An adaptive upper bound on the Ramsey numbers $R(3,\dots,3)$ - Archive ouverte HAL Access content directly
Journal Articles Integers : Electronic Journal of Combinatorial Number Theory Year : 2020

An adaptive upper bound on the Ramsey numbers $R(3,\dots,3)$

Abstract

Since 2002, the best known upper bound on the Ramsey numbers R n (3) = R(3,. .. , 3) is R n (3) ≤ n!(e − 1/6) + 1 for all n ≥ 4. It is based on the current estimate R 4 (3) ≤ 62. We show here how any closing-in on R 4 (3) yields an improved upper bound on R n (3) for all n ≥ 4. For instance, with our present adaptive bound, the conjectured value R 4 (3) = 51 implies R n (3) ≤ n!(e − 5/8) + 1 for all n ≥ 4.
Fichier principal
Vignette du fichier
ramsey_bound.pdf (106.51 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-02401197 , version 1 (09-12-2019)

Identifiers

Cite

Shalom Eliahou. An adaptive upper bound on the Ramsey numbers $R(3,\dots,3)$. Integers : Electronic Journal of Combinatorial Number Theory, 2020, 20 (A54), pp.7. ⟨hal-02401197⟩
23 View
564 Download

Altmetric

Share

Gmail Facebook X LinkedIn More