equations

Let U (resp. U ′) be an open set of S (resp. T ) where a relation between the j-height
and the Faltings height holds, as in Proposition 5.9. Define Uδ ⊂ S to be the Zariski open
set of all points [x, g] ∈ S such that [x, g] ∈ U , and moreover the images of [x, g] under the
(symmetrized) Hecke correspondence Hδ all lie in U ′: in other words [σ(x), σ(gkδ)] ∈ U ′ for
every (k, σ) ∈ K0/Kn+1, in the notation of §3.2. Finally, we define Vδ ⊂ Ln to be the Zariski
open set of all points (j1, . . . , jn) where the equation (3.3) given by E(j1, . . . , jn, Jn+1) has e
distinct roots and the following property holds: if jn+1 is a root of (3.3), then (j1, . . . , jn+1)
are the invariants of some point z ∈ Uδ. In particular, the modular equations Ψδ,m do not have
poles on Vδ.

Lemma 5.12. There exist a positive constant C independent of δ, and a nonzero polynomial
Pδ ∈ L[J1, . . . , Jn] of total degree at most C d(δ) such that {Pδ(j1, . . . , jn) 6= 0} ⊂ Vδ.

Proof. Let E ∈ L[J1, . . . , Jn+1] be the polynomial defined in §3.2, of degree e in Jn+1, so
that the equation satisfied by jn+1 on S takes the form E(j1, . . . , jn+1) = 0.
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Let R be the the resultant of E and its derivative with respect to Jn+1. If R does not vanish
at (j1, . . . , jn) ∈ Ln, then the polynomial E(j1, . . . , jn, Jn+1) ∈ L[Jn+1] has e distinct roots.

Similarly, there is a polynomial Q ∈ L[J1, . . . , Jn+1] such that every tuple (j1, . . . , jn+1)
satisfying (3.3) and such that Q(j1, . . . , jn+1) 6= 0 lies in the image of S. Let R′ be the resultant
of Q and E with respect to Jn+1. If R′ does not vanish at (j1, . . . , jn), then for every root jn+1

of E(j1, . . . , jn, Jn+1), the tuple (j1, . . . , jn+1) lies in the image of S.
Let λ, λ′ be symmetric modular forms on S and T respectively, defined over L, such that
{λ 6= 0} ⊂ U and {λ′ 6= 0} ⊂ U ′. These modular forms can be chosen independently of δ. As
in §4.1, we construct the modular form

λδ = λ
∏

γ∈K0/K′

γ · λ′δ

where λ′δ is the modular form [x, g] 7→ λ′([x, gδ]) of level K ′. The modular form λδ is defined
over L and has weight

wt(λδ) = wt(λ) + (#Σ) d(δ)wt(λ′).

Modular forms realize a projective embedding of S by Theorem 2.5; therefore, possibly
after increasing the weight by a constant independent of δ, we can find a symmetric modular
form ξ defined over L such that wt(λδ) = wt(ξ) and the divisors of λδ and ξ have no common
codimension 1 components. By Proposition 4.8, if we write

λδ

ξ
=

e−1∑

k=0

Rk(j1, . . . , jn)j
k
n+1 where Rk ∈ L(J1, . . . , Jn),

then degRk ≤ GC(j1, . . . , jn+1)wt(λ
δ) for every 0 ≤ k ≤ e− 1. Taking the resultant of the

polynomials
∑
RkJ

k
n+1 and E with respect to Jn+1 yields a rational fractionR′′ ∈ L(J1, . . . , Jn)

of total degree at most

(e− 1)dE + e max
0≤k≤e−1

deg(Rk),

where dE denotes the total degree of E in j1, . . . , jn. If R′, R′′ are well defined and do not
vanish at (j1, . . . , jn), then for every root jn+1 of (3.3), the tuple (j1, . . . , jn+1) comes from a
point z ∈ Uδ.

We take Pδ to be the product of R, R′, and the numerator of R′′. The polynomials R and R′

are independent of δ, and the degree of R′′ is bounded above linearly in d(δ).

If upper bounds on the degree of equations defining U and U ′ are explicitly known, together
with the polynomials E and Q, then the proof of Lemma 5.12 allows us to determine a valid
constant C explicitly.

Proposition 5.13. There exists a constant C, independent of δ, such that the following
holds. Let (j1, . . . , jn) ∈ Vδ, and let 1 ≤ m ≤ n+ 1. Then

h
(
Ψδ,m(j1, . . . , jn)

)
≤ C d(δ)

(
h(j1, . . . , jn) + log l(δ)

)
.

Proof. Let J be the set of roots of equation (3.3) at (j1, . . . , jn), and let jn+1 ∈ J . Let [x, g]
be a point of S describing an abelian variety A with PEL structure whose invariants are
(j1, . . . , jn+1). For every σ ∈ Σ, denote by Aσ the abelian variety with PEL structure associated
with the point [σ(x), σ(g)]. Then for every γ = (σ, k) ∈ K0/Km, the point [σ(x), σ(gkδ)]
describes an abelian variety Aγ which is related to Aσ by an isogeny of degree l(σ(δ)) = l(δ),
by Corollary 2.8. Therefore, by Corollary 5.10, we have

h
(
γ · j1,δ([x, g]), . . . , γ · jn+1,δ([x, g])

)
≤ C(h

(
j1, . . . , jn+1) + log l(δ)

)
.
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where the constant C is positive and independent of δ. By Definition 3.1, the polynomial
Ψδ,m(j1, . . . , jn, jn+1) ∈ L[Y1, . . . , Ym] is the evaluation of a certain multivariate polynomial
at the values γ · ji,δ([x, g]), for 1 ≤ i ≤ m and γ ∈ K0/Ki, each appearing with degree 1. The
number of such values is

d1 + d1d2 + · · ·+ d1 · · · dm ≤ m (#Σ) d(δ).

Therefore, by Proposition 5.2, we have

h
(
Ψδ,m(j1, . . . , jn+1)

)
≤ m (#Σ) d(δ) log(2) +m (#Σ) d(δ)C

(
h(j1, . . . , jn+1) + log l(δ)

)

≤ C′
d(δ)

(
h(j1, . . . , jn+1) + log l(δ)

)
.

where C and C′ denote explicit constants independent of δ. In order to obtain Ψδ,m(j1, . . . , jn),
we interpolate a polynomial of degree e− 1 in jn+1 where J is the set of interpolation points.
By Propositions 5.2 and 5.4, we have

h(jn+1) ≤ C h(j1, . . . , jn) for every jn+1 ∈ J ,
where C is a constant independent on δ. The result follows by applying Proposition 5.5
with N = d+ 1.

The proof of Proposition 5.13 provides an explicit value of C if the constant from
Corollary 5.10 is known.

5.6. Heights of coefficients of modular equations

We are ready to prove upper bounds on the heights of modular equations (the second part of
Theorem 1.1) using Proposition 5.13 and the results on heights of fractions given in §5.2. From
now on, we add subscripts to constants: for instance C5.9 denotes a constant larger than 1
such that Proposition 5.9 holds with this value of C. Moreover, we denote by Clog a constant
independent of δ such that log d(δ) ≤ Clog max{1, log l(δ)}. By Proposition 2.9, we can take
Clog = (dimV )2 + log(C2.9), where V denotes the Q-vector space defining the PEL datum.

Definition 5.14. We call an (n,N1, N2)-evaluation tree a rooted tree of depth n, arity N1

at depths 0, . . . , n− 2, and arity N2 at depth n− 1, such that every vertex but the root is
labeled by an element of Z and the sons of every vertex are distinct.

Let T be an (n,N1, N2)-evaluation tree, and let 1 ≤ k ≤ n. The k-th evaluation set Ik(T )
of T is the set of points (y1, . . . , yk) ∈ Zk such that y1 is a son of the root, and yi+1 is a son
of yi for every 1 ≤ i ≤ k − 1. We say that T is bounded by M if the absolute value of every
vertex is bounded above by M . We say that T has amplitude (D1, D2) if for every vertex y
of depth 0 ≤ r ≤ n− 2 (resp. depth n− 1) in T , the sons of y lie in an integer interval of
amplitude at most D1 (resp. D2); by definition, the amplitude of JA,BK is B −A.

Let T be an (n,N1, N2)-evaluation tree, let a = (a1, . . . , an) ∈ Zn, and let M ≥ 1 be an
integer. Let F be a coefficient of Ψδ,m for some 1 ≤ m ≤ n+ 1, seen as a polynomial in the
variables Jn+1, Y1, . . . , Ym; hence F ∈ L(J1, . . . , Jn). Write F = P/Q in irreducible form, and
let d = deg(F); assume that d ≥ 1. We say that T, a and M are valid evaluation data for F if
the following conditions are satisfied:

(i) T and a are bounded by M

(ii) We have M ≥ 2B log2(B + 1), where

B = 4C3
4.9C5.13 d(δ)

4 max{1, log l(δ)}.
(iii) N1 = 2d and N2 ≥M .

(iv) T has amplitude (4d, 2M).
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(v) For every (y1, . . . , yn) ∈ In(T ), the point

(j1, . . . , jn) = (y1yn + a1, . . . , yn−1yn + an−1, yn + an)

belongs to Vδ.
(vi) For every (y1, . . . , yn−1) ∈ In−1(T ), the two polynomials P and Q evaluated at the tuple

(y1Y + a1, . . . , yn−1Y + an−1, Y + an) are coprime in L[Y ].

(vii) Q(a1, . . . , an) 6= 0.

Lemma 5.15. There exists a constant C, independent of δ, such that the following holds.
Let F be a coefficient of Ψδ,m of degree d ≥ 1. Then there exist valid evaluation data (T, a,M)
for F such that

C d(δ)4 max{1, log3(l (δ))} ≤M < C d(δ)4 max{1, log3(l(δ))} + 1 (5.5)

and M ≥ 4d[L : Q]. We can take

C = max{C1, C2, C3}

where

C1 = 24C3
4.9C5.13

(
4Clog + log(24C3

4.9C5.13) + 1
)
,

C2 = 14C2
4.9 + 5C5.12, and C3 = 4C4.9[L : Q].

Proof. Let M be as in (5.5). Condition (i) in Definition 5.14 holds because C ≥ C1.
We start by constructing the vector a. Note that M ≥ 2d+ 1. Since Q is nonzero, and

has degree at most d in Y1, we can find a1 ∈ Z such that |a1| ≤M and the polyno-
mial Q(a1, Y2, . . . , Yn) is nonzero. Iterating, we find a vector a = (a1, . . . , an) bounded by M
such that Q(a1, . . . , an) 6= 0.

We now build the evaluation tree T down from the root. Let Pδ be an equation for the
complement of Vδ as in Lemma 5.12, and define

Rδ = Pδ(Y1Yn + a1, . . . , Yn−1Yn + an−1, Yn + an)

which is a nonzero polynomial of degree at most 2C5.12 d(δ). Let R be the resultant with
respect to Yn of the two polynomials

P (Y1Yn + a1, . . . , Yn−1Yn + an−1, Yn + an)

and

Q(Y1Yn + a1, . . . , Yn−1Yn + an−1, Yn + an).

The polynomial R is nonzero and has total degree at most 4d2.
We want to choose 2d values of y1, lying in an interval with amplitude at most 4d, such that

neither Rδ nor R vanishes when evaluated at Y1 = y1; this nonvanishing condition excludes
at most 4d2 + 2C5.12 d(δ) possible values of y1. At least one of the integer intervals of the
form J5kd, (5k + 4)dK for 0 ≤ k ≤ 2d+ C5.12 d(δ)/d contains at least 2d valid choices of y1.
Then |y1| is always bounded above by 5(2d2 + C5.12 d(δ)) + 4d ≤M , because C ≥ C2.

We iterate this procedure to construct T up to depth n− 1 with the right arity, bound and
amplitude, such that the evaluations of the polynomials Rδ and R are nonzero at every point
(y1, . . . , yn−1) ∈ In−1(T ).

We conclude by constructing n-th level of T . Let (y1, . . . , yn−1) ∈ In−1(T ). Then, as before,
at most 4d2 + 2C5.12 d(δ) ≤M values for yn are forbidden as they make either Rδ or R vanish.
This leaves at least M available values for yn in J−M,MK.
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For every (y1, . . . , yn) ∈ In(T ), the nonvanishing of the polynomials Rδ and R at (y1, . . . , yn)
guarantees conditions (v) and (vi) of Definition 5.14 respectively. Finally, the inequality C ≥ C3

ensures that M ≥ 4d[L : Q].

Theorem 5.16. Let Hδ be an absolutely irreducible Hecke correspondence on S × T defined
by an element δ ∈ G(Af ), and let d(δ) be the degree of Hδ. Let F ∈ L(J1, . . . , Jn) be a coefficient
of one of the modular equations Ψδ,m for 1 ≤ m ≤ n+ 1. Then the height of F is bounded above
by C d(δ), where C is a constant independent of δ; more precisely we can take

C = 2n−1
(
2C5.13(1 + C′′) + 2C5.6C4.9

(
log(4C4.9C5.13) + 2Clog + 1 + C′′

)

+ 4C4.9(log(C4.9) + Clog) + 2C4.9(log(2) + C′′) + 2 log(2C4.9) + 2
)
,

where C′′ = 3 + log(2C5.15) + 4Clog.

Proof. By Lemma 5.15, there exist valid evaluation data (T, a,M) for F such that the
inequality M ≤ C5.15 d(δ)4 max{1, log3 l(δ)} + 1 holds. After scaling P and Q by an element
of L×, we can assume that Q(a1, . . . , an) = 1.

Let (y1, . . . , yn−1) ∈ In−1(T ), and write

F̃(Y ) = F(y1Y + a1, . . . yn−1Y + an−1, Y + an).

For every son yn of yn−1 in T , we have

h
(
y1yn + a1, . . . , yn−1yn + an

)
≤ log

(
(M + 1)M

)
≤ 2 log(M + 1).

Therefore, by Proposition 5.13,

h(F̃(yn)) ≤ C5.13 d(δ)
(
2 log(M + 1) + log l(δ)

)

≤ 2C5.13 d(δ)
(
log(M + 1) + max{1, log l(δ)}

)
.

Denote this last quantity by H . We have H ≥ 4 and H ≥ log(2M). Moreover, in the notation
of Definition 5.14, the inequality M ≥ 2B log2(B + 1) ensures that

M

log(M + 1)
≥ B ≥ d3

(
4C5.13 d(δ)max{1, log l(δ)}

)
.

Therefore M ≥ d3H .
We are in position to apply Proposition 5.6 for the univariate rational fraction F̃ on the

interval J−M,MK, with η = 2, using the sons of (y1, . . . , yn−1) in T as evaluation points. We
obtain

h(F̃) ≤ H + 2C5.6d log(2dH) + d log(2M) + log(d+ 1)

≤ C′
d(δ)max{1, log l(δ)},

where C′ is a constant independent of δ. In order to obtain an explicit expression for C′, we
note that

log(M + 1) ≤ C′′ max{1, log l(δ)}
where C′′ is defined as in the statement of the theorem. We check that we can take

C′ = 2C5.13(1 + C′′) + 2C5.6C4.9
(
log(4C4.9C5.13) + 2Clog + 1 + C′′

)

+ C4.9(log(2) + C′′) + log(2C4.9) + 1.

In the second part of the proof, we relate the height of F̃ with the height of F . The quotient

P (y1Y + a1, . . . , yn−1Y + an−1, Y + an)

Q(y1Y + a1, . . . , yn−1Y + an−1, Y + an)
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is a way to write F̃ in irreducible form in L(Y ), and has a coefficient equal to 1. Therefore h(F̃)
is the affine height of the coefficients appearing in the quotient. Hence

h
(
P (y1Yn + a1, . . . , yn−1Yn + an−1, Yn + an)

)
≤ C′

d(δ)max{1, log l(δ)}
for every (y1, . . . , yn−1) ∈ In−1(P ), and the same inequality holds for Q. Since N1 = 2d, we
can interpolate successively the variables yn−1, . . . , y1, using Proposition 5.5 with 2d evaluation
points at each vertex of the tree T . Finally we obtain

h(F) ≤ 2n−1
(
C′

d(δ)max{1, log l(δ)}+ 4d log(4d) + d log(2M) + log(d+ 1)
)

≤ 2n−1
(
C′ + 4C4.9(log(C4.9) + Clog) + C4.9(log(2) + C′′)

+ log(2C4.9) + 1
)
d(δ)max{1, log l(δ)}.

5.7. Explicit height bounds in dimension 2

In this final section, we derive explicit height bounds for modular equations of Siegel type for
abelian surfaces. Our first aim is to provide an explicit value for the constant in Corollary 5.10,
using Theta constants of level 4 as an intermediate step. To relate Theta heights and j-
heights in this setting, we use Mestre’s algorithm and Thomae’s formulæ instead of writing out
polynomials NJ,i, DJ,i, NΘ,i, and DΘ,i as in the proof of Proposition 5.9.

Proposition 5.17. Let A be a principally polarized abelian surface defined over Q

where j1, j2, j3 are well defined, and assume that j3(A) 6= 0. Then we have

hj(A) ≤ 40 hΘ,4(A) + 12 and hΘ,4(A) ≤ 200 hj(A) + 1000.

Proof. Recall the expression of Igusa invariants in terms of the Siegel modular forms
I4, I

′
6, I10, and I12:

j1 =
I4I

′
6

I10
, j2 =

I24I12
I210

, and j3 =
I54
I210

. (5.6)

These modular forms have a polynomial expression in terms of theta constants of level 4: see for
instance [33, §II.7.1]. The total degrees of the polynomials giving I4, I

′
6, I10 and I12 are 8, 12, 20

and 24 respectively; they contain respectively 10, 60, 1 and 15 monomials, and their height is
zero. Up to scaling, we may assume that the first theta constant θ0 takes the value 1. Then,
by Proposition 5.2, we have

h(I54 , I4I
′
6I10, I

2
4I12, I

2
10) ≤ 5 log(10) + 40 hΘ,4(A),

hence the first inequality

hj(A) ≤ 40 hΘ,4(A) + 12.

For the second inequality, we follow Mestre’s algorithm [22]. Starting from j1(A), j2(A)
and j3(A), Mestre’s algorithm constructs a hyperelliptic curve y2 = f(x) whose Jacobian is
isomorphic to A over Q. Up to scaling f , we may take I10 = 1 in equation (5.6). Then we see
that j1(A), j2(A) and j3(A) are realized by values of I2, I4, I

′
6, and I10 in Q such that

h(I2, I4, I
′
6, I10) ≤ hj(A).

The roots of f are the intersection points of a conic and a cubic in P2 whose equations are
given explicitly in terms of I2, I4, I6, and I10. In order to obtain the equation

∑3
i,j=1 cijzizj = 0

of the conic, we start from Mestre’s equation
∑3

i,j=1 Aijxixj = 0 and substitute the expressions

of A,B,C, and D in terms of I2, I4, I
′
6, and I10. Then we multiply by 211313514 and make the



Page 38 of 41 JEAN KIEFFER

substitutions

z1 = 202500x1, z2 = 225x2, z3 = x3.

Then, each coefficient cij has an expression as a multivariate polynomial in I2, I4, and I ′6 (recall
that I10 = 1) of total degree at most 7; its coefficients are integers whose absolute values are
bounded by 324 · 106. By Proposition 5.2, we have

h
(
(cij)1≤i,j≤3

)
≤ 7(hj(A) + log(3)) + 19.6 + 3 log(8) ≤ 7hj(A) + 33.6.

If we restrict to c11, c12, and c22, then we obtain a smaller upper bound, since the total degree
and the height of coefficients are at most 5 and 18.3 respectively. Similarly, the cubic equation,
denoted by

∑
1≤i≤j≤k≤3 cijkzizjzk = 0, has total degree at most 11 in I2, I4, and I ′6, and has

integer coefficients whose heights are at most 33.5.
In order to find the hyperelliptic curve equation f , we parametrize the conic. Let us show

that it contains a point P0 defined over Q such that h(P0) ≤ 5hj(A) + 29.9. We can assume
that c11 6= 0; otherwise we take P0 = (1 : 0 : 0). Let α be a root of the monic polynomial

α2 +
c12
c11

α+
c22
c11

= 0.

The point P0 = (α : 1 : 0) belongs to the conic, and by Proposition 5.4,

h(P0) = h(α) ≤ h(c11, c12, c22) + log(2)

≤ 5(hj(A) + log(3)) + 18.3 + 3 log(6) + log(2)

≤ 5hj(A) + 29.9.

We parametrize the conic using P0 as a base point; for simplicity, we continue to assume
that c11 6= 0. For (u : v) ∈ P1(Q), the point (z1 : z2 : z3) defined by

z1 = α(c11u
2 + c13uv + c33v

2)− u((2c11α+ c12)u+ (c13α+ c23)v),

z2 = c11u
2 + c13uv + c33v

2, and

z3 = −v((2c11α+ c12)u+ (c13α+ c23)v)

runs through the conic. Substituting these expressions in the cubic equation gives the curve
equation f . The polynomials we obtain have total degrees at most 29 in I2, I4, and I ′6; they
have degree at most 3 in α; and their coefficients are integers whose heights are bounded above
by 86.9. Therefore, by Proposition 5.2 (separating I2, I4, I

′
6 from α), we have

h(f) ≤ 29(hj(A) + log(3)) + 86.9 + 3(5hj(A) + 29.9) + 3 log(30) + log(4)

≤ 44hj(A) + 220.1.

Making f monic does not change its height.
Thomae’s formulæ [28, IIIa.8.1] give an expression of the Theta constants of level 4 of A in

terms of roots of f : if θ is one of these Theta constants, then θ4 is a product of 18 differences
of roots of f (up to a common multiplicative factor). Therefore, by Proposition 5.4, we obtain

hΘ,4(A,L) ≤ 1
4 · 18(h(f) + log(4)) ≤ 198hj(A) + 997.

As a consequence, we obtain an explicit analogue of Corollary 5.10 in the case of isogenies
between principally polarized abelian surfaces.

Proposition 5.18. Let A and A′ be principally polarized abelian surfaces over Q

where j1, j2, j3 are well defined, and assume that j3(A)j3(A
′) 6= 0. Let d ≥ 1 be an integer.

If A and A′ are linked by an isogeny of degree d, then we have

hj(A
′) ≤ 8000 hj(A) + 1.08 · 1011 log(hj(A)) + 1.67 · 1012 + 20 log d.
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Proof. By Theorem 5.8 and Proposition 5.7 and 5.17 (noting that C(2, 4) ≤ 1.35 · 109), we
have

hΘ,4(A) ≤ 200 hj(A) + 1000,
1
2 hF (A) ≤ hΘ,4(A) + C(2, 4) log(hΘ,4(A) + 2)

≤ 200 hj(A) + C(2, 4) log(1202) + C(2, 4) log(hj(A)),
1
2 hF (A

′) ≤ 1
2 hF (A) +

1
4 log ℓ,

hΘ,4(A
′) ≤ 1

2 hF (A
′) + C(2, 4) log(hF (A

′) + 2)

≤ 200 hj(A) + C(2, 4) log(1202) + 2C(2, 4) log(hj(A)) +
1
4 log ℓ

+ C(2, 4) log
(
402 + 2C(2, 4) log(1202) + C(2, 4) + 1

2 log ℓ
)
,

≤ 200 hj(A) + 2C(2, 4) log(hj(A)) + 4.17 · 1010 + 1
2 log ℓ, and

hj(A
′) ≤ 40 hΘ,4(A) + 12

≤ 8000 hj(A) + 80C(2, 4) loghj(A) + 1.67 · 1012 + 20 log ℓ.

In Lemma 5.12, we take λ = I4 and λ′ = I4I10. We have

wt(λδ) = 14 d(δ) + 4,

which is greater than 16, the minimum weight for which Siegel modular forms define a projective
embedding of S. Hence ξ can be chosen to be a modular form of weight wt(λδ). The fraction R′′

has degree at most 7
3 (d(δ) + 1) by Lemma 4.10; this is also an upper bound on deg(Pδ).

We also mimic the proof of Proposition 5.13 in the Siegel case. Let [x, g] be a point
of S with Igusa invariants (j1, j2, j3) ∈ Vδ. For each 1 ≤ m ≤ 3, by Remark 3.5, the polyno-
mial Ψδ,m(j1, j2, j3) is the evaluation of a multivariate polynomial in 2 d(δ) variables. Moreover,
the Hecke correspondence describes isogenies of degree ℓ2. By Proposition 5.18, we have

h
(
Ψδ,m(j1, j2, j3)

)
≤ 2 d(δ)

(
8000 h(j1, j2, j3) + 1.08 · 1011 log(hj(A)) + 1.67 · 1012 + 40 log ℓ

)
.

(5.7)
Therefore, we can take

C5.13 = 3.35 · 1012.

Moreover, we have d(δ) = ℓ3 + ℓ2 + ℓ + 1 and l(δ) = ℓ2. Hence we can take

Clog =
3

2
+ log(2) ≤ 2.2.

We also take

C5.6 = 960 because L = Q,

C4.9 =
10

3
by Proposition 4.11, and

C5.12 = 15 since d(δ) ≥ 15.

In Lemma 5.15, we can take

C5.15 = 1.36 · 1017

and in Theorem 5.16, we can take

C5.16 = 1.42 · 1015.

Since d(δ) ≤ 2ℓ3 and max{1, log ℓ(δ)} ≤ 2 log(ℓ), we obtain the following result.
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Theorem 5.19. Let ℓ ≥ 1 be a prime number, and let F ∈ Q(J1, J2, J3) be a coefficient of
one of the Siegel modular equations of level ℓ in Igusa invariants. Then we have

h(F) ≤ 5.68 · 1015ℓ3 log(ℓ).

In order to obtain tighter height bounds on Siegel modular equations, we could repeat the
computations of §5.6 using an expression of the form (5.7) for the height of evaluated modular
equations, instead of the simpler formula used in Proposition 5.13. However we cannot hope
to obtain a constant in Theorem 5.19 that is much smaller than C(2, 4) ≃ 1.35 · 109 using
our methods. Experimentally, we observe that the tighter inequalities h(F) ≤ 48.7 ℓ3 log(ℓ)
and h(F) ≤ 43.6 ℓ3 log(ℓ) hold for ℓ = 2 and ℓ = 3 respectively.

We could also give an analogue of Theorem 5.19 in the case of modular equations of Hilbert
type for Q(

√
5) in Gundlach invariants. To replace Proposition 5.17, we would use the relations

between Gundlach and Igusa invariants (see for instance [25, §2.3]) and the explicit curve
equation given by [19, Prop. A.4]. We leave the precise calculations for future work.
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