An adaptive upper bound on the Ramsey numbers $R(3, \ldots, 3)$

S. Eliahou

Abstract

Since 2002, the best known upper bound on the Ramsey numbers $R_{n}(3)=$ $R(3, \ldots, 3)$ is $R_{n}(3) \leq n!(e-1 / 6)+1$ for all $n \geq 4$. It is based on the current estimate $R_{4}(3) \leq 62$. We show here how any closing-in on $R_{4}(3)$ yields an improved upper bound on $R_{n}(3)$ for all $n \geq 4$. For instance, with our present adaptive bound, the conjectured value $R_{4}(3)=51$ implies $R_{n}(3) \leq$ $n!(e-5 / 8)+1$ for all $n \geq 4$.

1 Introduction

For $n \geq 1$, the n-color Ramsey number $R_{n}(3)=R(3, \ldots, 3)$ denotes the smallest N such that, for any n-coloring of the edges of the complete graph K_{N}, there is a monochromatic triangle. See e.g. [4, 8, 11] for background on Ramsey theory. There is a well known recursive upper bound on $R_{n}(3)$ due to [5], namely

$$
\begin{equation*}
R_{n}(3) \leq n\left(R_{n-1}(3)-1\right)+2 \tag{1}
\end{equation*}
$$

for all $n \geq 2$. Currently, the only exactly known values of $R_{n}(3)$ are $R_{1}(3)=3$, $R_{2}(3)=6$ and $R_{3}(3)=17$. As for $n=4$, the current state of knowledge is

$$
51 \leq R_{4}(3) \leq 62
$$

The lower bound is due to [1] and the upper bound to [3], down from the preceding bound $R_{4}(3) \leq 64$ in [9]. Moreover, it is conjectured in [14] that

$$
R_{4}(3)=51
$$

Here is a brief summary of successive upper bounds on $R_{n}(3)$. In [5], the authors proved that

$$
R_{n}(3) \leq n!e+1
$$

for all $n \geq 2$. Whitehead's results [13] led to

$$
R_{n}(3) \leq n!(e-1 / 24)+1
$$

for all $n \geq 2$, and Wan [12] further improved it to

$$
R_{n}(3) \leq n!\left(e-e^{-1}+3\right) / 2+1 .
$$

The last improvement came in 2002, when it was proved in [15] that

$$
R_{n}(3) \leq n!(e-1 / 6)+1
$$

for all $n \geq 4$. That bound relies on the estimate $R_{4}(3) \leq 62$ by [3].
Because of the recurrence relation (1), any improved upper bound on $R_{k}(3)$ for some $k \geq 4$ will yield an improved upper bound on $R_{n}(3)$ for all $n \geq k$. Our purpose here is to make this automatic improvement explicit. For instance, combined with our adaptive upper bound, the above-mentioned conjecture $R_{4}(3)=51$ implies

$$
R_{n}(3) \leq n!(e-5 / 8)+1
$$

for all $n \geq 4$. This would be a substantial improvement over the current upper bound $n!(e-1 / 6)+1$, since $e-1 / 6 \approx 2.55$ while $e-5 / 8 \approx 2.09$.

2 Main results

As reported in [7], it is proved in [15] that

$$
R_{n}(3) \leq n!(e-1 / 6)+1
$$

for all $n \geq 4$. But the latter paper is in Chinese and not easily accessible to English readers. In this section, we prove a somewhat more general statement. We shall need the formulas below.

2.1 Useful formulas

In proving $R_{n}(3) \leq n!e+1$, the authors of [5] used without comment the formula

$$
\lfloor(n+1)!e\rfloor=(n+1)\lfloor n!e\rfloor+1
$$

for all $n \geq 1$. For convenience, we provide a proof here, as a direct consequence of the auxiliary formula below.

Proposition 2.1. For all $n \geq 1$, we have $\lfloor n!e\rfloor=\sum_{i=0}^{n} n!/ i!$.
Proof. We have $e=1 / 0!+1 / 1!+\sum_{i=2}^{\infty} 1 / i!=2+\sum_{i=2}^{\infty} 1 / i!$. Since $e<3$, it follows that $\sum_{i=2}^{\infty} 1 / i!<1$. Now $n!e=\sum_{i=0}^{n} n!/ i!+\sum_{i=n+1}^{\infty} n!/ i!$. The left-hand summand is an integer, while the right-hand one satisfies

$$
\sum_{i=n+1}^{\infty} n!/ i!=\sum_{j=1}^{\infty} \frac{1}{\Pi_{k=1}^{j}(n+k)} \leq \sum_{i=2}^{\infty} 1 / i!<1
$$

This concludes the proof.
Corollary 2.2 ([5]). For all $n \geq 1$, we have $\lfloor(n+1)!e\rfloor=(n+1)\lfloor n!e\rfloor+1$.
Proof. Applying Proposition 2.1 for $n+1$ and then for n, we have

$$
\begin{aligned}
\lfloor(n+1)!e\rfloor & =\sum_{i=0}^{n+1}(n+1)!/ i! \\
& =(n+1) \sum_{i=0}^{n} n!/ i!+(n+1)!/(n+1)! \\
& =(n+1)\lfloor n!e\rfloor+1 .
\end{aligned}
$$

2.2 An optimal model

We now exhibit an optimal model for the recursion (1).
Proposition 2.3. Given $q \in \mathbb{Q}$, let $f: \mathbb{N} \rightarrow \mathbb{Z}$ be defined by $f(n)=\lfloor n!(e-q)\rfloor+1$ for $n \in \mathbb{N}$. Then, for all $n \in \mathbb{N}$ such that $n!q \in \mathbb{Z}$, we have

$$
\begin{equation*}
f(n+1)=(n+1)(f(n)-1)+2 . \tag{2}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
f(n+1) & =\lfloor(n+1)!(e-q)\rfloor+1 \\
& =\lfloor(n+1)!e\rfloor-(n+1)!q+1 \quad[\text { since }(n+1)!q \in \mathbb{Z}] \\
& =(n+1)\lfloor n!e\rfloor+1-(n+1)!q+1[\text { by Corollary } 2.2] \\
& =(n+1)\lfloor n!(e-q)\rfloor+2 \quad[\text { since } n!q \in \mathbb{Z}] \\
& =(n+1)(f(n)-1)+2 . \quad \square
\end{aligned}
$$

2.3 An adaptive bound

Our adaptive upper bound on $R_{n}(3)$ is provided by the following statements.
Proposition 2.4. Let $k \in \mathbb{N}$ and $q \in \mathbb{Q}$ satisfy $k \geq 2, R_{k}(3) \leq k!(e-q)+1$ and $k!q \in \mathbb{N}$. Then $R_{n}(3) \leq n!(e-q)+1$ for all $n \geq k$.

Proof. As in Proposition 2.3, denote $f(n)=\lfloor n!(e-q)\rfloor+1$ for $n \in \mathbb{N}$. By assumption, we have

$$
\begin{equation*}
R_{k}(3) \leq f(k) \tag{3}
\end{equation*}
$$

and $k!q \in \mathbb{Z}$. It suffices to prove the claim for $n=k+1$, since if $k!q \in \mathbb{N}$ then $(k+1)!q \in \mathbb{N}$. By successive application of (1), (3) and (2), we have

$$
\begin{aligned}
R_{k+1}(3) & \leq(k+1)\left(R_{k}(3)-1\right)+2 \\
& \leq(k+1)(f(k)-1)+2 \\
& =f(k+1)
\end{aligned}
$$

Note that using (2) is allowed by Proposition 2.3 and the assumption $k!q \in \mathbb{N}$.
Theorem 2.5. Let $k \geq 2$ be an integer. Let $a \in \mathbb{N}$ satisfy $a \leq\lfloor k!e\rfloor-R_{k}(3)+1$, and let $q=a / k!$. Then $R_{n}(3) \leq n!(e-q)+1$ for all $n \geq k$.

Proof. We have $a \leq k!e-R_{k}(3)+1$, so $R_{k}(3) \leq k!e-a+1=k!(e-q)+1$. Moreover $k!q=a \in \mathbb{N}$. The conclusion follows from Proposition 2.4.

Remark 2.6. Theorem 2.5 is the best possible application of Proposition 2.4 Indeed, with the value $a^{\prime}=\lfloor k!e\rfloor-R_{k}(3)+2$ and $q^{\prime}=a^{\prime} / k!$, it no longer holds that $R_{k}(3) \leq k!\left(e-q^{\prime}\right)+1$.

2.4 The case $k=4$

We now apply the above result to the case $k=4$. We only know $51 \leq R_{4}(3) \leq 62$ so far. Note that by Proposition 2.1, we have

$$
\begin{equation*}
\lfloor 4!e\rfloor=\sum_{i=0}^{4} 4!/ i!=24+24+12+4+1=65 \tag{4}
\end{equation*}
$$

Proposition 2.7. Let $a \in \mathbb{N}$ satisfy $a \leq 66-R_{4}$ (3). Then setting $q=a / 24$, we have $R_{n}(3) \leq n!(e-q)+1$ for all $n \geq 4$.

Proof. By (4), a satisfies the hypotheses of Theorem 2.5. The conclusion follows.

When the exact value of $R_{4}(3)$ will be known, Proposition 2.7 will provide an adapted upper bound on $R_{n}(3)$ for all $n \geq 4$. In the meantime, here are three possible outcomes.

Corollary $2.8([15]) . R_{n}(3) \leq n!(e-1 / 6)+1$ for all $n \geq 4$.
Proof. Since $R_{4}(3) \leq 62$, we may take $a=4$ in Proposition 2.7. The conclusion follows from that result with $q=a / 4!=1 / 6$.

Note that the above bound dos not extend to $n=3$, since $R_{3}(3)=17$, whereas by Proposition 2.1, we have $\lfloor 3!(e-1 / 6)\rfloor+1=\lfloor 3!e\rfloor=3!+3!+3+1=16$.

As mentioned earlier, it is conjectured in [14] that $R_{4}(3)=51$. If true, Proposition 2.7 will yield the following improved upper bound.

Corollary 2.9. If $R_{4}(3)=51$, then $R_{n}(3) \leq n!(e-5 / 8)+1$ for all $n \geq 4$.
Proof. By Proposition 2.7, with $a=66-51=15$ and $q=15 / 4!=5 / 8$.
As noted in the Introduction, this would be a substantial improvement over the current upper bound $n!(e-1 / 6)+1$, since $e-1 / 6 \approx 2.55$ whereas $e-5 / 8 \approx 2.09$.

An intermediate step would be, for instance, to show $R_{4}(3) \leq 54$ if at all true. This would yield the following weaker improvement.

Corollary 2.10. If $R_{4}(3) \leq 54$, then $R_{n}(3) \leq n!(e-1 / 2)+1$ for all $n \geq 4$.
Proof. By Proposition 2.7, with $a=66-54=12$ and $q=a / 4!=1 / 2$.
Remark 2.11. The above three corollaries are best possible applications of Proposition 2.7, as in each case we took the largest admissible value for $a \in \mathbb{N}$.

2.5 The case $k=5$

Let us also briefly consider the case $k=5$. At the time of writing, we only know $162 \leq R_{5}(3) \leq 307$. See [7].

Proposition 2.12. Let $a \in \mathbb{N}$ satisfy $a \leq 327-R_{5}(3)$. Then setting $q=a / 120$, we have $R_{n}(3) \leq n!(e-q)+1$ for all $n \geq 5$.

Proof. By Theorem 2.5 and the value $\lfloor 5!e\rfloor=326$ given by Proposition 2.1.
Here again are three possible outcomes. Knowing only $R_{5}(3) \leq 307$ does not allow to improve the current estimate $R_{n}(3) \leq n!(e-1 / 6)+1$. At the other extreme, if $R_{5}(3)=162$ holds true, it would yield $R_{n}(3) \leq n!(e-11 / 8)+1$ for all $n \geq 5$. As an intermediate estimate, if $R_{5}(3) \leq 227$ holds true, it would imply $R_{n}(3) \leq n!(e-5 / 6)+1$ for all $n \geq 5$.

3 Concluding remarks

3.1 On $\lim _{n \rightarrow \infty} R_{n}(3)^{1 / n}$

The adaptive upper bound on $R_{n}(3)$ given by Theorem 2.5 may still be quite far from reality, as the asymptotic behavior of $R_{n}(3)$ remains poorly understood. For instance, is there a constant c such that $R_{n+1}(3) \leq c R_{n}(3)$ for all n ? Or, maybe, such that $R_{n}(3) \geq c n$! for all n ? The former would imply that $\lim _{n \rightarrow \infty} R_{n}(3)^{1 / n}$, known by [2] to exist, is finite, whereas the latter would imply $\lim _{n \rightarrow \infty} R_{n}(3)^{1 / n}=$ ∞. At the time of writing, it is not known whether that limit is finite or infinite. See e.g. [6], where this question is discussed together with related problems.

3.2 Link with the Schur numbers

The Schur number $S(n)$ is defined as the largest integer N such that for any n coloring of the integers $\{1,2, \ldots, N\}$, there is a monochromatic triple of integers $1 \leq x, y, z \leq N$ such that $x+y=z$. The existence of $S(n)$ was established by Schur in [10], an early manifestation of Ramsey theory. Still in [10], Schur proved the upper bound

$$
\begin{equation*}
S(n) \leq n!e-1 \tag{5}
\end{equation*}
$$

for all $n \geq 2$. The similarity with the upper bound $R_{n}(3) \leq n!e+1$ proved 40 years later in [5] is striking. In fact, there is a well known relationship between these
numbers, namely

$$
\begin{equation*}
S(n) \leq R_{n}(3)-2 . \tag{6}
\end{equation*}
$$

Thus, via (6), our adaptive upper bound on $R_{n}(3)$ given by Theorem 2.5 also yields an upper bound on $S(n)$.

Acknowledgements. The author wishes to thank L. Boza and S.P. Radziszowski for informal discussions during the preparation of this note and for their useful comments on a preliminary version of it.

References

[1] F.R.K. Chung, On The Ramsey Numbers $N(3,3, \ldots, 3 ; 2)$, Discrete Mathematics 5 (1973) 317-321.
[2] F.R.K. Chung and C. Grinstead, A Survey of Bounds for Classical Ramsey Numbers, J. Graph Theory 7 (1983) 25-37.
[3] S.E. Fettes, R.L. Kramer and S.P. Radziszowski, An upper bound of 62 on the classical Ramsey number $R(3,3,3,3)$, Ars Combin. 72 (2004) 41-63.
[4] R.L. Graham, B.L. Rothschild and J.H. Spencer, Ramsey Theory, John Wiley \& Sons, 1990.
[5] R.E. Greenwood and A.M. Gleason, Combinatorial relations and chromatic graphs, Canadian J. Math 7 (1955) 1-7.
[6] M. Liang, S.P. Radziszowski and X. Xu, On a diagonal conjecture for classical Ramsey numbers, Discrete Appl. Math. 267 (2019) 195-200.
[7] S.P. RadZiszowski, Small Ramsey numbers, Electron. J. Combin. 1 (1994), Dynamic Survey DS1, Revision \#15 (2017), 104pp. (electronic).
[8] F.P. Ramsey, On a Problem of Formal Logic, Proceedings of the London Mathematical Society 30 (1930) 264-286.
[9] A.T. SÁNChez-Flores, An improved upper bound for Ramsey number $N(3,3,3,3 ; 2)$, Discrete Math. 140 (1995) 281-286.
[10] I. Schur, Uber die Kongruenz $x^{m}+y^{m} \equiv z^{m}(\bmod p)$, Jahresbericht der Deutschen Mathematiker Vereinigung 25 (1916) 114-117.
[11] A. Soifer, The mathematical coloring book. Mathematics of coloring and the colorful life of its creators. Springer, New York, 2009. ISBN: 978-0-387-74640-1.
[12] H. Wan, Upper bounds for Ramsey numbers $R(3,3, \ldots, 3)$ and Schur numbers, J. Graph Theory 26 (1997) 119-122.
[13] E.G. Whitehead, Jr., Algebraic structure of chromatic graphs associated with the Ramsey number N(3,3,3;2), Discrete Math. 1 (1971/72) 113-114.
[14] X. Xu and S.P. Radziszowski, On some open questions for Ramsey and Folkman numbers. Graph theory - favorite conjectures and open problems. 1, 43-62, Probl. Books in Math., Springer, [Cham], 2016.
[15] X. Xu, Z. Xie and Z. Chen, Upper bounds for Ramsey numbers $R_{n}(3)$ and Schur numbers, Mathematics in Economics 19 (2002) 81-84.

Author's adress:

Shalom Eliahou, Univ. Littoral Côte d'Opale,
EA 2597 - LMPA - Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville, F-62228 Calais, France,
CNRS, FR 2956, France.
E-mail: eliahou@univ-littoral.fr

