Fractional hypocoercivity - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematical Physics Année : 2022

Fractional hypocoercivity

Résumé

This paper is devoted to kinetic equations without confinement. We investigate the large time behaviour induced by collision operators with fat tailed local equilibria. Such operators have an anomalous diffusion limit. In the appropriate scaling, the macroscopic equation involves a fractional diffusion operator so that the optimal decay rate is determined by a fractional Nash type inequality. At kinetic level we develop an $\mathrm L^2$-hypocoercivity approach and establish a rate of decay compatible with the fractional diffusion limit.
Fichier principal
Vignette du fichier
BDL-Fractional2021-2.pdf (806.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02377205 , version 1 (23-11-2019)
hal-02377205 , version 2 (01-12-2021)

Identifiants

Citer

Emeric Bouin, Jean Dolbeault, Laurent Lafleche. Fractional hypocoercivity. Communications in Mathematical Physics, 2022, 390 (3), pp.1369-1411. ⟨10.1007/s00220-021-04296-4⟩. ⟨hal-02377205v2⟩
363 Consultations
218 Téléchargements

Altmetric

Partager

More