Martin boundary of killed random walks on isoradial graphs - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Martin boundary of killed random walks on isoradial graphs

Résumé

We consider killed planar random walks on isoradial graphs. Contrary to the lattice case, isoradial graphs are not translation invariant, do not admit any group structure and are spatially non-homogeneous. Despite these crucial differences, we compute the asymptotics of the Martin kernel, deduce the Martin boundary and show that it is minimal. Similar results on the grid $\mathbb Z^d$ are derived in a celebrated work of Ney and Spitzer.
Fichier principal
Vignette du fichier
Ney-Spitzer-isoradial.pdf (670.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02422417 , version 1 (22-12-2019)
hal-02422417 , version 2 (05-02-2021)

Identifiants

  • HAL Id : hal-02422417 , version 1

Citer

Cédric Boutillier, Kilian Raschel, Alin Bostan. Martin boundary of killed random walks on isoradial graphs. 2019. ⟨hal-02422417v1⟩

Collections

UNIV-PARIS7 USPC
292 Consultations
180 Téléchargements

Partager

More