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MARTIN BOUNDARY OF KILLED RANDOM WALKS ON ISORADIAL GRAPHS

CEDRIC BOUTILLIER AND KILIAN RASCHEL, WITH AN APPENDIX BY ALIN BOSTAN

Abstract. We consider killed planar random walks on isoradial graphs. Contrary to the
lattice case, isoradial graphs are not translation invariant, do not admit any group structure
and are spatially non-homogeneous. Despite these crucial differences, we compute the
asymptotics of the Martin kernel, deduce the Martin boundary and show that it is minimal.
Similar results on the grid Z¢ are derived in a celebrated work of Ney and Spitzer.
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1. Introduction and results

1.1. Ney and Spitzer theorems. Let (Z,),>0 be a random walk on Z9 with finite support
and non-zero drift. In the celebrated paper [47], Ney and Spitzer derive the asymptotics of
the Green function

G(XvJ/):ZPx[Zn:)/] (1)
n=0

as |y| — oo in any given direction % 2 TE S971, see [47, Thm 2.2]. Introduce the one-step
transition probabilities generating function (with ¢ - y denoting the standard scalar product
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of ¢ and y in RY)
$(C) =Y p(0,y)e, (2)
y€ezd
defined in terms of the transition kernel p(x, y) = Px[Z1 = y] of the random walk. Ney and
Spitzer deduce from their asymptotics of (1) that

600 y) _ e@ytaso), (3)

ly|=oo G(X0,¥)
v/lyl=¢

where the mapping ¥ — ((F) is proved to define a homeomorphism between the ambient
sphere S9! and the set
oD = {¢ e RY: p(¢) = 1}, (4)
see [47, Cor. 1.3] and [30]; see also (18) for an expression of the above homeomorphism.
Figure 1 contains a few examples of sets 0D in (4).
Introduce now the discrete Laplacian A = Id —p, i.e., for x € Z7,

AF(x) = > p(x,y)(F(x) = F(¥)).

yezd

From a potential theory viewpoint it is obvious that the exponential functions f(x) = esx
are discrete harmonic (meaning Af = 0) if and only if { € D. It is further known [17, 20]
that they are (positive) minimal, in the sense that if h is harmonic and satisfies 0 < h < f
on Z9, then h = cf for some 0 < ¢ < 1.

A corollary of Ney and Spitzer result (3) is that the Martin compactification of the random
walk coincides with the geometric compactification of Z9 by the sphere S~ at infinity. More
precisely, any harmonic function f for (Z,)n>0 may be written as f(x) = [, e*u(d¢), where
W is a positive Radon measure on 9D, see [47, Rem. a]. For a general introduction on Martin
boundary see [45, 19, 31, 50, 56].

Let us mention a few strongly related results. First, the original Ney and Spitzer result
(3) does not assume the boundedness of the support (it is only assumed that every point
of @D has a neighborhood in which ¢ in (2) is finite), but throughout this article we shall
only consider random walks with bounded increments. In absence of drift and if d > 3 (so
as to have a transient behavior), the Martin boundary is reduced to a single point, see [52,
Sec. 26] and [56, (25.11) and (25.12)] for exact statements and proofs. Let us also point
out the concept of t-Martin boundary (which probabilistically corresponds to a random walk
with killing), which involves the Green function

Gy} = S BdZy =y (5)
n=0

Obviously G(x, y|1) = G(x, y) in our notation (1). This t-Martin boundary is either empty
(when t < p, where p is the spectral radius of the transition kernel), reduced to one point
(t = p) or homeomorphic to S~ (when t > p), see Woess [56, Sec. 25.B]. The ratio
G(xl,y|%)/G(x0, y|%) converges to the same quantity as in (3), but with {(¥) € 0D;, where

8D: = {¢ e R : ¢(¢) = t}. (6)
We finally mention the work [23], in which Dussaule obtains the Martin boundary of

thickenings of Z9 (i.e., Cartesian products of Z9 by a finite set). In the reference [3] Babillot
considers non-lattice random walks and obtains the Martin boundary of thickenings of R¢.



MARTIN BOUNDARY OF KILLED RANDOM WALKS ON ISORADIAL GRAPHS 3

Figure 1. The curve ¢((1, (o) = t, for ¢((1, (o) = % + % + % + % and
t = 2v/2/3 ~ 0.9428,0.943,0.95,0.97,1,1.1. It corresponds to a nearest
neighbor walk in Z2 with jump probability % to the North and East, and % to
the South and West. The spectral radius of the transition kernel is 2v/2/3.

1.2. Spatial inhomogeneity. A crucial ingredient in the proof of all above results is the
spatial homogeneity (or invariance by translation) of Z9 and of the random walk, meaning
that p(x,y) = p(0,y — x) for all x,y € Z9.

The perturbation of the homogeneity at a finite number of sites of the grid Z9 should
not affect the structure of the Martin boundary, but already impacts on the expressions for
harmonic functions. This is shown by Kurkova and Malyshev [42, Thm 2.1] in the case
of planar random walks with jumps to the nearest neighbors; they obtain the asymptotics
of the Green function and show that the Martin boundary is homeomorphic to the circle
St. On the other hand, in the case of a homogeneity perturbed at an infinite number of
points, computing the Green function asymptotics or deriving the Martin boundary seems
too difficult in general (even if some upper and lower bounds may exist for the transition
probabilities or for the Green functions, see [46]).

It is therefore natural to introduce a structure behind the inhomogeneities. A class of
such models is composed of random walks killed or reflected when they exit a domain
(inhomogeneities then appear on the boundary of the domain). In this context, Kurkova
and Malyshev [42], Ignatiouk-Robert [33, 34, 35], Ignatiouk-Robert and Loree [32] obtain
the asymptotics of (ratios of) Green functions as in (3) and derive the Martin boundary when
the domain is a quarter plane Z3 or a half-space Z x Z971. See also [27].

1.3. The case of isoradial graphs. In this article we explore another class of models having
inhomogeneities in infinite number, namely, killed random walks on isoradial graphs. By
definition, isoradial graphs (see Figure 2 for a few examples) are planar embedded graphs
such that all faces are inscribable in a circle of radius 1; more details will be provided in
Section 2. So the irregularities of such graphs are structured, but as it is illustrated by
looking at the pictures, the behavior may be quite wild. In particular, with the exception of a
few simple particular cases (the square lattice Z2 or the triangular lattice), an isoradial graph
is not a linear transform of a two-dimensional lattice, is not translation-invariant and can be
actually highly non-homogeneous. Introduced by Duffin [21], Mercat [44] and Kenyon [39],
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these graphs have become particularly popular, as they are well suited for discrete complex
analysis [16]. Moreover, because the star-triangle transformation (see Figure 4), which plays
an important role in integrable statistical mechanics, preserves isoradiality, many models
of statistical mechanics are now studied [12] on isoradial graphs: dimer model [39, 18],
two-dimensional Ising model [14], spanning trees, bond percolation [28], random cluster
model [4, 22], etc.

Despite their intrinsic irregularity and the absence of group structure, isoradial graphs form
a broad class of graphs on which one can define an exponential function in a uniform way;
this is a first step towards a Ney and Spitzer theorem. Such an exponential function is only
proved to exist when the isoradial graph G is equipped with certain natural conductances,
involving trigonometric or elliptic functions and geometric angles of the embedding of the
graph. The existence is obtained by Kenyon [39] for critical (trigonometric) weights and is
extended to the non-critical (elliptic) case by de Tiliere and the two present authors [13].
Whereas the classical exponential function between any two points x, y € Z9 may be written
as e~ with a parameter ¢ € C, see (3), the exponential function on G takes the form

e(x,y)(u|k)v (7)

where x,y € G, k € (0,1) is an elliptic modulus naturally attached to the model and u lies
on the torus T(k) = C/(4K(k)Z+4iK'(k)Z), K and K’ denoting the elliptic integrals of the
first kind and its complementary, respectively, see Section 2.3 and [13, Sec. 3.3]. In the same
manner that f(x) = e¢* is harmonic on Z¢ for ¢ € 8D, the exponential function e(x.y) (ulk)
is discrete harmonic as a function of x (y being fixed), in the sense that its massive Laplacian

AF(x) =D p(Bx | K)(F(x) = F(2)) + m* (x|K)F(x) (8)

zZ~X

is zero by [13, Prop. 11], the conductances p and (squared) masses m? being defined in
(11) and (12). The work [13] also provides exact and asymptotic expressions for the Green
function G(x, y) of the killed random walk described by (8), see in particular [13, Thm 14].

1.4. Main results. Building on the results of [13], our main theorem is the asymptotics of
the Martin kernel

G(x1,y)

lim _e(xo,X1)(U0|k)' 9)

y—o0 G(Xo, y)
where the exponential function e(,, ) In (7) is evaluated at a point ug € 2iK" + R which
depends on the way that y goes to infinity in the graph. See Theorem 1 for the precise
statement. Let us present the main features of (9):

e First, it gives the limit of the ratio of the Green function in any asymptotic direction
in the graph. It also proves that the Martin boundary is homeomorphic to the sphere
S, providing the announced generalization of Ney and Spitzer result (3) on isoradial
graphs. The latter result follows from showing that ug describes a circle in the torus,
as the asymptotic direction varies along all possible directions in the graph (see our
Theorem 2).

e Theorem 3 shows that for all ug € 2/K’+R and y € G, e(y.,(uo| k) defines a minimal
positive harmonic function (see Section 1.1 for the definition), thereby proving
that the Martin boundary is minimal. Recall that positive harmonic functions are
particularly important in potential theory, as they allow, via the Doob transformation,
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to construct conditioned processes (for example going to infinity along a given
direction in the graph).

e In the few particular cases which are both isoradial graphs and lattices (namely, the
square and triangular lattices), we show that our results coincide with the classical
Ney and Spitzer theorem and we unify the two points of view.

e Beyond the square and triangular lattices, our results in particular apply to periodic
isoradial graphs, which are constructed as lifts to the plane of a fundamental pattern
on the torus. We prove that some tools developed for their study (characteristic
polynomial, amoeba, quantity ug in (9), etc.) naturally correspond with objects in
79 (generating function of the transition probabilities, set dD; in (6), mapping (()
in (3), etc.).

The paper is organized as follows. Section 2 presents some crucial definitions and properties
of isoradial graphs, Green functions and discrete exponential functions. Section 3 contains
the statements of the main results and their proofs. After gathering and reinterpreting
existing results on general periodic planar graphs, Section 4 presents a refined study of the
case of periodic isoradial graphs. Section 5 focusses on minimal harmonic functions.

Acknowledgments. We warmly thank Béatrice de Tiliere for interesting discussions. We
also thank an anonymous referee for his/her reading and comments.

2. lIsoradial graphs, Green functions and exponential functions

2.1. Isoradial graphs. Isoradial graphs, named after [39], are defined as follows®. An
embedded planar graph G = (V, E) is isoradial if all internal faces are inscribable in a circle,
with all circles having the same radius (fixed for example to 1), and such that all circumcenters
are in the interior of the faces. Examples are provided in Figures 2 and 7.

Let G be an infinite, isoradial graph, whose bounded faces fill the whole plane. Then the
dual graph G*, embedded by placing dual vertices at the circumcenters of the corresponding
faces, is also isoradial.

The diamond graph, denoted G°, is constructed from an isoradial graph G and its dual G*.
Vertices of G° are those of G and those of G*. A dual vertex of G* is joined to all primal
vertices on the boundary of the corresponding face. Since edges of the diamond graph G®
are radii of circles, they all have length 1 and can be assigned a direction +e®. Note that
faces of G° are side-length 1 rhombi.

A train-track is a bi-infinite path on the dual of the diamond graph (G®)* which does
not turn: when entering in a rhombus, it exits through the opposite edge. See Figure 2.
A train-track T thus crosses edges with the same direction +e'®. We then say that the
angle @ is associated to the train-track. This angle is a priori well defined only modulo .
This ambiguity can be lifted by considering an orientation for the train-track and choosing a
convention (i.e., the vector e’® crosses the oriented train-track from left to right), and then,
the angle associated to the train-track oriented in the other direction is & + .

A minimal path between two vertices x and y is a shortest path in G between these
vertices. It is not unique, but the set of unit steps used is the same for all minimal paths.

Using the diamond graph, angles can naturally be assigned to edges of the graph G as
follows. Every edge e of G is the diagonal of exactly one rhombus of G°, and we let 0,
be the half-angle at the vertex it has in common with e, see Figure 3. Note that we have

IThe presentation of Section 2.1 follows that of [13, Sec. 2].
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Figure 2. Upper left: piece of an infinite graph G isoradially embedded in the
plane with the circumcircles of the faces. Upper right: a periodic isoradial
embedding of the square lattice. Lower left: an isoradial graph with multiple
cone-like regions (see Section 3.3 for a related discussion). Lower right: a
iece of the Penrose tiling with rhombi, which can be used as the diamond
raph of an isoradial graph, and three train-tracks, as bi-infinite paths in the
ual.

o QO T

. € (0, %), because circumcircles are assumed to be in the interior of the faces. From now
on, we actually ask more and suppose that there exists € > 0 such that 6. € (g, g —¢€). We
also assign two rhombus vectors to the edge e, denoted e@ and ePe, see Figure 3, and we
assume that @, B, satisfy f% =0,.

An isoradial graph G is said to be quasicrystalline if the number d of possible directions
assigned to edges of its diamond graph G° is finite.
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Figure 3. An edge e of G is the diagonal of a rhombus of G°, defining the

angle B, and the rhombus vectors e’® and ePe. One has @ =0,.

2.2. Monotone surfaces and asymptotically flat isoradial graphs. In the quasicrystalline
case, the diamond graph can be seen as the projection of a monotone surface in Z9 onto
the plane, and every edge of G® is the projection of a unit vector of Z9, see [15, 6]. Vertices
(resp. faces) of G correspond then to even (resp. odd) vertices of Z¢ on that surface. For
example, in the particular case when d = 3, the diamond graph appears naturally to the eye
as the projection in the plane of a landscape made of unit cubes, see for example Figure 7.
Also, the Penrose tiling (see Figure 2, lower right) is the projection of a monotone surface
very close to a given plane with irrational slope in Z° [15].

Let (e1,e,...,€e4) be the canonical basis of Z9 and @i, 0, ..., 0y be the angles
associated to the train-tracks such that €% is the projection of ej, and

ar<ax<--<ag<og+mr<--<og+mw <oy + 2. (10)

Using this notion of surface and the notation above, we can give a sense to the difference
of two vertices y — x as the vector Zf‘lzl N;e; in Z9 joining the corresponding points on the
surface. The quantity

d
N=ly—x|=> |N
j=1

is the graph distance between x and y seen as vertices of G°, as well as the graph distance
in Z9 between the corresponding points on the monotone surface. The reduced coordinates
of y — x are the quantities n; = % which define a point ¥ = Zfl:l njej in the L1-unit ball of
RA.

Monotone surfaces can be wild in the following sense: fix a reference vertex xp and a
direction ¥ € S, and look at the reduced coordinates n; in a minimal path from xp to y, as
y tends to infinity in the direction ¥ € St in the plane embedding. These quantities may not
converge. This is what happens for example on Figure 7, because of the larger and larger
“waves” causing oscillations for the n;’s.

We say that the isoradial graph is asymptotically flat if this does not happen, and if
proportions converge for each directional limit. This property, and the values of the limits
when they exist, do not depend on the choice of xp. Periodic isoradial graphs and multiple
cone-like regions (see Figure 2 and Section 3.3) are asymptotically flat. Let us call n;(t)
the limits for j =1, ..., d of the reduced coordinates in the direction ¥. In that case, the
function

t = () = (nj(7))1<j<d

is automatically continuous and injective, as the map from the diamond graph to the
monotone surface in Z9 is a bi-Lipschitz bijection.
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2.3. Exponential functions. We will be using definitions and results on the Z-invariant
massive Laplacian A : CV — CV introduced in [13]°. Let x be a vertex of G of degree n;
denote by e, ..., e, the edges incident to x and by 61, ..., 0, the corresponding rhombus
half-angles, then the Laplacian operator is given by (8) (see [13, Eq. (1)] for the original
statement), where the conductances p and (squared) masses m? are defined by

pe = p(Belk) = sc(Belk), (11)
m?(xk) = Y (A(Gj1k) — sc(8j]k)), (12)
=1

where sc is one of the twelve Jacobi elliptic functions (see [1, Chap. 16] or [43, Chap. 2] for
extensive presentations, or [13, App. A] for a selection of key properties) and

%(Dc(u|k) + = KKu>,

where k' = V1 — k2 is the complementary elliptic modulus, Dc(ulk) = [;' dc?(v|k)dv, and
E = E(k) is the complete elliptic integral of the second kind. Since k is fixed once and for
all, most of the time we will drop the elliptic modulus from our notation, writing for example
A(u) instead of A(ulk).

We also need the definition of the complex-valued discrete k-massive exponential function
e(x,y)(u) of [13, Sec. 3.3], briefly introduced in (7), depending on a pair of vertices (x, y)
and of a complex parameter u. Consider an edge-path x = xq, ..., X, = y of the diamond
graph G® from x to y and let €@ be the vector corresponding to the edge XjXjy1. Then the
exponential function is defined inductively along the edges of the path:

VUET, ey () = /Wsc(%)

A(ulk) =

n—1
een (1) = [ e (w), (13)
Jj=1

where a; = EJ-%. These functions do not depend on the path chosen for their definition,
and are harmonic for the Laplacian (8), see [13, Prop. 11].

2.4. Exact and asymptotic expressions for the Green function. The massive Green
function, denoted G, is the inverse of the massive Laplacian operator (8). The following
formula is proved in [13, Thm 12]:

/!

Gly) = 3oz | e (14)

where 'y, is a vertical contour on the torus T(k), whose abscissa can be identified with
the angle of the ray ]Rx_)}/. Let us remark that the discrete massive exponential function
e(x,y)(u) in (13) and (14) is defined using a path of the embedded graph from x to y. This
implies that the expression (14) for G(x, y) is local, meaning that it remains unchanged if
the isoradial graph G is modified away from a path from x to y. This is far from being
a general situation: when computing the inverse of a discrete operator, one expects the
geometry of the whole graph to be involved. The idea of the proof of the local formula (14)
is the following: find a one-parameter family of local, complex-valued functions in the kernel

2The presentation of Section 2.3 follows that of [13, Sec. 3].
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of the massive Laplacian (8) (the exponential functions), define its inverse (minus the Green
function) as a contour integral of these functions, and adjust (if possible) the contour of
integration in such a way that AG = —Id.

Let us also state [13, Thm 14], which contains the asymptotic behavior of the Green
function. Let G be a quasicrystalline isoradial graph. Let x the function defined (for x and
y fixed) by

x(v) =x(v|k) = |)<_1)/||09€(x,y)(‘/+2"K/)v (15)
where |x — y| is the graph distance between x and y.

By [11, Lem. 17] the set of zeros of e(, ,y(u) is contained in an interval of length 2K —2¢,
for some € > 0. Let us denote by a the midpoint of this interval. When the distance |xg — y|
between vertices xg and y of G is large, we have

K’ e(xo,y)(2/K/ + Vo)
24/27[x0 — y|x"(v0)
where v is the unique v € a + (—K + €, K — ¢€) such that x/(v) = 0, see [13, Lem. 15],

and x(vp) < 0. Let us briefly recall the main idea in [13] to derive the asymptotics (16).
Starting from (15), we may reformulate (14) as

G(x0.y) = (14 0(1)), (16)

/

G(x0.y) = k/ ePo—yIx(V)q,,.
4im Jr
X0y
Typically, as [xp—y| — oo, one may analyse the above integral using the saddle-point method.
Classically, the saddle point is a critical point, therefore x’(v) = 0.

2.5. Going to infinity in an isoradial graph and 3D-consistency. Let us first recall that
by construction [19, 31, 50, 56], a sequence of points y converges to a point in the Martin
boundary if it exits any finite subset of the graph and if the ratio of Green functions

G(x1,y)

G(x0,¥)
converges pointwise. While (16) provides the main term in the Green function asymptotics
and is independent on how y goes to infinity in the graph, we thus need here a different,
somehow more precise information.

In the classical Ney and Spitzer theorem (3), y goes to infinity along an angular direction,
namely ﬁ — t € S*. However, this simple geometric description will not work in the isoradial
setting. Indeed, it can be shown (see the proof of [13, Thm 14]) that the convergence of
Vo appearing in (16) is equivalent to the convergence of the reduced coordinates, which as
already discussed (see Section 2.2 and Figure 7) is not guaranteed by the angular convergence
of y.

In our opinion, the best way to characterize the convergence of the Martin kernel is to
use the concept of 3D-consistency [6], that we now introduce. The notion of harmonicity
for our massive Laplacian (8) is compatible with the star-triangle transformation (see
Figure 4), which corresponds in the monotone surface picture to pushing the surface along
a 3-dimensional cube: let Gy and Gy be two isoradial graphs differing by a star-triangle
transformation, such that Gy has an extra vertex xg of degree 3. If f is a harmonic function
on Gy, there is a unique way to extend it at xo to make it harmonic on Gy. This operation,
together with its inverse corresponding to forgetting the value at xg, realize a bijection
between harmonic functions on Gy and Gy; see [13, Prop. 8].
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Figure 4. A star-triangle transformation on isoradial graphs. Gy is on the
left, Gy on the right.

Using the 3D-consistency and the interpretation of quasicrystalline isoradial graphs as
monotone surfaces on Z9 (Section 2.2), the exponential function and the Green function
can be uniquely lifted to vertices of Z9, keeping their harmonicity properties. More precisely,
if we assume that the isoradial graph G has enough train-tracks associated to each direction
of Z9, namely that each coordinate on the monotone surface is not bounded either from
above or below®, one can generate any monotone surface of Z? from G by a (maybe infinite)
number of star-triangle transformations, and can extend the exponential and Green functions
to all even vertices of Z¢. Otherwise, one may get only half-spaces or slabs [7], but which
are bi-infinite in d’ > 2 directions. We will often assume that we are in the first situation,
in which G spans all Z¢. To extend our results to the second case, replacing d by d’ in the
proofs will often be enough.

This lift to a lattice of higher dimension allows us to reformulate the asymptotics of
the Green function as a limit as y tends to infinity in a certain direction, thereby showing
the strong parallel with the classical statement of Ney and Spitzer theorem. Indeed, in
Z9 the convergence of y along a direction is equivalent to the convergence of the reduced
coordinates. These directions to infinity may not be obtained by staying on the surface
corresponding to the graph G (unless for some directions, if the graph is asymptotically flat).

In the rest of the manuscript, we will always use this notion of convergence when we will
compute the asymptotics of ratios of Green functions.

3. Main results and proofs
3.1. Statements.

Theorem 1 (asymptotics of the Martin kernel). Let G be the massive Green function on a
quasicrystalline isoradial graph, which can be lifted to Z9 via the star-triangle transformation.

Then &( )
. X1, Y
y"_>moo m = e(xo,xl)(UO)v (17)

where uy = 2iK' + vo, with vo defined as in (16).

Theorem 2 (structure of the Martin boundary). As the asymptotic direction of y — oo in
(17) varies in S, the point uy describes entirely the circle 2iK' + R/4KZ in T(k). If
moreover G is asymptotically flat, the Martin boundary is homeomorphic to the circle S*.

Theorem 3 (minimality of the Martin boundary). Let xo € G be any fixed point in the graph
and v € R/4KZ. The positive harmonic functions hy,(x) = e(y, x)(2iK' + v) are minimal.

3With the n;'s denoting the reduced coordinates of y —x, where x is some reference vertex, this is equivalent
to asking that for each j and =, there is at least a direction ¥ along which limsup £n; is strictly positive as
y tends to infinity along ¥, or in the planar embedding picture, asking that for any train-track T associated
to a direction o, the two half-planes obtained by cutting along the parallel edges of T have both an infinite
number of train-tracks with this direction a.
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3.2. Proofs.

Proof of Theorem 1. The starting point is the asymptotics (16) obtained in [13], that we
first apply to the Green function G(xg,y). To derive the asymptotics of G(x1,y) we begin
by rewriting (14) as
k/
G0a.) = i [ o () (@)
x1.y

We then perform an asymptotic analysis of the above integral. The only difference with the
proof of [13, Thm 14] is the presence of the term e(,, ,,)(t), compare with (14). Using
the saddle point method and similar ideas as in [13], we obtain that this factor will actually
appear as a prefactor in the final asymptotics, evaluated at ug. In other words,

K" €(x.) (U0)
21/27)x0 — y[x" (vo)

with the exact same up = 2K’ + vy as in (16). We then easily reach the conclusion that the
ratio of Green function behaves as in (17), which completes the proof. O

G(ley) :e(xl,xo)(UO) 1+0(1))1

Proof of Theorem 2. There is correspondence between the direction along which y goes to
infinity and ug = 2iK” + vp, see [13, Lem. 15] and its proof. This vy can be anywhere on the
circle R/4KZ: the interval from the asymptotics of the Green function moves with the set
of poles of the exponential function, which depends on the direction of y.

Now we assume G to be asymptotically flat, so the application ¥ — 7(¥) = (n;(¥))1<j<d
is well defined and continuous. It is even differentiable everywhere, except for ¥ for which
at least one of the nj(t) is zero (meaning that the corresponding minimal path seen on the
monotone surface is moving to another orthant of Z9), but even at these points it has left
and right derivatives.

We want to prove that ¥ — up(f) is differentiable (has one-sided derivatives) when
t — n;(¥) is differentiable (has one-sided derivatives), and that the derivative is strictly
positive, in the sense that the points move in the same direction around their respective
circles.

Up to a possible cyclic relabelling of the coordinates, we can assume that all the n;(f)
are non-negative, and we look at a variation of ¥ in the positive direction. Looking at how
frequencies of steps along an infinite path should vary as the asymptotic direction in the
plane moves slightly in the positive direction while the path stays in the same orthant, we see
that the (one-sided) derivative CCI,—’; of the reduced coordinates is a linear combination with
positive coefficients of vectors of the form

6k, =(0,...,0,—1,0,...,0,1,0),

where the 1 is at position / and the —1 at position k < /, namely,

dn R
i Z ak,1(F)onk 1,

k<l

with a, ;(f) > 0, and not all equal to zero.
Rewrite the condition that vop = ug—2/K’ is a critical point as in the proof of [13, Lem. 15]:

d
sn-cn [(vp— L =
X,(VO):J;,,J. . ( . J):n.F(vo):O,




12 CEDRIC BOUTILLIER AND KILIAN RASCHEL

with F(v) = (8% (“2%))1<j<q. The implicit function theorem implies that vo, as a function

of ¥, has a (one-sided) derivative ‘L"?O, and it satisfies:
dv dn -
d?OX"(Vo) +5 Flw) =0

Now, writing down explicitly the scalar product

2 = (T(25) - 52 (255,

k<l

we see that this quantity is strictly negative, as all the quantities Vo%af are in the
interval [—K, K], on which the function 55" is strictly increasing (recall that oy < ay).
Since vy corresponds to a simple critical point of x, which is actually a local minimum,

x"(vo) is strictly positive. As a consequence,

dVO

> 0.
dr

This implies that the application
T:t€S1 = ug €2iK' +R/4KZ

is continuous, and lifts to a strictly increasing function on the universal cover. Moreover,
we know [11, Lem. 17] that the interval of length 2K — 2¢ in which the real part of ug lies
is winding once around the circle. Indeed, it should contain the zeros of the exponential
function from the base vertex x to y. When y switches to the next orthant, while going
around x, the sliding interval is dropping the a; closer to its right boundary, and swallows
aj + m. Therefore, after a full turn around x, the left and right boundaries of this sliding
interval made also exactly one full turn. Since the total length between the left end of this
interval at the beginning of the full turn and its right end at the end is strictly less than
twice the length of the circle, it means that T winds also exactly once around the circle,
therefore T is bijective. Since the image is compact, T is automatically open, so it defines
a homeomorphism. O

Proof of Theorem 3. It will be given in Section 5. O

3.3. An example: cones of homogeneities. The simplest inhomogeneous extension of the
fully homogeneous case of Z9 consists in modifying the jumps at a finite number of sites, as
explained in our introduction (see also [42]). Another simple extension is to split the grid in
a finite union of connected domains, for example two half-planes, or more generally a finite
number of cone-like regions as on Figure 2, and to assign to each region a (different) set
of transition probabilities. Up to our knowledge, a Ney and Spitzer theorem is not known in
this simple setting, even in the simplest instance of two half-planes. It is worth mentioning
that our approach allows to study such cases, provided the transition probabilities follow the
construction of elliptic conductances as introduced in Section 2.

4. The case of periodic isoradial graphs

In Section 4.1, we first study general periodic isoradial graphs and relate important
quantities needed in their analysis (characteristic polynomial, amoeba, degeneracy of the
amoeba, quantity o in (9), etc.) to natural objects in Z9 (generating function of the
transition probabilities, set 0D in (6), spectral radius, mapping u(p) in (3), etc.). Then we
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show in Section 4.2 how our results give another proof of the classical Ney and Spitzer in
two cases (the square and triangular lattices).

4.1. Amoeba of the characteristic polynomial and jump generating function. Using the
theory of analytic combinatorics in several variables [49], we analyze the exponential decay of
the Green function through Fourier analysis. We denote a vertex of G by a triple (v, n1, n2),
where v is the copy of the vertex in the fundamental domain and (n1, n2) is the element of
Z? corresponding to the translation moving v to the vertex.

A Ney-Spitzer theorem for periodic planar graphs. The first part of this section is not specific
to isoradial graphs and holds for all planar periodic graphs (having periodic masses and
conductances) with at least one positive mass.

The Laplacian can be seen as a periodic convolution operator on vector-valued functions
of Z?. It acts in Fourier space by multiplication by a matrix A(z, w), with |z| = |w| = 1.
The square matrix A(z, w) has rows and columns indexed by vertices of the fundamental
domain, and the coefficient between v and w is the sum of the conductances of the edges
between (v, 0,0) and (w, ny, np) multiplied by z™mw".

If (v,n1,np) and (w, n}, nf) are two vertices of G, the Green function can be expressed
as the Fourier inverse transform of A(z, w)™! = ggr‘/’; where P(z, w) = det A(z, w) and
Q(z, w) is the adjugate matrix of A(z, w):

ZMMwm=nmQ(z, W), dz  dw
G Lonbh)) = ’ .
((v. m.n2), (w, m, n2)) //|Z||W|1 P(z, w) 2imz 2iTw

The asymptotic behavior of the Green function above is encoded in the singularities of the
integrand, namely, the zeros of P. The zero-set of P defines an algebraic curve, called the
spectral curve of the Laplacian. The amoeba of P (see [25, Chap. 6]) is the image of the
spectral curve by the application

(z,w) = (log |z, log |w])

and plays an important role in the discussion; see Figure 5 for an example.

In the massive case, there is no zero of P on the unit torus |z| = |w| = 1, and thus we
can deform continuously the contour of integration defining G to increase or decrease the
radii of the torus, until we touch the spectral curve, in order to obtain exponential decay.

We can say even more, because of geometric properties of spectral curves of Laplacians.
The spectral curve is always a simple Harnack curve [40]. In particular, the boundary of
the amoeba is the image of the real locus of the spectral curve. The bounded connected
component of the complementary of the amoeba containing the origin (called the oval O
in the sequel, see Figure 5) is a convex set whose boundary corresponds to a (subset) of
positive real roots of P:

P(e, e2) = 0,

which in the classical theorem by Ney and Spitzer is the generalization of the level set 9D,
defined in (6). All conditions are met to be in the smooth point situation described in [49,
Chap. 9], allowing us to readily obtain the asymptotics of the ratio of Green functions for
copies of the same vertex v in the fundamental domain.
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10F

Figure 5. Amoeba of the spectral curve of a Laplacian with mass on a
periodic graph. The amoeba itself is the region between the yellow and blue
curves. The curve here has geometric genus one, and the (unique in this
case) bounded connected component of the complementary of the amoeba
containing the origin is called the oval.

Let xo = (v,0,0), x1 = (v, n,m) and y = (v, n}, ny). As (ny, nb) goes to infinity in Z?
in the direction ¥, we get the following asymptotics for the Green function:

y—00 G(Xo, y)

where ¢ = ((¥) := argmax{r-s : s € O}, which by convexity is reached along the boundary
of ©. The homeomorphism 7: ¥ € St — ((f) € O is the analogue of the Ney and Spitzer
function ¢ in the fully transitive case, which we recall here for completeness:

Lemma 4 ([30]). Let p denote the spectral radius of the transition kernel. Assume t > p,
with t # p if the random walk has zero drift. Then the set Dy = {¢ € R : ¢(¢) < t} is
compact and convex, the gradient

grad ¢(¢) = Z xe¢*P(0, x)
xezd

exists everywhere on Dy and does not vanish on its boundary OD¢. Furthermore, the mapping

 grad 6(Q)
¢ = Tgrad ¢(0)]

determines a homeomorphism between 8D; and S9~1.

(18)

The following result is stated under Corollary 1.3 in [47] for t = 1 and random walks with
drift; it is extended to other values of t and to the zero drift case in [56, (25.21)].
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Theorem 5. Under the same assumptions as in Lemma 4, let ¥ be a point in S?~! and ¢(r)
be the unique solution in dD; of (18). Let y denote any sequence in Z9 such that |y| — oo
and |§—| — ¥. Then the ratio G(xy, y|%)/G(xo, y|%) converges to e(F)-(a—x)

The isoradial periodic case. When in addition the periodic graph G is isoradial, with the
elliptic conductances and masses from (11) and (12), the spectral curve has geometric
genus 1 and there is a unique bounded connected component of the complementary of the
amoeba [13]. Furthermore, we have an explicit parameterization of its boundary via the
exponential function:

&2 u > (log e xr(1,0)(1)]. 109 |ex xs(0.1) (1)), (19)

where u € 2iK' + R/4KZ. The composition £~1 o7 is the application giving the wug from
the asymptotics of Green function of Equation (16) for every direction ¥ along which y can
go to infinity.

4.2. Examples. Among all periodic isoradial graphs, two of them (namely, the square and
triangular lattices) are of special interest, as they correspond to models of homogeneous
random walks in Z2. In this section we show how, in these two cases, our results match with
the classical Ney and Spitzer theorem.

In order to state precisely this connection, it is important to notice that in Ney and Spitzer
framework, a set of transition probabilities is fixed (through the function ¢ in (2)) and then
the t-Martin boundary is computed for any fixed t larger than the spectral radius. On the
other hand, in the isoradial setting the conductances (related to the transition probabilities)
and the mass (related to the variable t) both depend on the same elliptic modulus k, and it
is a priori unclear that we can construct a random walk model with transition probabilities
independent of the t variable. This will be shown in the two above-mentioned examples,
using the degrees of freedom that we have on the conductances and on the elliptic modulus.

The square lattice. The first example is the square lattice with angles o and B associated
to the two families of parallel train-tracks, with o < 8 < o + 2K < B + 2K, see Figure 2.
Because the definition of conductances and masses is invariant by rotation of the whole
embedding, one can further assume that 8 = —a = 0 (see Figure 3). There are thus two
types of edges: horizontal with opening angle 8 = 50 € (0,%) and vertical with opening
angle 5 — 6. The characteristic polynomial of the model is given by [13, Sec. 5.2]

P(z.w)=m+2(a+a)—a (Z—I—i)—Cz <W+V1V>, (20)

with ¢; =sc(0), ¢ = sc(K —6) and m as in (12). It is convenient to normalize (20) so as
to have transition probabilities summing to one:

Plew) = "2 2OEE (21 ) (we ).

2(C1 + CQ)
with )
C1 (&)
= ——— and = = — — D1q. 21
P1 2(C1 + Cg) P2 2(C1 + C2) 2 P1 ( )

It is natural to associate to this model the classical simple random walk on Z2, with transition
probabilities Laplace transform

$(C1.C2) = pr(e¥ + e74) + pp(e? + 7).
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Notice that horizontal (resp. vertical) jumps have the same weight, due to the constraints
on the conductances in (20) (in particular, the random walk has zero drift). We now state
precisely the connection between the two frameworks.

Transition probabilities generating function, characteristic polynomial and their zero-sets. |t
is clear that P(z, w) = 0 if and only if ¢(log z, logw) = t, with t = 1 + m/(2¢1 + 2¢). In
particular, using the notation of Section 4.1, the oval of the amoeba is in correspondence
with the set 0Dy.

Exponential functions. As said in the introduction, extremal positive harmonic functions in
group structures are exponential functions [17]. In our context of the planar lattice, they are

given by (writing ¢ = ({1, {2) and n = (n1, n2))

f(x)=e"" = {eC1}r71 {eC2}n2 , (22)
for ¢ € OD;. By definition of dD;, see (6), the pairs (e, e%?) parametrize the zero-set of
¢—t.

To compare the elementary expression (22) for the exponential function to its elliptic
analogue (13), we should first introduce an elliptic uniformisation of the zero-set of the
characteristic polynomial (20). As shown in [13, Eq. (32)] (see also (19)),

{(z.w) € (CU{ox})?: P(z,w) =0} = {(z(u), w(u)) : u e T(k)},
with

z(u):—k’sc(uga)sc<u;6) and W(u):zzgzgii.
Moreover, using (20) one obtains i
() (1) = {,Wsc(“ - O‘)}m_"z {,ﬁsc(“;ﬁ)}mm — 2wy (23)

The comparison between (22) and (23) is now clear: in both cases they are products of the
coordinates (raised to some power) of parameterizations of the characteristic polynomial.

Choice of the parameters. Our main result is stated below; it shows that given arbitrary
transition probabilities and any value of ¢ in the spectral interval, we can adjust the values
of 6 and k so as to have the equivalence: P(z, w) =0 if and only if ¢(log z,logw) = t.

Proposition 6. Let p; and p, be defined by (21). For any qi, g2, t such that g1, > > O,

g1+ q = % and t > 1, there exist 6 € (0, K) and k € [0, 1) such that py = q1, p> = g and
m+2(ci+c) ¢
2(C1+C2) - =

C

Proof. We first look at the equation m = q;. Since ¢ =sc(K—0) = ﬁc(e) by [1,
16.8.9], it is equivalent to

sc(f
;)1 .
SC(Q) + k' sc(6)
which results in
26]1 1
sc(8) = 20 JF (24)

which for any k € [0, 1) has a (unique) solution, see (26) for an explicit expression. Now we
turn to the equation involving the mass. Note first that by (12),

m=2(A(0) + A(K - 8)) —2(c1 + @),
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and by [13, Eq. (60)], A(8) + A(K — 0) = "024<O) "4 that
m+2(c1+c)  nc(0)dc()
2(ci + @) 14+ k'sc(9)?
Let us now reproduce [1, 16.9.3]: K'?sc2 +k'% = k"*nc? = dc® —k2. These equalities allow

us to derive the values of nc(6) and dc(0), starting from the value (24) of sc(0). After some
computations, we conclude that

m+2(c1 + @) 1
——————— = 4[1+2q:(1 -2 K =24+ —).
2(C1 + CQ) + Ch( ql) + 'Y

As k varies in [0, 1), the latter function increases from 1 to co. In conclusion, k is determined

by solving the equation
, 1
1—}—26]1(1—26]1) k —2—1—7(/ =t,

see (25), and then 6 is found with (24). We can even be more explicit:

t?2—8¢7 +4q1 —1—/(t =Dt +1)(t+1—4q)(t —1+4q)

k= 25
4q1(1 —2q1) (25)
2q1
6=F k], 26
(\/k/+2q1(1—k’) ) (26)
where F is the incomplete elliptic integral of the first kind. The proof is completed. ]

The triangular lattice. The characteristic polynomial is (again by [13, Sec. 5.2])

1 1 1
P(z,w)=m+2(ci+c+c3)—c <Z—|—> — o (W+)—C3 <Zw+>,
z w zw

and our aim is to show an analogue of Proposition 6. However, as the computations become
much more complex in this case we will only consider here the case of uniform probabilities,
corresponding to three equal conductances ¢; = ¢ = 3 = sc(%). By (12), the normalized
characteristic polynomial takes the form

- B3 (o) 4 (o 2) 4 ()

Proposition 7. As k varies in [0,1), A(%)/sc(%) varies continuously in [1, 00).

Proof. Let us first prove that t = A(%)/sc(g) is an algebraic function of k, solution to
—27(1 — k)t +18(1 — k) t* +2(2 — k*)?*t+ 1 — kK> + k* = 0. (27)
The first terms of its series expansion are
711 327
k8
16384 + 8192
and further computations suggest that all non-zero coefficients are positive (see Appendix A
for a proof). Remark that the algebraicity of t is not obvious, as both functions A and sc

are transcendental.
We start by showing that s = sn(%) is the unique power series solution to

k?s* —2k?s® + 25 —1=0. (28)

K0+ O(k'?),

— 3,4, 36
t—1+64k +64k +
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The first terms in its expansion are
1 3, 3 ., 123 o 177 ¢ 34887
°T 5 * 32k * 64k * 4096k 8192 2097152
The coefficients of s are again non-negative (see Appendix A for a proof).

To prove (28) we start from the equality sn(K) = 1 that we rewrite as Sﬂ(% + %) =1,
and then we apply the classical addition formula [1, 16.17] together with some identities in
Exercise 22 in [43, Chap. 2].

The second step is to show that both A(%) and sc(%) may be algebraically expressed in
terms of s. By definition, sc? = (1/sn? —1)~1, so that sc(§) = (1/s? —1)"¥/2. Now, using
[13, (60) and (61)], we obtain that
A(K)  V1—k?s? (1_ 2(1 — k?)s* )

3 352y/1 — k2 1—(2—k3s2)s2 )
Some computations (which we do not reproduce here) finally lead to (27).

We prove Proposition 7. Computing the discriminant of the polynomial in (27), it is easy

to see that for any k € (0, 1), two roots are real and the other two are non-real, complex

conjugate. Moreover, the four roots are obviously non-zero. So the solution t = t(k) is such
that t(0) = 1 (evaluate (27) at k = 0). Doing the change of variable t — 5 in (27),

t
(1—k2)1/
we deduce that t(k) behaves as yi7z as k — 1, and in particular goes to oo. 0

1
(1—k

KO+ O(k*?).

5. Minimal positive harmonic functions

From the construction of Martin boundary, any positive harmonic function f can be written
as an integral of the exponential functions against some Radon measure p supported on
2iK' + R/AKZ:

Vx e G, f(x)= /e(X'XO)(u)u(du). (29)

Let us recall that positive harmonic functions are particularly important from a potential
theory point of view, in relation with the concept of Doob transform. The function f is then
said to be minimal if we cannot find a non-trivial measure u for this decomposition, i.e.,
whose support is not just a singleton; see Section 1.1.

In this section, we prove that the exponential functions x — e(, ,y(t) with u = 2/K’' + v
and v € R are minimal, which provides a proof of Theorem 3. This implies in particular
that these exponential functions form the minimal Martin boundary of the associated killed
random walk.

Recall that any isoradial graph can be viewed as a step surface in a hypercubic lattice
79, where d represents the number of possible orientations for the unit vectors representing
edges of the diamond graph, and that the exponential function is naturally extended to Z¢;
see Sections 2.1 and 2.2.

To each point ¥ = Zj nje; in the L1-unit ball of RY, we associate a probability measure vt
on the circle R/4KZ:

d
W = Z nj_éaj + nj_éaj—i-ZKy
j=1
where nfE = max{=£n;, 0} represents the asymptotic proportion of steps +e; in a minimal
path from a reference vertex x to y, as y tends to infinity in the direction ¥. Because of

the monotonicity of the surface, nj’ and n;” cannot be both strictly positive. Therefore, the
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1.0

Figure 6. The unit sphere intersected by the kernel of 7 in dimension 3.

limiting measures v have a support included in half of the circle: there is an interval of length
not smaller than 2K with v-measure O (see also Section 2.4).

Fix u = 2iK’ 4+ v with v real. An important quantity of interest is the rate of growth of
the massive exponential function in the asymptotic direction ¥:

1 u—o
¥ == 1 _— == /
T(F, u) = yl_l}hg N log | e(x,,y) (U)] /]R/4KZ log ‘vk sc( >

5 vi(da) = x(v),

see (15). Because Vk'sc(u + K) = m the function T can be rewritten as

T (¥, u):/ Iog‘\/psc(u_a)
R/4KZ 2
where by = ¢

=1 njéaj is now a signed measure supported on the angles associated to the
basis vectors ey, ..., eq. It is then clear that 7(—¥, u) = —7(¥, u). Even more, if we extend
by homogeneity the definition of 7 to all vectors of RY by Dy = A for A € R, then
T(-, u) becomes a non-degenerate linear form, whose kernel is a hyperplane separating the
unit sphere in two parts; see Figure 6 for an example.

DF(dOl),

Lemma 8. The L1-unit sphere is separated in two (connected) hemispheres, corresponding
to positive and negative values of T(-, u).

Informally, this lemma says that for any v in the torus, e(,; ) tends exponentially fast to
0 for half of the directions to infinity. This is in particular true for the positive exponential
functions for which u = 2iK’ + v, with v € R. We claim that this property is characterizing
the massive exponential functions for u = 2/K’ 4+ v with v real, among all positive massive
harmonic functions:

Proposition 9. /f h is a positive harmonic function which tends to 0 in at least half of the
directions, then it is proportional to an exponential function.
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Figure 7. A piece of the diamond graph of an isoradial graph which is not
asymptotically flat. From the center, there are “waves” of size growing
exponentially.  When going to infinity in a direction in the plane, the
proportions of the different types of steps do not converge, but instead
oscillate.

Proof. Write h as an integral over the positive exponential function for some positive measure
W asin (29). Therefore, the set of directions along which h goes to infinity is the union of the
half-spaces for which e(,, ,y(u) goes to infinity, for v in the support of w. If u is non-trivial
then this is strictly more than a half-space, which is impossible by hypothesis. Therefore
u should have a support reduced to a singleton, and h is proportional to an exponential
function. Il

Proof of Theorem 3. If h is less or equal to h,, then it goes to 0 at least in half of the
directions (the ones where h, itself goes to 0). We can therefore apply Proposition 9 to
conclude. O
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Appendix A. Some thoughts on a positivity question (by Alin Bostan)

We consider the foIIowing question: let s(k) = >~ Snk”, starting
123 177 34887

K) = 5 ok K K° K® K10
stk) = +32 64" " 4006" 8192 2007152

be the unique power series solution of the algebraic equation

k?s* —2k?s® + 25 —1=0. (30)

We want to prove that all the coefficients of s(k) are non-negative, and more precisely that
all the coefficients sy, are positive.

Note that the sequence (s,)n>0 satisfies various types of recurrences, either non-linear,
obtained by extracting the coefficient of k” in both sides of (30), or even linear, obtained
by using a linear differential equation (with polynomial coefficients in k) satisfied by s(k).
However, these recurrences cannot be used directly to solve our positivity question. For
instance, from the algebraic equation (30), Cockle's algorithm (see [8] and the references
therein) proves that s(k) satisfies the 3rd order linear inhomogeneous differential equation

9k3(k—1)? (k+1)>s" (k) +9k?(k—1) (k+1) (5k*> — 1) s" (k)
+k(35k* —14k* —13)s' (k) — 4 (kK* —2) s (k) =4 —2k* (31)

from which a coefficient extraction proves that (s,)s>0 satisfies the linear recurrence

(Bn+10)Bn+14)(n+2)spea+nBn+2)(3n+4)s,
=2 (90> +54n° +106n+70) spy2. (32)

It is not obvious from this recurrence how to derive a non-negativity proof because of the
plus sign in front of the coefficient of s,. In principle, two quite general methods might be
applied to this kind of question (alone, or combined): one relying on (effective) asymptotics
for the coefficients of algebraic functions [24, p. 504-505], the other relying on the approach
of [38, §4.2]. Instead, we present two different proofs.

The first one is based on the following hypergeometric expression for s(k):

2
1 3 [k 32 5
=3 2‘<4‘2F1[g <) (33)
where the Gauss' hypergeometric series with parameters %g and % is defined by
1 5 > 1 5 n
56, _x Gh(Bn k 33 -, 8 3
2/:1[ 5 ,k] _nz_% . - 1+- k+256k T TR (34)

and (x), denotes the Pochhammer symbol (x), = x(x+1)---(x+n—1) for n € N.
Once found (e.g., using algorithmic tools for automated guessing [37], or for differential
equation solving [29]), equality (33) can easily be proved using closure properties of D-finite

15
functions [53]: from the 2nd order linear differential equation satisfied by »F1 | 25°; k|, one
3

computes a 3rd order differential equation satisfied by the right-hand side of (33), which
appears to coincide with the differential equation (31) satisfied by the left-hand side of (33).
Therefore, the coefficients sequences of both right-hand side and left-hand side of (33)
satisfy the recurrence relation (32), hence they are equal since their initial terms coincide.
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A shorter proof of equality (33), with a different (more geometric) flavor, goes as follows:
on the one hand, the hypergeometric function in (34) satisfies the algebraic transformation®

x4+ 1)2
(x+2)*
On the other hand, it is easy to prove, starting from the polynomial (30), that the algebraic

function s(k) satisfies
. (xé (x+2)3> _2x+1

>3 x(x+2)’

2F1 ;
2 T2x+1)°

(2x+1)2 x+2°
Denoting @(x) = x (x +2)>/(2x + 1), identity (33) becomes trivial in the new variable x:
2x+1 1 3 2x+1)¥2\°
xi2 2tk ((x+2)2> '

Now that (33) is proved, the positivity of the coefficients s,, of s(k) is a direct consequence
of the obvious fact that the hypergeometric power series in (34) has positive coefficients.

The second proof is based on the so-called Stieltjes inversion formula [48, Lecture 2], that
allows to express in some cases the n-th term of a sequence as the n-th moment of a positive
density. Using this formula, one can deduce the following expression:

V3 ! 1 Ho(k) 1 Hi(k)
52,7:7['-/0 k”Hl(k) (24/3 . L2/ _ 28/3. 173 >dk,

where Hi(k) and Hx(k) are the hypergeometric functions

Hi = oF ég'k] 1+ 2kt Hy = aFy| 8 é'k] - ok g2
1 =2 4 - — HILI 2 =921 5 ; =1 - -k — — —
3 48 2 8" 64

At this point, positivity is not yet apparent. However, using the change of variables k = @(x),
and using the fact that Hi(@(x)) and Hx(¢@(x)) become the simple algebraic functions
2(x+ 1D)Y3(2x+1)2/(x +2) and (2x 4 1)~1/2, the previous expression simplifies to:

\B'\ﬁ./l (x =1 (V2 - x4+ x) /x+1
™ 0 (x+2)(2x +1)*x2/3

Once found, equality (35) can again be proved automatically using algorithmic tools, notably
the method of “creative telescoping” [2, 41, 10].

Note that Lagrange inversion is a tempting alternative to the previous moment approach;
however, in our case, it gives that for all n > 0,

1 _ (z+1)3B-2) n_ (=1)" " /3n n ;
52n*%’[2 1]( 16 7 ) n.24n+1.§<i><l'+1>(_3)+1r

1=

Son = o(x)"dx. (35)

and positivity is not clear on any of these expressions.

In contrast, identity (35) obviously proves that the sequence (s25)n>0 is positive. And it
actually proves much more, namely that (sn)n>0 is a Stieltjes-Hausdorff moment sequence,
and in particular that it is log-convex, i.e., Sopt2Sop—2 = s%n for all n > 1 [51, §2] and
A¥sy, >0 forall k > 0 [52, p. 338], where A is the difference operator A(c,) = (¢n— Cny1).

4This is inspired by the Darboux covering for tetrahedral hypergeometric equations of the Schwarz type
(1/3,1/3,2/3) [54, §6.1], see also [55]. Note that the same change of variables has been used in [9, §4].
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We also consider the following related question: let t(k) =}, tak", starting
3 711

_ 3 4 6 s . 327 19
t(k)—l+64k +64k +16384k +8192k + ,

be the unique power series solution of the algebraic equation

—27(1— K3t +18(1 — k)2 +2(2 — K*)’t+ 1 — kK + k* = 0. (36)

We want to prove that all the coefficients t, are non-negative.
First, we remark that t((p(x)%) = (x>+x+1)/(1+x—2x2). Since s(w(x)%) =
(2x 4+ 1)/(x 4+ 2), this implies that t(k) = R(s(k)), where R is the rational function

2—z+1
R(z) = 3z(1—2z)
As a consequence of this and of identity (33), we get that
t(k) = (14 3H*)/(1— 9H*) = (1+3H*)- Y (9H*)", (37)

n=0

where H is the hypergeometric function with non-negative coefficients
k 2 1 1 33
H=—2F|?°:k 21k+fk3—|—7k5+---,

4 3 16 1024

therefore all the coefficients of t(k) are non-negative.
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