Martin boundary of killed random walks on isoradial graphs - Archive ouverte HAL Access content directly
Journal Articles Potential Analysis Year : 2022

Martin boundary of killed random walks on isoradial graphs

(1, 2) , (3, 4) , (5)
1
2
3
4
5

Abstract

We consider killed planar random walks on isoradial graphs. Contrary to the lattice case, isoradial graphs are not translation invariant, do not admit any group structure and are spatially non-homogeneous. Despite these crucial differences, we compute the asymptotics of the Martin kernel, deduce the Martin boundary and show that it is minimal. Similar results on the grid $\mathbb Z^d$ are derived in a celebrated work of Ney and Spitzer.
Fichier principal
Vignette du fichier
Boutillier-Raschel-21.pdf (672.35 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02422417 , version 1 (22-12-2019)
hal-02422417 , version 2 (05-02-2021)

Identifiers

Cite

Cédric Boutillier, Kilian Raschel, Alin Bostan. Martin boundary of killed random walks on isoradial graphs. Potential Analysis, 2022, 57, pp.201-226. ⟨10.1007/s11118-021-09912-5⟩. ⟨hal-02422417v2⟩
190 View
99 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More