Martin boundary of killed random walks on isoradial graphs - Archive ouverte HAL
Article Dans Une Revue Potential Analysis Année : 2022

Martin boundary of killed random walks on isoradial graphs

Résumé

We consider killed planar random walks on isoradial graphs. Contrary to the lattice case, isoradial graphs are not translation invariant, do not admit any group structure and are spatially non-homogeneous. Despite these crucial differences, we compute the asymptotics of the Martin kernel, deduce the Martin boundary and show that it is minimal. Similar results on the grid $\mathbb Z^d$ are derived in a celebrated work of Ney and Spitzer.
Fichier principal
Vignette du fichier
Boutillier-Raschel-21.pdf (672.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02422417 , version 1 (22-12-2019)
hal-02422417 , version 2 (05-02-2021)

Identifiants

Citer

Cédric Boutillier, Kilian Raschel, Alin Bostan. Martin boundary of killed random walks on isoradial graphs. Potential Analysis, 2022, 57, pp.201-226. ⟨10.1007/s11118-021-09912-5⟩. ⟨hal-02422417v2⟩
292 Consultations
180 Téléchargements

Altmetric

Partager

More