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Abstract: This paper is devoted to kinetic equations without confinement. We
investigate the large time behaviour induced by collision operators with fat tailed
local equilibria. Such operators have an anomalous diffusion limit. In the appro-
priate scaling, the macroscopic equation involves a fractional diffusion operator
so that the optimal decay rate is determined by a fractional Nash type inequal-
ity. At kinetic level we develop an L2-hypocoercivity approach and establish a
rate of decay compatible with the fractional diffusion limit.
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1. Introduction and main results

We study the decay rates of the solutions in the kinetic equation

∂tf + v · ∇xf = Lf , f(0, x, v) = f in(x, v) (1)

when the local equilibrium F has a fat tail given for some γ > 0 by

∀ v ∈ Rd, F (v) =
cγ

〈v〉d+γ
where 〈v〉 :=

√
1 + |v|2 . (2)

In (1), the distribution function f(t, x, v) depends on a position variable x ∈ Rd,
on a velocity variable v ∈ Rd, and on time t ≥ 0. The collision operator L acts
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only on the v variable and, by assumption, its null space is spanned by F . In (2)
the normalization constant is cγ = π−d/2 Γ

(
(d + γ)/2

)
/Γ (γ/2) and associated

to the measure
dµ = F−1(v) dv ,

we define a scalar product and a norm respectively by

〈f, g〉 :=

∫
Rd
f̄ g dµ and ‖f‖2 :=

∫
Rd
|f |2 dµ (3)

for functions f and g of the variable v ∈ Rd. Here f̄ denotes the complex conju-
gate of f , as we shall later allow for complex valued functions. For any k ∈ R,
we define

|||f |||k := ‖f‖L1(dx dv)∩L2(〈v〉k dx dµ) :=
(
‖f‖2L1(dx dv) + ‖f‖2

L2(〈v〉k dx dµ)

)1/2
.

We consider three examples of linear collision operators and define for each
of them an associated parameter β, to be discussed later:
B the Fokker-Planck operator with β := 2 and local equilibrium F

L1f := ∇v ·
(
F ∇v

(
F−1f

))
.

B the linear Boltzmann operator, or scattering collision operator

L2f :=

∫
Rd

b(·, v′)
(
f(v′)F (·)− f(·)F (v′)

)
dv′ ,

with positive, locally bounded collision frequency

ν(v) :=

∫
Rd

b(v, v′)F (v′) dv′ ∼
|v|→+∞

|v|−β (4)

for a given β ∈ R, and local mass conservation, that is,∫
Rd

(
b(v, v′)− b(v′, v)

)
F (v′) dv′ = 0 . (5)

We assume the existence of a constant Z > 0 such that, for any v, v′ ∈ Rd,

b(v, v′) ≥ 1

Z
〈v〉−β 〈v′〉−β . (6)

We also assume that for any k ∈ (0, γ + β),

Cb(k) := sup
v∈Rd

〈v〉β
∫
Rd

b(v′, v) 〈v′〉k F (v′) dv′ < +∞ , (7)

Cb :=

∫∫
Rd×Rd

b(v′, v)2

ν(v′) ν(v)
FF ′ dv dv′ < +∞ . (8)

All these assumptions are verified for instance by the collision kernel b such that

either b(v, v′) = Z−1 〈v′〉−β 〈v〉−β with |β| ≤ γ ,
or b(v, v′) = |v′ − v|−β with β ∈ [0, d/2) .
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B the fractional Fokker-Planck operator

L3f := ∆σ/2
v f +∇v · (E f)

with 0 < σ < 2, β := σ− γ and a radial friction force E = E(v) as a solution of

L3F = ∆σ/2
v F +∇v · (E F ) = 0 . (9)

It turns out from a technical result exposed in Appendix A that such a friction
force then behaves like 〈v〉−β v at infinity.

We shall say that Assumption (H) holds if L is one of the three operators
corresponding to the cases L = L1, L = L2, or L = L3, with corresponding
assumptions and parameter β.

Observe that due to total mass conservation, an initial data with finite total
mass will necessary go to zero as t goes to infinity since there is no global
equilibrium state with finite mass except from zero. The aim of this paper is
thus to derive rates of decay to zero. We shall use the notation β+ = max(0, β)
and the convention 1/0+ = +∞. Let

α :=

{
γ+β
1+β ∈ (0, 2) if γ < 2 + β ,

2 if γ ≥ 2 + β .
(10)

Theorem 1. Let d ≥ 2, β ∈ R, γ > max{0,−β}, α given by (10) and k ∈ [0, γ).
Under Assumption (H), let us consider a solution f to (1) with initial condition
f in ∈ L1(dx dv)∩L2

(
〈v〉k dxdµ

)
. If γ 6= 2 +β or if γ = 2 +β and k

β+
> d

2 , then

∀ t ≥ 0 , ‖f(t, ·, ·)‖2L2(dx dµ) ≤
C

(1 + t)τ
∣∣∣∣∣∣f in∣∣∣∣∣∣2

k
with τ = min

{
d
α ,

k
β+

}
.

In the critical case γ = 2 + β, and with either k = 0 if β < 0, or k > 0 if β ≥ 0,
and under the additional condition k

β+
≤ d

2 if d ≥ 3,

∀ t ≥ 2 , ‖f(t, ·, ·)‖2L2(dx dµ) ≤
C

(t log t)d/2

∣∣∣∣∣∣f in∣∣∣∣∣∣2
k
.

In the above estimates, C > 0 is a constant which does not depend on f in.

In Theorem 1, the case γ > β + 2 gives rise to a decay rate corresponding to a
standard, i.e., non-fractional diffusion regime, with α = 2, as we shall see later.
For legibility, we state the d = 1 case separately.

Theorem 2. Let d = 1, β ∈ R, γ > max{0,−β}, α given by (10) and k ∈ [0, γ).
Under Assumption (H), let us consider a solution f of (1) with initial condition
f in ∈ L1(dx dv) ∩ L2

(
〈v〉k dxdµ

)
. If γ 6= 2 + β, then the estimate

∀ t ≥ 0 , ‖f(t, ·, ·)‖2L2(dx dµ) ≤
C

(1 + t)τ
∣∣∣∣∣∣f in∣∣∣∣∣∣2

k

holds

• for any τ < k+γ
k α− γ+ β (α+1) if β > 1, γ ∈ (1, β), k ∈

(
γ
α , γ

)
,
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• with τ = min
{
d
α ,

k
β+

}
in the other cases.

In the case γ = 2 + β, then

∀ t ≥ 2 , ‖f(t, ·, ·)‖2L2(dx dµ) ≤
C

(t log t)d/2

∣∣∣∣∣∣f in∣∣∣∣∣∣2
k
,

with either k = 0 if β < 0, or k > 0 if β ≥ 0.
In the above estimates, C > 0 is a constant which does not depend on f in.

See Figures 1, 2 and 3 for a representation of the regions of the parameters
respectively in dimensions d = 3, d = 2 and d = 1.

If d ≥ 2 and β ≥ 0, the threshold between the region with decay rateO(t−k/β),
with k < γ but close enough to γ, and the region with decay rate O(t−d/α) is
obtained by solving d

α = k
β in the limit case k = γ. The corresponding curve is

given by β 7→ γ?(β) defined as

γ?(β) := max
{

1
2

(√
(4 d+ 1)β2 + 4 d β − β

)
, d2 β

}
if d ≥ 3 ,

γ?(β) = 1
2

(√
β (9β + 8)− β

)
if d = 2 .

(11)

If d ≥ 3, notice that γ?(β) =
(√

(4 d+ 1)β2 + 4 d β − β
)
/2 if β ∈ [0, 4/(d − 2)]

and γ?(β) = d
2 β if β ≥ 4/(d− 2). See Figures 1 and 2. If d = 1, the results when

γ < 2 + β slightly differs from the case d ≥ 2 and

γ?(β) = 1
2

(√
(5β + 4)β − β

)
if β ∈ [0, 1],

while a new intermediate rate appears when β ≥ 1 and γ ∈ (1, β).
The large time decay rates are governed by the scaling properties of (1).

According to [33,25] (more references will be given later), a local equilibrium with
fat tail implies that the diffusion limit involves a fractional diffusion operator.
As in [10], the key idea is that the (fractional) diffusion limit determines the rate
of decay. Let us explain how the exponent α arises through a formal analysis in
the case of the simple scattering operator L = L2 corresponding to

b(v, v′) = Z−1 〈v〉−β 〈v′〉−β , Z :=

∫
Rd
〈v〉−β F (v) dv , β ∈ R .

Let us investigate the diffusion limit as ε → 0+ of the scaled kinetic equation
written in terms of the Fourier variable ξ corresponding to the macroscopic
position variable ε x :

εα ∂tf̂ + i ε v · ξ f̂ = Lf̂ . (12)

The exponent α, which determines the macroscopic time scale, is to be chosen.
By the local mass conservation property,

∫
Rd Lf dv = 0, the spatial density,

defined as
ρf (t, x) :=

∫
Rd
f(t, x, v) dv , (13)

solves in Fourier variables the continuity equation

∂tρ̂f + i ε1−α
∫
Rd
v · ξ f̂ dv = 0 . (14)
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decay rate t−
d
α

decay rate t
− k
β

decay rate t−
d
2

decay rate (t ln(t))−
d
2

β

γ

σ = 0+

σ = 2−

β = 2

Fig. 1. As t→ +∞, decay rates are at most O(t−k/β) if −β < 0 < k < γ sufficiently close to γ
and γ < γ?(β), with γ? given by (11), and otherwise either O(t−d/α) ifmax{0,−β} < γ < 2+β

or O(t−d/2) if γ > max{2 + β,−β}. The picture corresponds to d = 3. In Case L = L3, γ is
limited to the strip enclosed between the two dashed red lines.

β

γ

σ = 0+

σ = 2−

β = 2

Fig. 2. Decay rates depending on β and γ in dimension d = 2, as t → +∞. The caption
convention is the same as for Figure 1. When β ≥ 0, the upper threshold of the region with
decay rate O(t−k/β), with k close enough to γ, is γ = γ?(β).
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β

γ

σ = 0+

σ = 2−

β = 2

Fig. 3. Decay rates depending on β and γ in dimension d = 1, as t → +∞. When β ≥ 0, k
is chosen arbitrarily close to γ. The caption convention is the same as for Figure 1 except for
1 < γ < β which corresponds to the intermediate decay rate τ < 2γ

γ(α−1)+β(α+1)
indicated in

Theorem 1.

The fractional diffusion limit ε → 0+ can be obtained by a formal Hilbert
expansion as in [36], in which only the case β = 0 is covered, or as in [19], where
the collision frequency is |v|−β . Here we use a more direct computation.

Rewriting the scattering operator as

Lf̂ = 〈v〉−β
(

rf
F

Z
− f̂

)
with rf (t, ξ) :=

∫
Rd
〈v′〉−β f̂(t, ξ, v′) dv′ ,

the kinetic equation (12) takes the form(
〈v〉−β + i ε v · ξ

)
f̂ = 〈v〉−β rf

F

Z
− εα ∂tf̂ .

The flux term in the continuity equation (14) can be rewritten as

i ε1−α
∫
Rd
v · ξ f̂ dv = bε

rf
Z
− i ε

∫
Rd

v · ξ ∂tf̂
〈v〉−β + i ε v · ξ

dv , (15)

with

bε := i ε1−α
∫
Rd

〈v〉−β v · ξ F
〈v〉−β + i ε v · ξ

dv = ε2−α
∫
Rd

〈v〉−β (v · ξ)2 F
〈v〉−2 β + ε2 (v · ξ)2

dv . (16)

The second representation is due to the evenness of F . Recalling (2), we observe
that the formal limit of the integral is finite for γ > 2 + β and, by rotational
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symmetry, of the form κ |ξ|2, for some κ > 0. In this case the appropriate macro-
scopic time scale is diffusive, i.e., α = 2, and the macroscopic limit is the heat
equation for the limiting spatial density ρ0, written in Fourier variables,

∂tρ̂0 + κ |ξ|2 ρ̂0 = 0 .

Here we use that formally limε→0 f = ρ0 F , and therefore limε→0 rf = Z ρ̂0, and
assume that the last term in (15) is a perturbation, which tends to zero.

Now let us consider the case γ < 2 + β. The computation of the asymp-
totic behaviour of bε is a bit tedious in this case. First note that in this case
bε <∞ requires min{1, γ}+ β > 0, which we assume in the following. With the
coordinate change v = (ε |ξ|)−1/(1+β) w, we obtain

bε ≈ ε
γ+β
1+β−α |ξ|

γ+β
1+β κ , κ := cγ

∫
Rd

|w|−β−γ−d (w · e)2

|w|−2 β + (w · e)2
dw

as ε → 0+, with e = ξ/|ξ|. By rotational symmetry, κ is independent from
e ∈ Sd−1. The appropriate choice of the macroscopic time scale is now such
that bε has a finite positive limit, which determines α as in (10). Our assumptions
on β and γ imply 0 < α < 2. The macroscopic limit is the fractional heat equation

∂tρ̂0 + κ |ξ|α ρ̂0 = 0 . (17)

In the general case, α ≤ 2 covers the two cases, γ ≥ 2 + β and γ < 2 + β,
with a standard macroscopic limit when α = 2, and a fractional diffusion limit
when α < 2. If ρ solves (17), then

d

dt
‖ ρ̂ ‖2L2(dx) = − 2κ ‖ |ξ|α2 ρ̂ ‖2L2(dξ) .

Using the fractional Nash inequality

‖ρ‖L2(dx) ≤ CNash ‖ρ‖
α
d+α

L1(dx) ‖ |ξ|
α
2 ρ̂ ‖

d
d+α

L2(dξ) , (18)

and Plancherel’s identity, we obtain ‖ρ(t, ·)‖L2(dx) = O
(
t−d/α

)
as t→ +∞. The

proof of (18) can be found in [35] if α = 2 and the extension to the case α < 2
is straightforward. This heuristic analysis is responsible for the rates τ = d/α
of the solution of (1), at least under appropriate 〈v〉k moment conditions. At
formal level, the decay estimates of the solution of (12) are uniform as ε → 0.
See Section 6.3 for additional comments.

For L = L1 and L = L3, we want to keep the same value for α as for L = L2.
This implicitly defines β. Technically, what matters is the Lyapunov function
property, namely the fact that there exist three positive constant a, b and R, a
real parameter β, and a (smooth) positive Lyapunov function F = F (v) on Rd
such that

−LF ≤
(
a1BR − b 〈v〉

−β
)
F

where L is a self-adjoint operator associated with a Dirichlet integral on the space
of square integrable functions on Rd with respect to some probability measure.
Details can be found for instance in [3]. In integral form, this Lyapunov function
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property is used in Lemma 3, responsible for the interpolation inequality of
Proposition 2, and finally for the decay rates of Theorems 1 and 2.

The expression of α can also be related with the macroscopic diffusion limit
for L = L1 and L = L3. This is not as simple as for L = L2 and we shall omit this
computation here, even at formal level. The interested reader is invited to refer
to [12] for such a justification.

Let us conclude this introduction by a brief review of the literature. Fractional
diffusion limits of kinetic equations attracted a considerable interest in the re-
cent years. The microscopic jump processes are indeed easy to encode in kinetic
equations and the diffusion limit provides a simple procedure to justify the use
of fractional operators at macroscopic level. Formal derivations are known for
a long time, see for instance [38], but rigorous proofs are more recent. In the
case of linear scattering operators like those of Case L = L2, we refer to [33,
32,36,4] for some early results and to [25] for a closely related work on Markov
chains. Numerical schemes which are asymptotically preserving have been ob-
tained in [18,19]. Beyond the classical paper [20], we also refer to [33,32,36,4] for
a discussion of earlier results on standard, i.e., non-fractional, diffusion limits.
Concerning the generalized Fokker-Planck operators of Case L = L1, such that
local equilibria have fat tails, the problem has recently been studied in [31] in
dimension d = 1 by spectral methods and, from a probabilistic point of view,
in [23]. Depending on the range of the exponents, various regimes corresponding
to Brownian processes, stable processes or integrated symmetric Bessel processes
are obtained and described in [23] as well as the threshold cases (some were al-
ready known, see for instance [15]). Higher dimensional results have recently
been obtained in [22]. Concerning Case L = L3, the fractional diffusion limit of
the fractional Vlasov-Fokker-Planck equation, or Vlasov–Lévy–Fokker–Planck
equation, has been studied in [16,1,2] when the friction force is proportional to
the velocity. Here our Case L = L3 is slightly different, as we pick forces giving
rise to collision frequencies of the order of |v|−β as |v| → +∞. We refer to [12]
for new results, a recent overview and further references.

In the homogeneous case, that is, when there is no x-dependence, it is classical
to introduce a function Φ(v) = − logF (v), where F denotes the local equilibrium
but is not necessarily of the form (2), and classify the possible behaviors of the
solution f to (1) according to the growth rate of Φ. Assume that the collision
operator is either the generalized Fokker-Planck operator of Case L = L1 or the
scattering operator of Case L = L2. Schematically, if

Φ(v) = 〈v〉ζ ,

we obtain that ‖f(t, ·)−M F‖L2(dµ) decays exponentially if ζ ≥ 1, with M =∫
Rd f dv. In the range ζ ∈ (0, 1), the Poincaré inequality of Case L = L1 has to
be replaced by a weak Poincaré or a weighted Poincaré inequality : see [37,27,9]
and rates of convergence are typically algebraic in t. Summarizing, the lowest is
the rate of growth of Φ as |v| → +∞, the slowest is the rate of convergence of f
to M F . Now let us focus on the limiting case as ζ → 0+. The turning point
precisely occurs for the minimal growth which guarantees that F is integrable,
at least for solutions of the homogeneous equation with initial data in L1(dv).
Hence, if we consider

Φ(v) = η log 〈v〉 ,
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with η < d, then diffusive effects win over confinement and the unique local
equilibrium with finite mass is 0. To measure the sharp rate of decay of f to-
wards 0, one can replace the Poincaré inequality and the weak Poincaré or the
weighted Poincaré inequalities by weighted Nash inequalities. See [11] for details.
In this paper, we consider the case η = d + γ > d, which guarantees that F is
integrable. Standard diffusion limits can be invoked if γ > 2+β, but here we are
also interested in the regime corresponding to fractional diffusion limits, with
γ ≤ 2 + β.

As explained in Section 1, standard diffusion limits provide an interesting in-
sight into the micro/macro decomposition which is the key of the L2-hypocoercive
approach of [21]. Another parameter can be taken into account: the confinement
in the spatial variable x. In presence of a confining potential V = V (x) with
sufficient growth and when F has fast decay, typically for ζ ≥ 1, the rate of
convergence is found to be exponential. A milder growth of V gives a slower
convergence rate as analyzed in [14]. If e−V is not integrable, the diffusion wins
in the hypocoercive picture, and the rate of convergence of a finite mass solution
of (1) towards 0 can be captured by Nash and related Caffarelli-Kohn-Nirenberg
inequalities: see [10,11].

A typical regime for fractional diffusion limits is given by local equilibria with
fat tails which behave according to (2) with γ ∈ (0, 2+β): F is integrable but has
no standard diffusion limit. Whenever fractional diffusion limits can be obtained,
it was expected that rates of convergence can also be obtained by an adapted L2-
hypocoercive approach. In this paper, we shall consider only the case V = 0 and
measure the decay rate. In view of [28] (also see references therein), it is natural
to expect that a fractional Nash type approach has to play the central role, and
this is indeed what happens. The mode-by-mode hypocoercivity estimate shows
that rates are of the order of |ξ|α as ξ → 0 which results in the expected time
decay. In this direction, let us mention that the spectral information associated
with |ξ|α is very natural in connection with the fractional heat equation as was
recently observed in [5]. As far as we know, asymptotic rates for (1) have not
been studied so far, to the exception of the very recent results of [2] which deal
with the Vlasov–Lévy–Fokker–Planck equation in the case of a spatial variable
in the flat torus Td by an H1-hypocoercivity method and the simplest version
(β = 0) of the scattering collision operator: see Section 6.2 for more details. A
preliminary version of the present paper can be found in [29].

2. Outline of the method

2.1. Decay rates of the homogeneous solution. If f is an homogeneous solution
of (1), that is, a function independent from x ∈ Rd, with initial datum f in ∈
L1
+(dv) ∩ L2(dµ) such that

∫
Rd f

in dv = 1, then

d

dt
‖f − F‖2 = 2 〈f, Lf〉 .

It is natural to ask whether such an estimate proves the convergence of the
solution f(t, ·) to F as t → +∞ and provides a rate of convergence. Let us
assume that L is a self-adjoint operator on L2(dµ) such that, for some k ∈ (0, γ),
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(i) the interpolation inequality∫
Rd
|g|2 dµ ≤ C

(
− 〈g, Lg〉

) 1
1+a

(∫
Rd
|g|2 〈v〉k dµ

) a
1+a

(19)

holds for some a > 0 and C > 0, if
∫
Rd g dµ = 0,

(ii) there is a constant Ck such that

∀ t ≥ 0 ,

∫
Rd
|f(t, ·)|2 〈v〉k dµ ≤ Ck

∫
Rd

∣∣f in∣∣2 〈v〉k dµ .

Then an elementary computation shows the algebraic decay rate

∀ t ≥ 0 , ‖f(t, ·)− F‖2 ≤
(
‖f in − F‖−2 a + κ a t

)−1/a
with κ = 2 C−(1+a)

(
Ck
∫
Rd |f

in|2 〈v〉k dµ
)−a. Note that the exponent a depends

on k. This result is an indication that also in the general spatially non-homo-
geneous case of (1), we cannot expect a better rate of convergence. The main
difficulty there is to understand the interplay of the transport operator v · ∇x
and of the collision operator L, which is the main issue of this paper.

2.2. Non-homogeneous solutions: mode-by-mode analysis. Let us consider the
measure dµ = F−1(v) dv and the Fourier transform of f in x defined by

f̂(t, ξ, v) :=
1

(2π)d/2

∫
Rd
e− i x·ξf(t, x, v) dx .

If f solves (1), then the equation satisfied by f̂ is

∂tf̂ + Tf̂ = Lf̂ , f̂(0, ξ, v) = f̂ in(ξ, v)

where T is the transport operator in Fourier variables given by

Tf̂ = i v · ξ f̂ ,

and ξ ∈ Rd can be seen as a parameter, so that for each Fourier mode ξ, T is
a multiplication operator and we can study the decay of t 7→ f̂(t, ξ, ·). For this
reason, we call it a mode-by-mode analysis, as in [10].

For any given ξ ∈ Rd, taken as a parameter, we consider (t, v) 7→ f̂(t, ξ, v) on
the complex valued Hilbert space L2(dµ) with scalar product and norm given
by (3). We define the orthogonal projection Π on the subspace generated by F by

Π f = ρf F ,

where ρf is given by (13) and observe that the property

ΠTΠ = 0

holds as a consequence of the radial symmetry of F . Let us define the operator

Aξ :=
1

〈v〉2
Π

(− i v · ξ) 〈v〉β

1 + 〈v〉2 |1+β| |ξ|2
,
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and the entropy functional by

Hξ[f ] := ‖f̂‖2 + δ Re
〈

Aξ f̂ , f̂
〉
.

The definition of Aξ is reminiscent of the computation of bε in (16), with ε = 1.
In the case L = L2 and β ≥ −1, we can indeed notice that

AξT Π =
1

〈v〉2
Π

(v · ξ)2 〈v〉β

1 + 〈v〉2 |1+β| |ξ|2
Π =

1

〈v〉2
Π

〈v〉−β (v · ξ)2

〈v〉−2 β + 〈v〉2 |ξ|2
Π .

Compared with the expression b1, there are two minor differences: the 〈v〉−2 fac-
tor is needed for technical reasons, in order to compute 〈v〉 moments and in par-
ticular I1 and I2 in Section 5.3; in the denominator of the symbol, 〈v〉−2 β+(v ·ξ)2
is replaced by 〈v〉−2 β+〈v〉2 |ξ|2 which has similar scaling properties as |v| → +∞
but offers simpler integration properties. Moreover, the same definition for Aξ
can be used in the cases L = L1 and L = L3. The first elementary result is the
observation that Aξ is a bounded operator and that Hξ[f ] is equivalent to ‖f‖2
if δ > 0 is not too large.

Lemma 1. With the above notation, for any δ ∈ (0, 2) and f ∈ L2(dµ), we have

| 〈Aξf, f〉 | ≤
1

2
‖f‖2 and (2− δ) ‖f‖2 ≤ 2 Hξ[f ] ≤ (2 + δ) ‖f‖2 .

We shall use the notation

ϕ(ξ, v) :=
〈v〉β

1 + 〈v〉2 |1+β| |ξ|2
and ψ(v) := 〈v〉−2 ,

and may notice that Aξ f̂ = ψΠT∗ ϕ f̂ , where T∗ denotes the dual of T acting
on L2(dµ).

Proof (Proof of Lemma 1). With these definitions, we obtain |ψ| ≤ 1 and
|(v · ξ)ϕ(ξ, v)| ≤ 1/2, so that the Cauchy-Schwarz inequality yields

|〈Aξf, f〉|2 ≤
∫
Rd
|ψ(v)|2 |f(ξ, v)|2 dv

∫
Rd
|(v · ξ)ϕ(ξ, v)|2 |f(ξ, v)|2 dv ≤ 1

4
‖f‖4 ,

which completes the proof of Lemma 1. ut

We observe that if f solves (1), then

d

dt
Hξ[f̂ ] = −Dξ[f̂ ] := 2 〈Lf̂ , f̂〉 − δ Rξ[f̂ ]

where Rξ[f̂ ] = − d
dt Re 〈Aξ f̂ , f̂〉. Our goal is to relate Hξ[f̂ ] and Dξ[f̂ ]. Any decay

rate of Hξ[f̂ ] obtained by a Grönwall estimate gives us a decay rate for ‖f‖2 by
Lemma 1 and, using an inverse Fourier transform, in L2(dx dµ).

More notation will be needed. Let us define the weighted norms

‖g‖2k :=

∫
Rd
|g|2 〈v〉k dµ ,
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so that in particular ‖g‖ = ‖g‖0. A crucial observation, which will be used
repeatedly, is the fact that for any constant κ > 0,

‖g − κF‖2k = ‖g‖2k + κ2
∫
Rd
〈v〉k F dv − 2κ

∫
Rd
〈v〉k g dv ≥ ‖(1− Πk) g‖2k

where

Πk g :=

∫
Rd 〈v〉

k
g dv∫

Rd 〈v〉
k
F dv

F .

This is easily shown by optimizing the left-hand side of the inequality on κ ∈ R.
Notice that Π0 = Π.

The parameters β and γ are chosen as in Theorems 1 and 2 while α is given
by (10): α = γ+β

1+β if γ < 2 + β and α = 2 if γ ≥ 2 + β. For simplicity, we shall
not keep track of all constants and simply write that a . b and a & b if there is
a positive constant c such that, respectively, a ≤ b c and a ≥ b c. We also define
ωd := |Sd−1| where Sd−1 denotes the unit sphere in Rd.

2.3. Outline of the method and key intermediate estimates. Assume that f is a
finite mass solution of (1) on R+ × Rd × Rd. Our goal is to relate

H[f ] :=

∫
Rd

Hξ[f̂ ] dξ

and
− d

dt
H[f ] = − 2

∫∫
Rd×Rd

f Lf dxdµ+ δ

∫
Rd

Rξ[f̂ ] dξ

by a differential inequality and use a Grönwall estimate. According to Lemma 1,
the decay rate of ‖f‖2 is the same as for Hξ[f̂ ]. Under Assumption (H), we
consider a solution f of (1) with initial condition f in ∈ L1(dxdv) ∩ L2(dx dµ).
The main steps of our method are as follows:

B The solution is bounded in a weighted L2 space. We shall prove the following
result in Section 3.

Proposition 1. Assume that (H) holds. Let d ≥ 1, γ > 0, γ + β ≥ 0, k ∈ (0, γ)

and f be a solution of (1) with initial condition f in ∈ L2(〈v〉k dx dµ). Then,
there exists a positive constant Ck depending on d, γ, β and k such that

∀ t ≥ 0 , ‖f(t, ·, ·)‖L2(〈v〉kdx dµ) ≤ Ck ‖f
in‖L2(〈v〉kdx dµ) .

B The collision term controls the distance to the local equilibrium. We have the
following microscopic coercivity estimate.

Proposition 2. Let d ≥ 1, γ > 0, γ + β ≥ 0, η ∈ [−β, γ) and k ∈ (0, γ).
Assume that β = 2 if L = L1, that Assumptions (5)–(8) hold if L = L2, and that
σ ∈ (0, 2), β = σ−γ if L = L3. Then there exists a positive constant C depending
on ‖f‖L2(dx dµ) such that for any f ∈ L2(〈v〉k dx dµ),

C ‖(1− Πη)f‖2
k+β
k−η

L2(dx 〈v〉ηdµ) ‖f‖
− 2 η+βk−η

L2(dx 〈v〉kdµ) ≤ −
∫∫

Rd×Rd
f Lf dxdµ .
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This estimate is the extension of (19) to the non-homogeneous case. The proof
is done in Section 4. We shall use Proposition 2 with η = −β if γ > β and for
some η ∈ (− γ, 0) if γ ≤ β. The case η ≥ 0 is needed only in Step 4 of the proof
of Proposition 3.

B Our proofs require the computation of a large number of coefficients and
various estimates which are collected in Sections 5.1 and 5.2.

B A microscopic coercivity estimate is established in Section 5.3, which goes as
follows. Let us define the function

L(ξ) :=
|ξ|α

〈ξ〉α
if γ 6= 2 + β , L(ξ) :=

|ξ|2
∣∣ log |ξ|

∣∣
1 + |ξ|2 log |ξ|

if γ = 2 + β .

Proposition 3. Let γ > max{0,−β} and η ∈ (− γ, γ) such that η ≥ −β. Under
Assumption (H), there exists a positive, bounded function ξ 7→ K(ξ) such that

Rξ[f̂ ] & L(ξ) ‖Πf̂‖2 −K(ξ) ‖(1− Π)f̂‖2η .

In Section 5.4, inspired by fractional Nash inequalities, we deduce from Propo-
sition 3 an estimate on the distance in the direction which is orthogonal to the
local equilibria.

Corollary 1. Under Assumption (H), we have∫
Rd

Rξ[f̂ ] dξ & ‖Πf‖2 (1+α
d )

L2(dx dµ) − |||(1− Π)f |||2−β if γ 6= 2 + β ,

∫
Rd

Rξ[f̂ ] dξ & ‖Πf‖2 (1+α
d )

L2(dx dµ) log

( ‖Πf‖L2(dx dµ)

‖f‖L1(dx dµ)

)
− |||(1− Π)f |||2−β

if γ = 2 + β .

The proof is a straightforward consequence of Lemma 14 if γ 6= 2 + β and of
Lemma 15 if γ = 2 + β. See details in Section 5.4 and 5.5.

2.4. Sketch of the proof of the main results. The difficult part of the paper is
the proof of Propositions 1, 2 and 3, and Corollary 1. If γ ≤ β, we have to take
η 6= −β and use additional interpolation estimates: see Section 6. Otherwise, the
proof of Theorems 1 and 2 is not difficult if γ > β and can be done as follows.

Under Assumption (H), a solution of (1) is such that

− d

dt
H[f ] = −2

∫∫
Rd×Rd

f Lf dxdµ− δ
∫
Rd

Rξ[f̂ ] dξ .

Let us assume that γ 6= 2 + β and γ > β. We rely on Proposition 2.
• If β ≤ 0, with η = −β, we find that∫

Rd
Rξ[f̂ ] dξ & ‖Πf‖2 (1+α

d )

L2(dx dµ) − |||(1− Π)f |||2−β .
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We obtain

− d

dt
H[f ] & (1− δ) |||(1− Π)f |||2−β + δ ‖Πf‖2 (1+α

d )

L2(dx dµ)

& (1− δ) ‖(1− Π)f‖2L2(dx dµ) + δ ‖Πf‖2 (1+α
d )

L2(dx dµ)

& H[f ]2 (1+α
d )

using the simple observation that ‖(1− Π)f‖2−β ≥ ‖(1− Π)f‖2L2(dµ) if β ≤ 0.

• If β ∈ (0, γ) and 2 + β 6= γ > β, again with η = −β, we find that

− d

dt
H[f ] & (1− δ)|||(1− Π)f |||2−β + δ ‖Πf‖2 (1+α

d )

L2(dx dµ) .

Using Hölder’s inequality

‖(1− Π)f‖2 ≤ ‖(1− Π)f‖
2 k
k+β

−β ‖(1− Π)f‖
β−2
k+β

k ,

we conclude that

− d

dt
H[f ] & (1− δ)‖(1− Π)f‖2 (1+ β

k )

L2(dx dµ) + δ ‖Πf‖2 (1+α
d )

L2(dx dµ) .

• If d ≥ 1, β ≥ 0 and γ = 2 + β, α = 2 but there is a logarithmic correction in
the expression of

∫
Rd Rξ[f̂ ] dξ, which is responsible for the O(log t) correction of

Theorems 1 and 2 in case γ = 2 + β as t→ +∞.
• For integrability reasons, the case γ ≤ β requires further estimates involving
some η ∈ (− γ, 0) that will be dealt with in Sections 4.4 and 6.1. Except in this
case, the proof of Theorems 1 and 2 is complete.

3. Estimates in weighted L2 spaces

In this section, we assume that β ≥ 0.

3.1. A result in weighted L2 spaces. Let us prove Proposition 1, i.e., the propa-
gation of weighted norms L2(〈v〉k dxdµ) with power law of order k ∈ (0, γ).

The conservation of weighted norms has also been used in [9] when F has a
sub-exponential form. In that case, any value of k was authorized, and this was
implicitly a consequence of the fact that such a local equilibrium F had finite
weighted norms L2(〈v〉k dx dµ) for any k ∈ R+. For a local equilibrium given
by (2), there is a limitation on k as we cannot expect a global propagation of
higher moments than those of F .

For any function h ∈ L2(〈v〉k dxdµ), one can notice that

‖h‖L2(〈v〉kdx dµ) = ‖F−1h‖L2(F 〈v〉kdx dv) .

In other words, it is equivalent to control the semi-group e(L−T)t in L2(〈v〉k dxdµ)

and F−1 e(L−T)t in L2(F 〈v〉k dxdv). Since L2(〈v〉k F dxdv) is a space interpolat-
ing between L1(F 〈v〉k dx dv) and L∞(dxdv) (see [39, Theorem (2.9)]), we shall
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establish the result of Proposition 1 by proving that F−1 e(L−T)t is bounded
onto L∞(dxdv) in Section 3.2 and onto L1(F 〈v〉k dxdv) in Section 3.5. In order
to prove this last estimate, as in [27,28,9], we shall use a Lyapunov function
method in Section 3.3 and a splitting of the operator in Section 3.4.

3.2. The boundedness in L∞(dxdv).

Lemma 2. Let d ≥ 1 and γ > 0. If (H) holds, then

∀ t ≥ 0 , ‖F−1et(L−T)‖L∞(dx dv)→L∞(dx dv) ≤ 1 ,

where the norm ‖·‖X→Y denotes the operator norm for an operator with do-
main X and codomain Y .

Proof. This is a consequence of the maximum principle in Case L = L1. In
Case L = L2, h#(t, x, v) = F−1(v) f(t, x+ v t, v) solves

∂th
# + ν(v)h# =

∫
Rd

b(v, v′)F (v′)h#(t, x, v′) dv′ ,

which is clearly a positivity preserving equation. The positivity of

(t, x, v) 7→ ‖h(0, ·, ·)‖L∞(dx dv) − h#(t, x, v)

is also preserved, as it solves the same equation, which proves the claim. Case L =
L3 is less standard as it relies on the maximum principle for fractional operators.
As this is out of the scope of the present paper, we will only sketch the main
steps of a proof. First of all, the results of [28] can be adapted to E as defined
by (9), thus proving that the evolution according to ∂t − F L3(F−1·) preserves
L∞ bounds. This is also the case of ∂t −T. We can then conclude using a time-
splitting approximation scheme of evolution and a Trotter formula. ut

3.3. A Lyapunov function method. The boundedness of the operator F−1et(L−T)

in L1(F 〈v〉k dxdv) is equivalent to the boundedness of the operator et(L−T) in
L1(〈v〉k dxdv). To obtain such a bound, we rely on a Lyapunov function estimate.

Lemma 3. Let d ≥ 1, β ≥ 0 and γ > 0. If (H) holds, then for any k ∈ [0, γ+β),
there exists (a, b, R) ∈ R× R+ × R+ such that for any f ∈ L1(〈v〉k dx dv),∫∫

Rd×Rd
f
|f | Lf 〈v〉k dx dv ≤

∫∫
Rd×Rd

(
a1BR − b 〈v〉

−β
)
|f | 〈v〉k dxdv .

As a special case corresponding to k = 0, we have
∫∫

Rd×Rd
f
|f | Lf dxdv ≤ 0.

Here by convention, we shall write that f
|f | = 0 if f = 0.
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Proof. First assume that f ≥ 0. Then one may write,∫∫
Rd×Rd

Lf 〈v〉k dx dv =

∫∫
Rd×Rd

Lf F 〈v〉k dxdµ

=

∫∫
Rd×Rd

L∗(F 〈v〉k) f dxdµ .

• In Case L = L1, we notice that L is self-adjoint on L2(dµ), recall that β = 2
and compute

F−1 L1

(
F 〈·〉k

)
(v) = 〈v〉d+γ ∇v ·

(
〈v〉−d−γ ∇v 〈v〉k

)
= k 〈v〉d+γ ∇v ·

(
〈v〉−d−γ+k−2 v

)
= k (d+ γ − k + 2) 〈v〉k−4 − k (γ + 2− k) 〈v〉k−2

and obtain the result for any k < γ + β = γ + 2.

• In Case L = L2, by Assumption (5) one obtains that

F−1 L∗2
(
F 〈·〉k

)
(v) =

∫
Rd

b(v′, v)
(
〈v′〉k F (v′)− 〈v〉k F (v′)

)
dv′

=

(∫
Rd

b(v′, v)
〈v′〉k

〈v〉k
F (v′) dv′ − ν(v)

)
〈v〉k .

By Assumption (7), Cb(k) = supv∈Rd 〈v〉
β ∫

Rd b(v′, v) 〈v′〉k F (v′) dv′ is finite for
any k ∈ (0, γ + β), and as a consequence, we know that

∀ v ∈ Rd , ν(v) ≤
∫
Rd

b(v′, v) 〈v′〉k F (v′) dv′ ≤ Cb(k) 〈v〉−β .

This yields

F−1 L∗2
(
F 〈·〉k

)
(v) ≤

(
Cb(b)

〈v〉k
− ν(v)

〈v〉−β

)
〈v〉−β .

We conclude that Inequality (3) holds for any k ∈ (0, γ+β) by Assumption (4).

• In Case L = L3, it is elementary to compute L∗3 and observe that

F−1 L∗3
(
F 〈·〉k

)
(v) = ∆σ/2

v 〈v〉k − E(v) · ∇v 〈v〉k

=
[
〈v〉−k∆σ/2

v 〈v〉k − k (v · E) 〈v〉−2
]
〈v〉k ,

≤
[
〈v〉−k∆σ/2

v 〈v〉k − C 〈v〉−β
]
〈v〉k ,

where the estimate k (v · E) 〈v〉−2 ≥ C 〈v〉−β for some C > 0 arises as a conse-
quence of Proposition 7. According to [7, Lemma 3.1] (also see [6,28]), we have

∀ v ∈ Rd , ∆σ/2
v 〈v〉k . 〈v〉k−σ ,
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under the condition that k < σ = γ + β. This again completes the proof of
Inequality (3).

When f changes sign, it is possible to reduce the problem to the case f ≥ 0
as follows. In Case L = L1, we use Kato’s inequality to assert that

f

|f |
∆vf ≤ ∆v|f |

in the sense of Radon measures (see [26, Lemma A] or, for instance, [13, Theo-
rem 1.1]). Case L = L2 relies on the elementary observation that∫∫

Rd×Rd
f
|f | L2f 〈v〉k dv dv′ =

∫∫
Rd×Rd

b(v, v′) f ′
f

|f |
F 〈v〉k dv dv′ −

∫
Rd
ν |f |dv

≤
∫∫

Rd×Rd
b(v, v′) |f ′|F 〈v〉k dv dv′ −

∫
Rd
ν |f |dv .

In Case L = L3, the result follows from Kato’s inequality extended to the frac-
tional Laplacian as follows. Let us consider ϕε(s) =

√
ε2 + s2 and notice that(

∆σ/2
v ϕε(f)

)
(v)− ϕ′ε(f(v))

(
∆σ/2
v f

)
(v)

= Cd,σ

∫∫
Rd

ϕε(f(v′))− ϕε(f(v))− ϕ′ε(f(v)) (f(v′)− f(v))

|v′ − v|d+σ
dv ≥ 0

because ϕε is convex since ϕ′′ε (s) = ε2 (ε2 + s2)−3/2 and according for example
to [30, Chapter 2]

Cd,σ = − 2σ

πd/2
Γ
(
d+σ
2

)
Γ
(
− σ

2

) > 0 . (20)

By passing to the limit as ε→ 0, we obtain

f

|f |
∆σ/2
v f ≤ ∆σ/2

v |f | .

In all cases, with L = Li, i = 1, 2, 3, we have∫
Rd

f

|f |
Lf 〈v〉k dxdv ≤

∫
Rd

(L|f |) 〈v〉k dx dv

and the problem is reduced to the case of a nonnegative distribution function f .
ut

3.4. A splitting of the evolution operator. We rely on the strategy of [24,27,34]
by writing L− T as the sum of a dissipative part C and a bounded part B such
that L− T = B + C.

Lemma 4. Under the assumptions of Lemma 3, let (k, k∗) ∈ (0, γ)× (0, γ + β)
be such that k∗ > k+β, a = max{ak, ak∗}, R = min

{
Rk, Rk∗

}
, C := a1BR and

B := L− T− C. Then for any t ∈ R+, we have:

(i) ‖C‖L1(dx dµ)→L1(〈v〉k∗ dx dµ) ≤ a (1 +R2)k∗/2,
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(ii) ‖etB‖L1(〈v〉kdx dµ)→L1(〈v〉kdx dµ) ≤ 1,

(iii) ‖etB‖L1(〈v〉k∗ dx dµ)→L1(〈v〉kdx dµ) ≤ c (1 + t)
k−k∗
β for some c > 0.

Proof. Property (i) is a consequence of the definition of C. Property (ii) follows
from Lemma 3. Indeed, for any g ∈ L1(〈v〉k dx dv),∫∫

Rd×Rd

g

|g|
B g 〈v〉k dx dv ≤

∫∫
Rd×Rd

(
ak 1BRk− a1BR− bk 〈v〉

−β
)
|g| 〈v〉k dxdv

≤ − bk ‖g‖L1(〈v〉k−βdx dv) .

To prove (iii), define g := etB gin. By Hölder’s inequality, we get

‖g‖L1(〈v〉kdv dx) ≤ ‖g‖
k∗−k

k∗−k+β

L1(〈v〉k−β dx dv)
‖gin‖

β
k∗−k+β

L1(〈v〉k∗ dx dv)

and, as a consequence of the above contraction property,∫∫
Rd×Rd

g

|g|
B g 〈v〉k dxdv ≤ − bk

(
‖g‖L1(〈v〉kdv dx)

)1+ β
k∗−k ‖gin‖

− β
k∗−k

L1(〈v〉k∗ dx dv)
,

so that by Grönwall’s lemma, we obtain

‖g‖L1(〈v〉kdx dv) ≤
(
‖gin‖

− β
k∗−k

L1(〈v〉kdx dv)
+ bk β

k∗−k ‖g
in‖
− β
k∗−k

L1(〈v〉k∗dx dv)
t

)− k∗−k
β

≤
(

1 + k∗−k
bk β

t
)− k∗−kβ ‖gin‖L1(〈v〉k∗dx dv) .

ut

3.5. The boundedness in L1(F 〈v〉k dxdv).

Lemma 5. Let d ≥ 1, γ > 0 and β ≥ 0, k ∈ (0, γ) and assume that (H) holds.
There exists a positive constant Ck such that, for any solution f of (1) with
initial condition f in ∈ L1(〈v〉k dxdv),

∀ t ≥ 0 , ‖f(t, ·, ·)‖L1(〈v〉kdx dv) ≤ Ck ‖f
in‖L1(〈v〉kdx dv) .

Proof. Let us consider the Duhamel formula

et(L−T) = etB +

∫ t

0

e(t−s)B C es(L−T) ds .

By Lemma 3, we know that

‖et(L−T)‖L1(〈v〉kdx dv)→L1(〈v〉kdx dv) ≤ a (1 +R2)k∗/2 .

Using the estimates of Lemma 4, we get

‖et(L−T)‖L1(〈v〉kdx dv)→L1(〈v〉kdx dv) ≤ 1 + a c (1 +R2)k∗/2
∫ t

0

(1 + s)
− k∗−kβ ds ,

which is bounded uniformly in time with the choice k∗ − k > β. ut
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4. Interpolation inequalities

We refer to [41] for a general strategy for proving (19) which applies in particular
to L3 in the case L = L3. However, for the operators considered in this paper,
direct estimates can be obtained as follows.

4.1. Hardy-Poincaré inequality and consequences.
Lemma 6. Let d ≥ 1 and γ > 0. We have the Hardy-Poincaré inequality

∀h ∈ L2(〈v〉−2 F dv) ,

∫
Rd
|∇vh|2 F dv ≥ 2 (d+ γ)

∫
Rd
|h− h−2|2 〈v〉−2 F dv

with h−2 :=
∫
Rd h〈v〉

−2F dv∫
Rd 〈v〉

−2F dv
.

See [8] for a proof. We deduce the following interpolation inequality.
Corollary 2. Let d ≥ 1, γ > 0 and k ∈ (0, γ). There exists a positive constant C1
such that, for any f ∈ L2(〈v〉k dxdµ) such that ∇vh ∈ L2(dx dµ) where h = f/F ,
we have the inequality

C1 ‖(1− Π)f‖2+
4
k

L2(dx dµ) ≤
(∫∫

Rd×Rd
|∇vh|2 F dxdv

)
‖f‖

4
k

L2(〈v〉kdx dµ)
.

Proof. Let h0 :=
∫
Rd hF dv and observe that∫

Rd
|h− h0|2 F dv = inf

H∈R

∫
Rd
|h−H|2 F dv ≤

∫
Rd
|h− h−2|2 F dv .

Setting g = h − h−2, we deduce on the one hand from the Cauchy-Schwarz
inequality that∫∫

Rd×Rd
|h− h−2|2 F dx dv =

∫∫
Rd×Rd

|g|2 F dxdv

≤

(∫∫
Rd×Rd

|g|2 F

〈v〉2
dxdv

) k
k+2 (∫∫

Rd×Rd
|g|2 〈v〉k F dxdv

) 2
k+2

,

and we deduce that

|g|2 ≤ 1

2

(
|h|2 + h

2

−2

)
≤ 1

2

(
|h|2 +

h
2

0∫
Rd 〈v〉

−2
F dv

)
using 〈v〉 ≥ 1 and the definition of h−2 on the other hand. Collecting these
estimates with the result of Lemma 6 shows that

21+
2
k (d+ γ) ‖(1− Π)f‖2+

4
k

L2(dx dµ)(
‖f‖2

L2(〈v〉kdx dµ)
+ ck ‖Πf‖2L2(dx dµ)

) 2
k

≤
∫
Rd
|∇vh|2 F dv

where ck :=
∫
Rd 〈v〉

k
F dv/

∫
Rd 〈v〉

−2
F dv. This completes the proof after observ-

ing that
‖Πf‖L2(dx dµ) ≤ ‖f‖L2(dx dµ) ≤ ‖f‖L2(〈v〉kdx dµ) .

ut
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4.2. A gap inequality for the scattering operator. Let L = L2 be the scattering
operator of Case L = L2.

Lemma 7. Let γ > max{0,−β}. Assume that (5) and (7) hold. Then we have∫∫
Rd×Rd

b(v, v′) (h− h′)2 F F ′ dv dv′ ≥ Λ
∫
Rd

∣∣h− h−β∣∣2 〈v〉−β F dv

for any h ∈ L2(dv), with Λ := 2
Z

∫
Rd F 〈v〉

−β
dv and h−β :=

∫
Rd hF 〈v〉

−β dv∫
Rd F 〈v〉

−β dv
.

Notice that here we do not assume (7) or (8), and consider any β + γ > 0.

Proof. Using (5), we have

2

∫∫
Rd×Rd

b(v, v′) (h′ − h)hF F ′ dv dv′

=

∫∫
Rd×Rd

b(v, v′)
(
2h′h− h2

)
F F ′ dv dv′ −

∫∫
Rd×Rd

b(v′, v)h2F F ′ dv dv′ .

Exchanging variables v and v′ gives

−
∫∫

Rd×Rd
b(v, v′) (h′ − h)hF F ′ dv dv′

=
1

2

∫∫
Rd×Rd

b(v, v′) (h− h′)2 F F ′ dv dv′ .

By assumption (7), we know that b(v, v′) ≥ Z−1 〈v〉−β 〈v′〉−β and observe that∫∫
Rd×Rd

〈v〉−β 〈v′〉−β (h− h′)2 F F ′ dv dv′

= 2

∫
Rd
F 〈v〉−β dv

∫
Rd

|f |2

F
〈v〉−β dµ− 2

(∫
Rd
f 〈v〉−β dv

)2

= 2

∫
Rd
F 〈v〉−β dv

∫
Rd

∣∣∣∣∣ fF −
∫
Rd f 〈v〉

−β
dv∫

Rd F 〈v〉
−β

dv

∣∣∣∣∣
2

〈v〉−β F dv

= ΛZ

∫
Rd

∣∣h− h−β∣∣2 〈v〉−β F dv .

ut

Next we deduce the following interpolation inequality.

Corollary 3. Under the assumptions of Lemma 7, for any k ∈ (0, γ), there
exists a positive constant C2 such that, for any f ∈ L2(〈v〉k dx dµ),

C2 ‖(1− Π)f‖2+2 βk
L2(dx dµ) ≤

(
−
∫∫

Rd×Rd
f L2f dxdµ

)
‖f‖2

β
k

L2(〈v〉kdx dµ)
if β > 0 ,

C2 ‖(1− Π)f‖2L2(dx dµ) ≤ −
∫∫

Rd×Rd
f L2f dxdµ if β ≤ 0 .
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Proof. With h = f/F , we recall that, as a consequence of Lemma 7,

−
∫
Rd
f L2f dµ =

∫∫
Rd×Rd

b(v, v′) (h− h′)2 F F ′ dv dv′ ≥ Λ

2

∫
Rd
|g|2 〈v〉−β F dv ,

with g := h− h−β . Moreover, we observe that∫
Rd
|h− h0|2 F dv = inf

H∈R

∫
Rd
|h−H|2 F dv ≤

∫
Rd
|g|2 F dv. (21)

Hence, if β ≤ 0, the result follows from the fact that 〈v〉−β ≥ 1.
Assume next that β > 0. We deduce from (21) and the Cauchy-Schwarz

inequality that

‖(1− Π)f‖2L2(dx dµ) =

∫∫
Rd×Rd

|h− h0|2 F dxdv ≤
∫∫

Rd×Rd
|g|2 F dxdv

≤
(∫∫

Rd×Rd
|g|2 〈v〉−β F dxdv

) k
k+β

(∫∫
Rd×Rd

|g|2 〈v〉k F dx dv

) β
k+β

.

and to control the last factor we notice that

|g|2 ≤ 1

2

(
|h|2 + h

2

−β

)
≤ 1

2

(
|h|2 +

h
2∫

Rd |g|2 〈v〉
−β

F dv

)
using 〈v〉 ≥ 1 and the definition of h−β . Collecting these estimates with the
result of Lemma 7 completes the proof. ut

4.3. Fractional Fokker-Planck operator: an interpolation inequality. Let us com-
pute

∫
Rd f L3f dµ. We recall that in Case L = L3, L3f = ∆

σ/2
v f + ∇v · (E f).

With h = f/F , we have∫
Rd
f ∆σ/2

v f dµ = Cd,σ

∫∫
Rd×Rd

h2 − hh′

|v − v′|d+σ
F dv dv′.

On the other hand, we know that h∇v · (f E) = h∇v · (hF E) = 1
2 ∇v(h

2) ·
(F E) + h2∇v · (F E) and after an integration by parts, we obtain∫

Rd
h∇v · (f E) dv =

1

2

∫
Rd
h2∇v · (F E) dv =

1

2

∫
Rd
h2∆σ/2F dv .

After exchanging the variables v and v′, we arrive at∫
Rd
h∇v · (f E) dv = − Cd,σ

2

∫∫
Rd×Rd

h2 − (h′)2

|v − v′|d+σ
F dv dv′.

Altogether, this means that

−
∫
Rd
f L3f dµ =

Cd,σ
2

∫∫
Rd×Rd

|h− h′|2

|v − v′|d+σ
F dv dv′

=
Cd,σ

4

∫∫
Rd×Rd

|h− h′|2

|v − v′|d+σ
(F + F ′) dv dv′ .
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Corollary 4. Let d ≥ 1, γ > 0, σ ∈ (0, 2), β = σ − γ and k ∈ (0, γ). With the
notation of Corollary 3, there exists a positive constant C3 such that, for any
f ∈ L2(〈v〉k dxdµ), we have the inequality

C3 ‖(1− Π)f‖2+2 βk
L2(dx dµ) ≤

(
−
∫∫

Rd×Rd
f L3f dxdµ

)
‖f‖2

β
k

L2(〈v〉kdx dµ)
if β > 0 ,

C3 ‖(1− Π)f‖2L2(dx dµ) ≤ −
∫∫

Rd×Rd
f L3f dxdµ if β ≤ 0 .

Proof. From the elementary estimate

∀ (v, v′) ∈ Rd × Rd , 〈v〉−β 〈v′〉−β F F ′ ≤ κ F + F ′

|v − v′|d+σ

with κ = cγ sup(v,v′)∈Rd×Rd
〈v〉d+γ+〈v′〉d+γ
〈v〉d+σ〈v′〉d+σ |v − v

′|d+σ, we deduce that

−
∫
Rd
f L2f dµ ≤ −κ

∫
Rd
f L3f dµ

and conclude by Corollary 3 with C3 = C2/κ. ut

As a side result, let us observe that we obtain a fractional Poincaré inequality
as in [40, Corollary 1.2, (1)], with an explicit constant, that goes as follows.

Corollary 5. Under the same assumptions as in Corollary 4,

−
∫
Rd
f L3f dµ ≥ κΛ

∫
Rd

∣∣h− h−β∣∣2 〈v〉−β F dv

where κ is as in the proof of Corollary 4 and Λ is the constant of Lemma 7.

4.4. Convergence to the local equilibrium: microscopic coercivity. We can sum-
marize Lemma 6, Lemma 7 and Corollary 5 as

C ‖f − h−β F‖2−β ≤ −〈f , Lf〉

for positive constant C, where h−β =
∫
Rd hF 〈v〉

−β
dv/

∫
Rd F 〈v〉

−β
dv and h =

f/F . Here L = L1, L2 or L3 respectively in Cases L = L1, L = L2 or L = L3. In the
homogeneous case, an additional Hölder inequality establishes Inequality (19) of
Section 1. The same strategy can be applied in the non-homogeneous case after
integrating with respect to x ∈ Rd.

Proof (Proof of Proposition 2). It is a straightforward consequence of Proposi-
tion 1 on the one hand, and of Corollaries 2, 3 and 4 if, respectively, L = L1, L2

or L3. ut
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As an alternative formulation of Proposition 2 and in preparation for the
case γ ≤ β (see Section (6.1)), let us collect some additional observations. The
inequality

‖(1− Π)f‖2η ≤ (−〈f, Lf〉)θ ‖(1− Π)f‖2 (1−θ)
k

with θ = k−η
k+β can be rewritten with xζ := ‖(1− Π)f‖2ζ and z := −〈f, Lf〉 as

xη ≤ zθ x1−θk =
(
R−1/θ z

)θ (
R1/(1−θ)xk

)1−θ
≤ θ R−1/θ z + (1− θ)R1/(1−θ)xk

for any R > 0, by Young’s inequality. This amounts to

z ≥ 1

θ
R

1
θ xη −

1− θ
θ

R
1
θ+

1
1−θ xk = r xη − (1− θ) θ

θ
1−θ r

1
1−θ xk .

An integration with respect to x shows the following result.

Corollary 6. Let θ = k−η
k+β . Under the assumptions of Proposition 2, we have

−
∫
Rd
〈f, Lf〉dx ≥ r ‖(1− Π)f‖2L2(dx 〈v〉ηdv)

− (1− θ) θ
θ

1−θ r
1

1−θ ‖(1− Π)f‖2
L2(dx 〈v〉kdv) (22)

for any f ∈ L2(〈v〉k dxdµ) and for any r > 0.

5. Hypocoercivity estimates

We start by defining some coefficients. With the notation ‖g‖2η :=
∫
Rd |g|

2 〈v〉η dµ,
we define µL and λL by

µL(ξ) := ‖L∗
(
(v · ξ)ϕ(ξ, v)F

)
‖2−η λL := ‖L∗(ψ F )‖2−η ,

for some parameter η ∈ (− γ, γ), where L∗ denotes the dual of L in L2(dµ), and

λk :=
∫
Rd |v · ξ|

k 〈v〉−2 F dv =
〈
F, |T|k ψ F

〉
,

µk :=
∫
Rd |v · ξ|

k ϕ(v)F dv =
〈
F, |T|k ϕ

〉
,

λ̃k :=
∥∥|v · ξ|k ψ F∥∥−η ,

µ̃k :=
∥∥|v · ξ|k ϕF∥∥−η .

(23)

Notice that only the case η = −β will be needed if γ > β. When γ ≤ β, we shall
assume that η ∈ (− γ, 0). See Section 6.1 for consequences.

5.1. Quantitative estimates of µL and λL.

Proposition 4. Under Assumption (H), if η ∈ (− γ, γ) is such that η ≥ −β,
then λL is finite and

∀ ξ ∈ Rd , µL(ξ) .
|ξ|α

〈ξ〉α
.
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5.1.1. Generalized Fokker-Planck operators.

Lemma 8. With L = L1, we have

µL . |ξ|min{2, γ+4+η
3 } 1|ξ|≤1 + |ξ|−2 1|ξ|≥1 and λL . 1 .

We recall that L1 is self-adjoint.

Proof. Let us start by estimating µL. With

F−1 L
(
(v · ξ)ϕF

)
= ∇v ·

(
F ∇v

(
(v · ξ)ϕ

))
= ∆v

(
(v · ξ)ϕ

)
− (d+ γ)

v

〈v〉2
· ∇v

(
(v · ξ)ϕ

)
and ∇v

(
(v · ξ)ϕ

)
= ϕ ξ + (v · ξ)∇vϕ, ∆v

(
(v · ξ)ϕ

)
= 2 ξ · ∇vϕ+ (v · ξ)∆vϕ, we

end up with

F−1 L
(
(v · ξ)ϕ

)
= 2 ξ · ∇vϕ+ (v · ξ)

(
∆vϕ−

(d+ γ)

〈v〉2
(
ϕ+ v · ∇vϕ

))
.

We recall that β = 2 and

ϕ(ξ, v) =
〈v〉2

A(ξ, v)
where A(ξ, v) := 1 + 〈v〉6 |ξ|2 ,

so that

∇vϕ =
(

2A−1 − 6 〈v〉6 |ξ|2A−2
)
v = 2

(
1− 2 〈v〉6 |ξ|2

) v

A2

and

ξ · ∇vϕ = 2
(

1− 2 〈v〉6 |ξ|2
) v · ξ
A2

, v · ∇vϕ = 2
(

1− 2 〈v〉6 |ξ|2
) |v|2
A2

.

Using 〈v〉6 |ξ|2 ≤ A, we can readily estimate

|ξ · ∇vϕ| . |v · ξ|A−1, |v · ∇vϕ| . 〈v〉2A−1 .

The last part to estimate is

∆vϕ = 2
(

1− 2 〈v〉6 |ξ|2
)
∇v ·

( v

A2

)
+ 2∇v ·

(
1− 2 〈v〉6 |ξ|2

) v

A2

=
2

A2

(
1− 2 〈v〉6 |ξ|2

)(
d+ 12 |v|2 〈v〉4 |ξ|2A−1

)
− 24 |v|2 〈v〉4 |ξ|2A−2 ,

from which we deduce that
|∆vϕ| . A−1 .

Combining previous estimates, we thus end up with∣∣F−1 L
(
(v · ξ)ϕ

)∣∣ . |v · ξ|A−1 .
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This provides us with the estimate

µL(ξ) = ‖L ((v · ξ)ϕ(ξ, ·)F )‖2
L2(〈v〉−ηdµ) .

∫
Rd

|v · ξ|2(
1 + 〈v〉6 |ξ|2

)2 dv

〈v〉d+γ+η

which allows us to conclude by elementary computations. Similar computations
will be detailed in the proof of Lemma 11.

Next we have to estimate λL. After recalling that ψ = 〈v〉−2, we observe that∣∣F−1 L (ψ F )
∣∣ =

∣∣∣∆vψ − (d+ γ)
v

〈v〉2
· ∇vψ

∣∣∣
is a bounded quantity. Since 〈v〉−η F ∈ L1(Rd), we conclude that λL is bounded.�

5.1.2. Scattering collision operators.

Lemma 9. Assume that (H) holds. With L = L2, we have

µL . |ξ|min{1,1+ γ+η−2
|1+β| } 1|ξ|<1 + |ξ|−2 1|ξ|≥1 and λL . 1 .

Proof. To estimate µL, we write

F−1 L∗ ((v · ξ)ϕF ) =

∫
Rd

b(v′, v)
(
(v′ · ξ)ϕ(v′)− (v · ξ)ϕ(v)

)
F (v′) dv′

=

∫
Rd

b(v′, v) (v′ · ξ)ϕ(v′)F (v′) dv′ − (v · ξ)ϕ(v) ν(v).

The Cauchy-Schwarz inequality yields∫
Rd

∣∣∣∣∫
Rd

b(v′, v) (v′ · ξ)ϕ(v′)F ′ dv′
∣∣∣∣2 〈v〉−η F dv

≤
∫
Rd

(∫
Rd

∣∣(v′ · ξ)ϕ(v′)
∣∣2 〈v〉−β F ′ dv′)(∫

Rd

b(v′, v)2

ν(v′)
F ′ dv′

)
〈v〉−η F dv

≤ Cb
∫
Rd

∣∣ν(v) (v · ξ)ϕ(v)
∣∣2 〈v〉−η F dv ,

where, by Assumption (7), Cb =
∫∫

Rd×Rd
b(v′,v)2

ν(v′) ν(v)FF
′ dv dv′ is finite. Hence∫

Rd

∣∣ν(v) (v · ξ)ϕ
∣∣2 〈v〉−η F dv ≤ C

∫
Rd

|v · ξ|2(
1 + 〈v〉2 |1+β| |ξ|2

)2 dv

〈v〉d+γ+η

for some positive constant C, which provides us with the result.
The estimate for λL arises from

F−1 L∗ (ψ F ) =

∫
Rd

b(v′, v)
(
ψ(v′)− ψ(v)

)
F (v′) dv′

=

∫
Rd

b(v′, v)ψ(v′)F (v′) dv′ − ν(v)ψ(v) .
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Again, the Cauchy-Schwarz inequality yields∣∣∣∣∫
Rd

b(v′, v)ψ(v′)F ′ dv′
∣∣∣∣2 ≤ ∫

Rd
|ψ(v′)|2 〈v′〉−β F ′ dv′

∫
Rd

b(v′, v)2

ν(v′)
F ′ dv′

≤ Cb |ν(v)ψ(v)|2 ,

so that
∣∣F−1 L∗ (ψ F )

∣∣ ≤ (C1/2b + 1
)
|ν(v)ψ(v)|. It follows from∫

Rd
|ν(v)ψ(v)|2 〈v〉−η F dv ≤ C

∫
Rd

dv

〈v〉d+γ+η+2 β+4

that λL . 1 because γ + η + 2β + 4 > γ + β + η + β > 0. ut

5.1.3. Fractional Fokker-Planck operators.

Lemma 10. For any σ ∈ (0, 2), we have

|∆σ/2
(
(v · ξ)ϕ

)
| . |ξ|α2 1|ξ|≤1 + 1|ξ|≥1 .

Proof. Let us introduce the notation

∀ v ∈ Rd, m(v) := (v · ξ)ϕ(v)

and estimate the fractional Laplacian by I1 + I2 where

I1 :=

∫
|v−v′|<〈v〉/2

m(v′)−m(v)− (v′ − v) · ∇m(v)

|v − v′|d+σ
dv′ ,

I2 :=

∫
|v−v′|≥〈v〉/2

m(v′)−m(v)

|v − v′|d+σ
dv′ .

• Step 1 : a bound of I1.

We perform a second order Taylor expansion. From

∇vϕ =
(
β + (β − 2 |1 + β|) 〈v〉2 |1+β| |ξ|2

)
〈v〉−β−2 ϕ2 v ,

we deduce that |∇vϕ| . 〈v〉−1 ϕ. In order to estimate the Hessian of ϕ, we write∣∣∇2
vϕ(v)

∣∣ =
∣∣∣∇v ((β + (β − 2 |1 + β|) 〈v〉2 |1+β| |ξ|2

)
〈v〉−β−2 ϕ2 v

)∣∣∣
. 〈v〉−2 ϕ2 + 〈v〉−1 |∇vϕ| ,

from which we deduce that |∇2
vϕ| . 〈v〉

−2
ϕ. It turns out that∣∣∇2

v

(
(v · ξ)ϕ

)∣∣ . |∇vϕ(v)| |ξ|+ |v · ξ|
∣∣∇2

v (ϕ(v))
∣∣ . |ξ| 〈v〉−1 ϕ

because ∇v
(
(v · ξ)ϕ(v)

)
= ϕ(v) ξ + (v · ξ)∇vϕ(v). Therefore,

|I1| ≤
∫
|z|≤〈v〉/2

‖∇2
vm‖L∞(B(v,〈v〉/2))

|z|d+σ−2
dz

≤ 2σ−2 ωd |ξ|
(2− σ) 〈v〉σ−2

‖〈·〉−1 ϕ‖L∞(B(v,〈v〉/2)) .
|ξ|ϕ(v)

(2− σ) 〈v〉σ−1
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because 〈v′〉 is comparable to 〈v〉 uniformly on B(v, 〈v〉 /2).

• Step 2: a bound of I2.

We distinguish two cases, |ξ| ≤ 1 and |ξ| ≥ 1.

• Assume that |ξ| ≥ 1. We estimate I2 by the three integrals∫
|v−v′|≥〈v〉/2
|v′|<〈v〉

|m(v′)|
|v − v′|d+σ

dv′ ,

∫
|v−v′|≥〈v〉/2
|v′|≥〈v〉

|m(v′)|
|v − v′|d+σ

dv′

and
∫
|v−v′|≥〈v〉/2

|m(v)|
|v − v′|d+σ

dv′

so that

|I2| ≤
2d+σ

〈v〉d+σ
‖m‖L1(B0(〈v〉)) +

2σωd ‖m‖L∞(Bc0(〈v〉))

σ 〈v〉σ
+

2σωd |m(v)|
σ 〈v〉σ

. 〈v〉−σ
(
〈v〉−d ‖m‖L1(B0(〈v〉)) + ‖m‖L∞(Bc0(〈v〉)) + |m(v)|

)
.

To proceed further, we have to estimate 〈v〉−d ‖m‖L1(B0(〈v〉)) and ‖m‖L∞(Bc0(〈v〉))
for any v ∈ Rd and this is where |ξ| ≥ 1 will help. Let us observe that

〈v〉−d ‖m‖L1(B0(〈v〉)) ≤


〈v〉−d |ξ|−1 if − β + 2 |1 + β| − 1 > d ,

〈v〉−d 〈v〉d+1+β−2 |1+β| |ξ|−1 if − β + 2 |1 + β| − 1 < d ,

2 |ξ| 〈v〉ϕ(v) if − β + 2 |1 + β| − 1 < d .

For any v′ ∈ Bc0(〈v〉), we have

|(v′ · ξ)ϕ(v′)| ≤ 〈v′〉 |ξ| 〈v′〉β

1 + 〈v′〉2 |1+β| |ξ|2
≤ 〈v′〉1+β |ξ|

1 + 〈v′〉2 |1+β| |ξ|2

≤ 〈v〉1+β |ξ|
1 + 〈v〉2 |1+β| |ξ|2

= 〈v〉 |ξ|ϕ(v) ,

where we have used that 〈v′〉 7→ 〈v′〉1+β |ξ|
1+〈v′〉2 |1+β||ξ|2 is decreasing for 〈v′〉 ≥ 〈v〉.

Indeed, when 1 + β ≤ 0 this is straightforward and when 1 + β ≥ 0 it results
from the fact that 〈v′〉|1+β| |ξ| ≥ 1 because |ξ| ≥ 1. Hence

|I2| .

{
〈v〉−σ

(
〈v〉−d |ξ|−1 + 〈v〉 |ξ|ϕ(v)

)
if − β + 2 |1 + β| − 1 > d ,

〈v〉−σ 〈v〉 |ξ|ϕ(v) if − β + 2 |1 + β| − 1 < d .

• Assume now that |ξ| < 1. Let us write

|I2| ≤
∫
|z|≥〈v〉/2

sup
|v−v′|>〈v〉/2

(
|m(v)−m(v′)|
|v − v′|`

)
dz

|z|d+σ−`

≤ 2σ−` ωd

(σ − `) 〈v〉σ−`
sup

|v−v′|>〈v〉/2

(
|m(v)−m(v′)|
|v − v′|`

)
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where ` will be chosen later. The next step is to estimate the `−Hölder semi-norm
of m. For 1 + β > 0 and any w ∈ Rd, we may write

|m(w)| ≤ |ξ| 〈w〉ϕ =
〈w〉1+β |ξ|

1 + 〈w〉2 |1+β| |ξ|2

≤ |ξ|α2 〈w〉
α(1+β)

2
〈w〉

(1+β)(2−α)
2 |ξ| 2−α2

1 + 〈w〉2 |1+β| |ξ|2
. |ξ|α2 〈w〉` ,

with ` = α(1+β)/2 ∈ (0, 1). For any (v, v′) such that |v−v′| > 〈v〉 /2, we deduce
that

|m(v)−m(v′)| . |ξ|α2
(

2 〈v〉` + |v′ − v|`
)
. |ξ|α2 |v − v′|` ,

and finally obtain

|I2| ≤ |ξ|
α
2

2σ−`ωd

(σ − `) 〈v〉σ−`
.

In the case 1 + β ≤ 0, the estimate can be performed exactly as for |ξ| ≥ 1 and
we do not repeat the argument. ut

Proposition 5. Let γ > |β|. With L = L3, we have

µL . |ξ|α 1|ξ|≤1 + 1|ξ|≥1 .

Proof. We recall that F−1 L∗(F ·) = ∆
σ/2
v − E · ∇v and compute

µ2
L =

∫
Rd

∣∣∣∆σ/2
v

(
(v · ξ)ϕ

)
− E · ∇v

(
(v · ξ)ϕ

)∣∣∣2 dv

〈v〉d+γ+η

≤ 2

∫
Rd

∣∣∣∆σ/2
v

(
(v · ξ)ϕ

)∣∣∣2 dv

〈v〉d+γ+η

+ 2

∫
Rd

∣∣E · ∇v((v · ξ)ϕ)∣∣2 dv

〈v〉d+γ+η
.

We have to estimate the two integrals of the latter right-hand side. The first one
follows from Lemma 10. As for the second one, using Proposition 7, we obtain∣∣E · ∇v((v · ξ)ϕ)∣∣ . |E · ξ ϕ|+ |(v · ξ)E · ∇vϕ|

. |v · ξ| 〈v〉−β ϕ+ |v · ξ|ϕ 〈v〉−2 〈v〉−β |v|2

. |v · ξ| 〈v〉−β ϕ ,

so that

‖E · ∇v
(
(v · ξ)ϕ

)
‖2
L2(〈v〉−ηF dv)

.
∫
Rd

|v · ξ|2

(1 + 〈v〉2 |1+β| |ξ|2)2

dv

〈v〉d+γ+η

. |ξ|α+
β+η
1+β 1|ξ|≤1 + 1|ξ|≥1 .

ut
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Proposition 6. Let γ ≥ (−β)+ and consider L = L3. There exists a constant
C > 0, independent of ξ, such that

λL ≤ C .

Proof. We follow the same steps as in the proof of Proposition 5. We have

λ2L =

∫
Rd

(
∆σ/2
v ψ − E · ∇vψ

)2 dv

〈v〉d+γ+η

≤ 2

∫
Rd

∣∣∆σ/2
v ψ

∣∣2 dv

〈v〉d+γ+η
+ 2

∫
Rd
|E · ∇vψ|2

dv

〈v〉d+γ+η
.

Since ∆σ/2
v ψ is a bounded function, the first integral of the right-hand side is

bounded because γ + η > 0. For the second integral, we simply observe that∫
Rd
|E · ∇vψ|2

dv

〈v〉d+γ+η
≤
∫
Rd

|v|2 dv

〈v〉d+γ+η+2 β+8

is bounded because γ + η + 2β + 6 = (γ + β) + (η + β) + 6 > 0. ut

5.2. Quantitative estimates of µ2 and µ̃k. We recall that the coefficient µ2 and
µ̃k have been defined in (23). The coefficients µ̃1 and µ̃2 are well defined when
−β ≤ η < γ since −(β + 1) + |β + 1| = 2 (−β − 1)+ so that, for any k ≤ 2,

η + γ − 2β + 4 |1 + β| = (η + β) + (γ + β) + 8 (−β − 1)+ + 4 > 2 k .

The notation a ' b means that there exists a constant C > 0 such that a/C ≤
b ≤ C a. Our first result investigates the dependence of µ2 and µ̃k in ξ ∈ Rd.

Lemma 11. For −β ≤ η < γ with γ > 0, the coefficient µ2 is bounded from
above and below for large values of |ξ| and satisfies

µ2(ξ) '
ξ→0
|ξ|min{2,2+ γ−β−2

|1+β| } if γ 6= 2 + β ,

µ2(ξ) ∼
ξ→0
− 1

d |1 + β|
|ξ|2 log |ξ| if γ = 2 + β .

If η + γ − 2β + 4 |1 + β| > 2 k, then µ̃k(ξ) '
|ξ|→+∞

|ξ|k−2 and

µ̃k(ξ) '
ξ→0
|ξ|min{k,k+ γ+η−2 β−2k

2 |1+β| } if γ − 2β + η 6= 2 k ,

µ̃k(ξ) '
ξ→0
− |ξ|k log |ξ| if γ − 2β + η = 2 k .

Proof. We start by considering ξ → 0. Let c := |1 + β| ≥ 0. If γ > 2 + β, then

µ2(ξ) ∼
ξ→0
|ξ|2

∫
Rd

cγ |v1|2

〈v〉d+γ−β
dv .
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• If γ < 2 + β, then 1 + β > 0 and c > 0. With the change of variables
v = u |ξ|−1/c, we observe that

µ2(ξ) ∼
ξ→0
|ξ|2+

γ−β−2
c

∫
Rd

|u1|2

1 + |u|2 c
cγ du

|u|d+γ−β

using
〈
u |ξ|−1/c

〉
∼
ξ→0
|u| |ξ|−1/c for any u ∈ Rd\{0}.

• If γ = 2 + β and γ + β > 0, then 1 + β > 0, c = 1 + β is positive and

µ2 = |ξ|2
∫
Rd

cγ |v1|2

1 + 〈v〉2 c |ξ|2
dv

〈v〉d+2
.

With the change of variables v = u |ξ|−1/c, we have that

I0 :=

∫
|v|≥|ξ|−

1
c

|v1|2

1 + 〈v〉2 c |ξ|2
dv

〈v〉d+2
∼
ξ→0

∫
|u|≥1

|u1|2

1 + |u|2 c
du

|u|d+2

is finite. Using the invariance under rotation with respect to ξ ∈ Rd,

d

∫
|v|<|ξ|−

1
c

|v1|2

1 + 〈v〉2 c |ξ|2
dv

〈v〉d+2
=

∫
|v|<|ξ|−

1
c

|v|2

1 + 〈v〉2 c |ξ|2
dv

〈v〉d+2

can be splitted, using |v|2 = 〈v〉2 − 1, into

−
∫
|v|<|ξ|−

1
c

1

1 + 〈v〉2 c |ξ|2
dv

〈v〉d+2
∼
ξ→0
−
∫
Rd

dv

〈v〉d+2

and∫
|v|<|ξ|−

1
c

1

1 + 〈v〉2 c |ξ|2
dv

〈v〉d
=

∫
|v|<|ξ|−

1
c

dv

〈v〉d
−
∫
|v|<|ξ|−

1
c

1

1 + 〈v〉−2 c |ξ|−2
dv

〈v〉d

using 1
1+X = 1− 1

1+1/X with X = 〈v〉2 c |ξ|2.∫
|v|<|ξ|−

1
c

dv

〈v〉d
∼
ξ→0
− ωd

c
log |ξ|

and ∫
|v|<|ξ|−

1
c

1

1 + 〈v〉−2 c |ξ|−2
dv

〈v〉d
∼
ξ→0

∫
|u|<1

|u|2c

1 + |u|2c
du

|u|d

by the change of variables v = |ξ|−1/c u. After collecting terms, this yields

µ2 ∼
ξ→0
− ωd
c d
|ξ|2 log |ξ| .

On the other hand, when |ξ| → +∞, we have

µ2(ξ) =

∫
Rd

|v · ξ|2 〈v〉−β

〈v〉−2 β + 〈v〉2 |ξ|2
cγ dv

〈v〉d+γ
∼

|ξ|→+∞

∫
Rd

cγ |v1|2

〈v〉d+γ+2+β
dv .

The claim on µ2 is now completed. All other estimates follow from similar com-
putations and we shall omit further details. ut
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The coefficients λ0, λ1, λ̃0 and λ̃1 have also been defined in (23). Our second
technical estimate goes as follows.

Lemma 12. The coefficients λ0 and λ1 are well defined for any γ > 0. The
coefficients λ̃0 and λ̃1 are also well defined if γ > 0 and η > − γ.

The proof is straightforward and left to the reader.

5.3. A macroscopic coercivity estimate. We recall that Rξ[f̂ ] = − d
dt Re 〈Aξ f̂ , f̂〉

if f solves (1) where

Aξ =
1

〈v〉2
Π

(− i v · ξ) 〈v〉β

1 + 〈v〉2 |1+β| |ξ|2
= ψΠT∗ ϕ f̂

with ϕ(ξ, v) = 〈v〉β

1+〈v〉2 |1+β| |ξ|2 and ψ(v) := 〈v〉−2. In this section, our goal is to

establish an estimate of Rξ[f̂ ]. In this section, we use the notation (23) and prove
Proposition 3.

Proof (Proof of Proposition 3). Since ϕ and ψ commute with T and ΠTΠ = 0,
we get

Aξ Π = −ψΠTΠϕ = 0, A∗ξTΠ = ϕTΠTΠψ = 0 .

Moreover, LΠ = 0. With these identities, using the micro-macro decomposition
f̂ = Πf̂ + (1− Π)f̂ , we find that

Rξ[f̂ ] := I1 + I2 + I3 + I4 + I5 + I6 + I7

where

I1 :=
〈

Aξ TΠf̂ ,Πf̂
〉
, I2 :=

〈
Aξ TΠf̂ , (1− Π)f̂

〉
, I3 :=

〈
Aξ T(1− Π)f̂ ,Πf̂

〉
,

I4 :=
〈

Aξ T(1− Π)f̂ , (1− Π)f̂
〉
, I5 :=

〈
Aξ(1− Π)f̂ ,T(1− Π)f̂

〉
,

I6 := −
〈

Aξ L(1− Π)f̂ , f̂
〉
, I7 := −

〈
Aξ(1− Π)f̂ , L(1− Π)f̂

〉
.

• Step 1: macroscopic coercivity.

Since
∫
Rd F dv = 1 and Πf̂(ξ, v) = ρf̂ (ξ)F (v), we first notice that

|ρf̂ (ξ)|2 =

∫
Rd
|ρf̂ (ξ)F |2 dµ = ‖Πf̂‖2 .

and
I1 = 〈Aξ TF, F 〉 |ρf̂ |

2 =
〈
ψΠ |T|2 ϕF, F

〉
‖Πf̂‖2 = λ0 µ2 ‖Πf̂‖2

by definition of Aξ.

• Step 2: micro-macro terms.
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By definition of Aξ,

I2 =
〈
ψΠT∗ ϕTΠf̂ , (1− Π)f̂

〉
=
〈
F, |T|2 ϕF

〉
ρf̂
〈
ψ F, (1− Π)f̂

〉
can be estimated using |ρf̂ | = ‖Πf̂‖ and the Cauchy-Schwarz inequality〈

ψ F, (1− Π)f̂
〉
≤ ‖ψ F‖−η ‖(1− Π)f̂‖η

by
|I2| ≤ λ̃0 µ2 ‖Πf̂‖ ‖(1− Π)f̂‖η .

By similar estimates, we obtain

|I3| ≤ λ0 µ̃2 ‖Πf̂‖ ‖(1− Π)f̂‖η ,

|I4| ≤ λ̃0 µ̃2 ‖(1− Π)f̂‖2η ,

|I5| ≤ λ̃1 µ̃1 ‖(1− Π)f̂‖2η .

To get a bound on I6, we use the fact that T∗ = −T to obtain

I6 =
〈
ψΠTϕ L(1− Π)f̂ , f̂

〉
=
〈
F,Tϕ L(1− Π)f̂

〉〈
F ψ, f̂

〉
= −

〈
L∗TϕF, (1− Π)f̂

〉〈
F ψ, f̂

〉
.

By the micro-macro decomposition f̂ = Πf̂ + (1− Π)f̂ , we have〈
F ψ, f̂

〉
= λ0 ρf̂ +

〈
F ψ, (1− Π)f̂

〉
and the Cauchy-Schwarz inequality gives〈

L∗TϕF, (1− Π)f̂
〉
≤ µL ‖(1− Π)f̂‖η .

This yields

|I6| ≤ λ0 µL ‖Πf̂‖ ‖(1− Π)f̂‖η + λ̃0 µL ‖(1− Π)f̂‖2η .

In the same way, we get

|I7| ≤ λL µ̃1 ‖(1− Π)f̂‖2η .

• Step 3: cross terms.

With X := ‖Πf̂‖ and Y := ‖(1− Π)f̂‖η, we collect all above estimates into

Rξ[f̂ ] ≤ −λ0 µ2X
2 +

(
λ̃0 µ2 + λ0 µ̃2 + λ0 µL

)
XY

+
(
λ̃0 µ̃2 + λ̃1 µ̃1 + λ̃0 µL + λL µ̃1

)
Y 2 ,
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which by Young’s inequality leads to

Rξ[f̂ ] ≤
(a

2

(
λ̃0 µ2 + λ0 µ̃2 + λ0 µL

)
− λ0 µ2

)
X2

+

(
λ̃0 µ̃2 + λ̃1 µ̃1 + λ̃0 µL + λL µ̃1 +

λ̃0 µ2 + λ0 µ̃2 + λ0 µL

2 a

)
Y 2 .

With the choice
a =

λ0 µ2

λ̃0 µ2 + λ0 µ̃2 + λ0 µL

,

we get

Rξ[f̂ ] ≤ − 1

2
λ0 µ2 ‖Πf̂‖2 +K(ξ) ‖(1− Π)f̂‖2η ,

with

K(ξ) = λ̃0 µ̃2 + λ̃1 µ̃1 + λ̃0 µL + λL µ̃1 +

(
λ̃0 µ2 + λ0 µ̃2 + λ0 µL

)2
2λ0 µ2

.

• Step 4: A uniform bound on K(ξ).

According to Lemma 12, λ0 and λ̃0 are independent of ξ and take finite
positive values, so that

K(ξ) . µ̃2 + λ̃1 µ̃1 + µL + λL µ̃1 + µ2 +
µ̃2
2

µ2
+
µ2
L

µ2
.

We also deduce from their definitions in (23) that µ2, µ̃2, |ξ| µ̃1 and λ̃1/|ξ| have
finite, positive limits as |ξ| → +∞. By Proposition 4, µL and λL are bounded
from above, so that

∀ ξ ∈ Rd such that |ξ| ≥ 1 , K(ξ) . 1 + µL +
λL
|ξ|

+ µ2
L . 1 .

It remains to investigate the behaviour of K(ξ) as ξ → 0 and we shall distinguish
two main cases:
• if 1 + β > 0, under the assumption that γ 6= 2 + β, γ + η − 2β 6= 4 and
γ + η − 2β 6= 2, for some positive constants C1, C2, C̃1, C̃2, we have

µ2 ∼
ξ→0

C2 |ξ|α , µ̃2 ∼
ξ→0

C̃2 |ξ|min{2, γ+2β+η
2 (1+β) } ,

µ̃1 ∼
ξ→0

C1 |ξ|min{1, γ+η
2 (1+β)} , λ̃1 ∼

ξ→0
C̃1 |ξ| ,

where α = min
{

2, γ+β1+β

}
as in (10). Since η ≥ −β ≥ −2β − γ and η + γ ≥ 0,

this implies by Proposition 4 that

∀ ξ ∈ Rd such that |ξ| ≤ 1 , K(ξ) . 1 + µL + λL +
µ̃2
2

µ2
+
µ2
L

µ2
. 1 +

µ̃2
2

µ2
.
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Then µ̃2
2

µ2
= O (|ξ|ε) is bounded as ξ → 0 either if γ < 2 + β because

ε = min
{
η+β
1+β ,

4+3β−γ
1+β

}
, η ≥ −β , 4 + 3β− γ = 2 (1 + β) + 2 + (β− γ) ≥ 0 ,

or if γ > 2 + β because

ε = min
{

2, γ+η−21+β

}
and η ≥ −β > 2− γ .

• if 1+β < 0, under the assumption that γ−2β+η−4 6= 0 and γ−2β+η−2 6= 0,
for some positive constants C1, C2, C̃1, C̃2, we have

µ2 ∼
ξ→0

C2 |ξ|2 , µ̃2 ∼
ξ→0

C̃2 |ξ|min{2, γ+η−6 β−8
2 |1+β| } ,

µ̃1 ∼
ξ→0

C1 |ξ|min{1, γ+η−4 β−4
2 |β+1| } , λ̃1 ∼

ξ→0
C̃1 |ξ| .

Since η ≥ −β > 1, we get γ + η − 6β − 8 > 0 and γ + η − 4β − 4 > 0, so that

K(ξ) . 1 +
µ̃2
2

µ2
.

where µ̃2
2

µ2
= O (|ξ|ε) is bounded as ξ → 0 because

ε = min
{

2, γ+η−4 β−6|β+1|

}
and γ + η − 4β − 6 > 0 .

In the critical cases when a log |ξ| appears in the expression of µ2, µ̃1 or µ̃2,
we obtain expressions of the form |ξ|ε

∣∣ log |ξ|
∣∣ for some ε > 0, so that all terms

also remain bounded. We conclude that in all cases, K(ξ) is bounded from above
uniformly with respect to ξ. This ends the proof of Proposition 3. ut

5.4. A fractional Nash inequality and consequences. For any a > 0, let us define
the function La by

∀ s ≥ 0 , La(s) :=
sa

(1 + s2)a/2

and the quadratic form

Qa[u] :=

∫
Rd
La
(
|ξ|
)
|û(ξ)|2 dξ

where û denotes the Fourier transform of a function u ∈ L2(dx) given by

û(ξ) = (2π)−d/2
∫
Rd
e− i x·ξ u(x) dx .

We recall that by Plancherel’s formula, ‖u‖2L2(dx) = ‖û‖2L2(dξ).
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Lemma 13. Let d ≥ 1 and a ∈ (0, 2]. There is a monotone increasing function
Φa : R+ → R+ with Φa(s) ∼ sd/(d+a) as s→ 0+ such that

∀u ∈ D(Rd) , ‖u‖2L2(dx) ≤ ‖u‖
2
L1(dx) Φa

(
Qa[u]

‖u‖2L1(dx)

)
.

Proof. We rely on a simple argument based on Fourier analysis inspired by
the proof of Nash’s inequality in [35, page 935], which goes as follows. Since
‖û‖L∞(dξ) ≤ ‖u‖L1(dx), we obtain

‖u‖2L2(dx) = ‖û‖2L2(dξ) ≤
∫
|ξ|≤R

|û(ξ)|2 dξ +

∫
|ξ|>R

|û(ξ)|2 dξ

≤ 1

d
ωd ‖u‖2L1(dx)R

d +
1

La(R)
Qa[u]

for any R > 0, using the monotonicity of s 7→ La(s).
Let us consider the function

f(x,R) :=
1

d
Rd +

x

a
(1 +R−2)a/2

and notice that, as a function of R, f has a unique minimum R = R(x) such
that

Rd+a (1 +R2)1−
a
2 = x

for any x > 0. With a ∈ (0, 2], it is clear that x 7→ R(x) is monotone increasing
and such that R(x) ≤ x1/(d+2)

(
1 + o(1)

)
as x→ +∞ and R(x) = x1/(d+a)

(
1 +

o(1)
)
as x → 0+. Altogether, for the optimal value R = R(x), we obtain that

φ(x) = f
(
x,R(x)

)
is such that

φ(x) =
(
1
d + 1

a

)
x

d
d+a

(
1 + o(1)

)
as s→ 0+ ,

φ(x) =
x

a

(
1 + o(1)

)
as s→ +∞ .

The proof is concluded with Φa(s) = ωd φ
(
a s
ωd

)
. ut

Let us consider the Fourier transform with respect to x of a distribution
function f depending on x and v and define

Qa[f ] :=

∫
Rd
Qa[f ] dµ .

Lemma 14. Let d ≥ 1 and a ∈ (0, 2]. With the above notation, we have

∀ f ∈ L1 ∩ L2(dxdµ) , ‖Πf‖2L2(dx dµ) ≤ ‖f‖
2
L1(dx dv) Φa

(
Qa[Πf ]

‖f‖2L1(dx dv)

)
,

where the function Φa is defined in Lemma 13.
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Proof. We apply the strategy of Lemma 13 to Πf = ρf F and bound

‖ρf‖L2(dx) = ‖Πf‖2L2(dx dµ) = ‖Π̂f‖2L2(dξ dµ)

by∫∫
|ξ|≤R

|Π̂f(ξ, v)|2 dξ dµ =
ωd
d
Rd ‖ρf‖2L1(dx)

∫
Rd
F 2 dµ =

ωd
d
Rd ‖f‖L1(dx dv)

and ∫∫
|ξ|>R

|Π̂f(ξ, v)|2 dξ dµ ≤ Qa[ρf ]

La(R)

∫
Rd
F 2 dµ =

Qa[Πf ]

La(R)
.

From this point, the computations are exactly the same as in the proof of Lem-
ma 13. ut

5.5. A limit case of the fractional Nash inequality. In the case when γ = 2 + β,
we recall that

Rξ[f̂ ] & Λ(ξ) ‖Πf̂‖2 − C ‖(1− Π)f̂‖2−β
by Proposition 3, where Λ(ξ) = h(|ξ|) and h(r) = r2 | log r|/(1 + r2 log r). The
function h : [0, 1/

√
e)→ R is monotone increasing. Define

Φ(x) :=
1

d
x1+

2
d |log x| .

The proof of Corollary 1 relies on the following result.

Lemma 15. Let d ≥ 1 and assume that γ = 2 + β. With the above notation,
there exists a positive constant A such that, if

‖Πf‖2L2(dx dµ)

‖f‖2L1(dx dv)

≤ A ,

then

‖Λ 1
2 Πf̂‖2L2(dx dµ) ≥

ωd
2 d ‖f‖

2
L1(dx dµ) Φ

(
‖Πf‖2L2(dx dµ)

‖f‖2L1(dx dv)

)
.

Proof. As in the case γ 6= 2 + β, we use

‖Πf‖2L2(dξ dµ) = ‖ρf‖2L2(dx) =

∫
|ξ|<R

|ρ̂f |2 dξ +

∫
|ξ|≥R

|ρ̂f |2 dξ

≤ ωd
d Rd ‖ρ̂f‖2L∞(dξ) +

1

h (R)

∫
|ξ|≥R

Λ |ρ̂f |2 dξ

≤ ωd
d Rd ‖f‖2L1(dx dµ) +

1

h (R)
‖Λ 1

2 Πf̂‖2L2(dx dµ)

for some R > 0, small enough. The last inequality can be written as

X ≤ Rd a+
b

h(R)
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with a = ωd
d ‖f‖

2
L1(dx dµ), b = ‖Λ 1

2 Πf̂‖2L2(dx dµ) and X = ‖Πf‖2L2(dξ dµ). There is
a unique R > 0, small, such that Rd+2 | logR| ∼ Rd h(R) = b/a if b/a is small
enough, from which we deduce that X ≤ 2 aRd, i.e,

b

a
& Φ

(
X

2 a

)
where Φ(x) :=

1

d
x1+

2
d |log x| .

The conclusion holds for some A < Rd h(R) with R = 1/
√
e, whose detailed

expression is inessential. ut

5.6. An extension of Corollary 1 when γ ≤ β. We do not have a good control
of |||(1− Π)f |||2−β when β ≥ γ, but we claim that the issue can be solved if we
consider ‖(1− Π)f‖2L2(dx 〈v〉ηdµ).

Corollary 7. Let γ ≤ β and η ∈ (− γ, 0). Under Assumption (H), if f is a
solution of (1), then for any t ≥ 0,∫

Rd
Rξ[f̂ ] dξ & ‖Πf‖2 (1+α

d )

L2(dx dµ) − ‖(1− Π)f‖2L2(dx 〈v〉ηdµ) .

6. Completion of the proofs and extension

6.1. The case γ ≤ β. Let us define

Xζ :=

∫∫
Rd×Rd

|(1− Π)f |2 〈v〉ζ dxdµ and Y :=

∫∫
Rd×Rd

|Πf |2 dxdµ .

With this notation, Inequality (22) in Corollary 6 can be written as

∀ r > 0 , −
∫
Rd
〈f, Lf〉dx ≥ r Xη − (1− θ) θ

θ
1−θ r

1
1−θ Xk (24)

with θ = k−η
k+β , −β ≤ − γ < η < 0 < k < γ, while Corollary 7 simply means∫

Rd
Rξ[f̂ ] dξ & Y 1+α

d −Xη . (25)

Let us consider

H := X0 + Y + δ(t) Re

(∫
Rd
〈Af, f〉dx

)
with δ(t) = δ0 (1 + ε t)−a ,

for some constant numbers a ∈ (0, 1), δ0 > 0 and ε > 0, to be chosen. The
major difference with the case γ > β considered in Section 2.4 is that we allow
δ to depend on t and that we shall actually make an explicit choice of this
dependence.

We know that (
1− δ

2

)
(X0 + Y ) ≤ H ≤

(
1 + δ

2

)
(X0 + Y )
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and compute

−dH
dt

= − 2

∫∫
Rd×Rd

f Lf dxdµ+ δ(t)

∫
Rd

Rξ[f̂ ] dξ+ δ′(t) Re

(∫
Rd
〈Af, f〉dx

)
.

Using (24) and (25), we get the estimate

−dH
dt
& δ Y 1+α

d − δ Xη + r Xη − r
k+β
η+β − δ ε

1+ε t H .

We recall that &means that the inequality holds up to a positive, finite constant,
which changes from line to line. Next we choose r = 2 δ, δ0 > 0 and ε > 0 small
enough so that the above right-hand side of the inequality is positive. However,
we shall still do some further reductions before fixing the values of δ0 and ε. The
decay rate of H is governed by

−dH
dt
& δ Y 1+α

d + δ Xη − δ
k+β
η+β − δ ε

1+ε t H ,

with a positive right-hand side at t = 0. Using Hölder’s inequality

X0 ≤ X
k

k−η
η X

η
η−k
k

and the fact that Xk is uniformly bounded in t by a positive constant depending
only on the initial datum, we obtain

−dH
dt
& δ Y 1+α

d + δ X
1− ηk
0 − δ

k+β
η+β − δ ε

1+ε t H ,

and we can still assume that the inequality has a positive right-hand side at
t = 0 without loss of generality. It is now clear that

−dH
dt
& δ

(
H1+κ − δ

k−η
η+β − ε

1+ε t H
)

with κ = max
{α
d
,−η

k

}
.

Up to a multiplication by a constant, we can actually fix the mutiplicative con-
stant to a given value τ > 0 that will be chosen below (with the corresponding
redefinition of ε and δ0) so that the differential inequality is

−dH
dt
≥ τ δ

(
3H1+κ − δ

k−η
η+β − ε

1+ε t H
)
.

Now, let us fix δ0 > 0 and ε > 0 small enough so that

δ
k−η
η+β

0 + εH0 ≤ H1+κ
0

with H0 = H(t = 0). We have to check that this condition is stable under the
evolution, that is,

∀ t ≥ 0 , δ(t)
k−η
η+β ≤ H(t)1+κ and εH(t) ≤ H(t)1+κ . (26)

Keeping track of the coefficients is paid by unnecessary complications, so that
we are going to make some simplifying assumptions, in order to emphasize the
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key idea of the estimate. Up to a change of variable t 7→ ε t, we can choose ε = 1
and also take δ0 = 1 and H0 = 1 without loss of generality, so that, in particular,

∀ t ≥ 0 , δ(t) = (1 + t)−a .

As a result, let us consider the differential inequality

−dH
dt
≥ τ δ

(
3H1+κ − δ

k−η
η+β − H

1+t

)
.

We aim at showing that

H(t) ≤ H(t) := (1 + t)− τ (27)

where H solves
dH′

dt
= − τ δH1+κ

with τ =
1− a

κ
.

As a consequence of

δ
k−η
η+β = (1 + t)−a

k−η
η+β and H

1+t = (1 + t)−
1−a
κ −1 ,

we learn that

∀ t ≥ 0 , δ(t)
k−η
η+β ≤ H(t)1+κ and H

1+t ≤ H(t)1+κ

under the condition that

− a
k − η
η + β

≤ − (1− a)
1 + κ

κ
and a ≥ 0 . (28)

Since − dH′
dt ≤ −

dH′
dt if H(t) = H(t), it is then clear that (26) holds and H(t) ≤

H(t) for any t ≥ 0. In other words, H is a barrier function and (27) holds for
any t ≥ 0. The result is also true for the generic case.

With the choice a = (β + η)/β, Condition (28) is satisfied if −β ≤ η ≤ 0 ≤ k
and κ = |η|/k, with τ = k/|β| if d ≥ 2 because

α =
γ + β

1 + β
≤ max

{
1,

2 γ

1 + γ

}
and because κ = |η|/k > α/d for an appropriate choice of η ∈ (− γ, 0) and
k ∈ (0, |η| d/α). The same argument applies if d = 1 and γ ≤ 1.

If d = 1, in the range 1 ≤ γ ≤ |β|, we have α > 1 and distinguish two cases.
• Either κ = α > |η|/k: with |η|/α < k < γ and η > − γ, we find that
τ = τ?(η, k) and a = a?(η, k) where

τ?(η, k) :=
k − η

α (k + β) + η + β
and a?(η, k) :=

(1 + α) (η + β)

α (k + β) + η + β
.

Using ∂τ?
∂k > 0 and ∂τ?

∂η < 0, the largest admissible value of τ? is achieved by

lim
(η,k)→(− γ,γ)

τ?(η, k) =
2 γ

α (γ + β) + |γ − β|
.
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• Or α ≤ |η|/k = κ: in that case, we can take a = (β + η)/β, Condition (28) is
satisfied if − γ ≤ η ≤ 0 ≤ k ≤ |η|/α < γ/α, τ = k/|β| and κ = |η|/k. This is
possible as soon as k < γ/α since this condition is then verified if we take any
η ∈ (− γ,− k α).

This completes the proof of Theorems 1 and 2 with τ = k/|β|, except if d = 1,
1 ≤ γ ≤ |β| and k ∈ [γ/α, γ), where the rate can be chosen arbitrarily close to
τ?(− γ, k).

6.2. The case of a flat torus. As in [10], the case of the flat d-dimensional
torus Td (with position x ∈ Td and velocity v ∈ Rd) follows from our method
without additional efforts. In that case, Equation (1) admits a global equilib-
rium given by f∞ = ρ∞ F with ρ∞ = 1

|Td|
∫∫

Td×Rd f
in dxdv, and the rate of

convergence to the equilibrium is just given by the microscopic dynamics

‖f − f∞‖L2(dx dµ) . e
−λ t ‖f in − f∞‖L2(dx dµ) if β ∈ (−γ, 0] ,

‖f − f∞‖L2(dx dµ) . (1 + t)−k/β ‖f in − f∞‖L2(〈v〉kdx dµ) if β > 0 ,

with k ∈ (0, γ). In particular, if f = f(t, v) does not depend on x, then (1)
is reduced to the homogeneous equation ∂tf = Lf and we recover the rate of
convergence of f to F in the norm L2(dµ), as in Section 1. This is coherent
with the results in [3,41,40,17,28,2]. Moreover, we point out that our result
is a little bit stronger than some of those results, because it relies on a finite
‖f in‖L2(〈v〉kdx dµ) norm for the initial condition, which is a weaker condition than
the usual boundedness condition on ‖f in F−1‖L∞(dx dv), or H1-type estimates as
in [2, Section 6], where β = 0 in Case L = L2. Remark however that weighted L2

norms already appear in the homogeneous case in [27,28].

6.3. About rates in the diffusion limits. We shall end this paper with a comment
about the stability of the rates in the diffusive scaling. In the range of parameters
for which we prove decay at rate t−

d
α , our previous computations give that the

rate is uniform in the rescaling t → t
εα and x → x

ε . When the rate is given by
t−

k
β , the way that the rate degenerates into t−

d
α (the rate of the macroscopic

limit, see e.g. [12]) is a bit more intricate, and we leave this issue for future work.
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A. Steady states and force field for the fractional Laplacian with drift

This appendix is devoted to the Case L = L3 of the collision operator L, that
is, to L3f = ∆

σ/2
v f + ∇v · (E f). Our goal here is to prove that the collision

frequency ν(v) behaves like |v|−β with β = σ − γ as |v| → +∞, as claimed in
Section 1. By Definition (9) of the force field E, we know that

∇v · (E F ) = −∆σ/2
v F = −∇v ·

(
∇v(−∆v)

σ−2
2 F

)
,

and this implies that, up to an additive constant,

E F = −∇v(−∆v)
σ−2
2 F = −∇v

(
Cd,σ
|v|d+σ−2

∗ cγ

〈v〉d+γ

)

where cγ and Cd,σ are given respectively by (2) and (20).

Proposition 7. Assume that γ > 0, σ ∈ (0, 2) and let β = σ − γ. There is a
positive function G ∈ L∞(Rd) with 1/G ∈ L∞(Bc0(1)) such that E is given by

∀ v ∈ Rd , E(v) = G(v) 〈v〉−β v .

Proof. Let u(v) = −∇v
(

1
|v|d+σ−2 ∗ 1

〈v〉d+γ
)
(v) so that E(v) = Cd,σ 〈v〉d+γ u(v).

Since

u(v) = (d+ γ)

(
1

|v|d+σ−2
∗ v

〈v〉d+γ+2

)

where 〈v〉−(d+γ+2)
v ∈ C∞(Rd) ∩ L1(dv), and σ < 2, one has u ∈ C1

loc(Rd) and
u(0) = 0 which proves the result in B1(0). We look for an estimate of u(v) · v
from above and below on Bc0(1). Notice that u can also be written as

u(v) = (d+ σ − 2)

(
v

|v|d+σ
∗ 1

〈v〉d+γ

)
. (29)

Depending on the integrability at infinity of v/|v|d+σ, that is, whether σ ∈ (0, 1)
or not, we have to distinguish two cases.
• Case σ ∈ (0, 1). Using (29), we have the estimates∣∣∣∣∣

∫
|w|≥〈v〉/2

w

|w|d+σ
dw

〈w − v〉d+γ

∣∣∣∣∣ ≤ 2d+σ−1

〈v〉d+σ−1

∫
Rd

dw

〈w〉d+γ
,∣∣∣∣∣

∫
|w|<〈v〉/2

w

|w|d+σ
dw

〈w − v〉d+γ

∣∣∣∣∣ ≤
(∫
|w|<〈v〉/2

dw

|w|d+σ−1

)
2d+σ−1

|v|d+γ

≤ 2d+σ−1 ωd
(1− σ) |v|d+γ+σ−1

,

and obtain
∀ v ∈ Rd , |u(v) · v| ≤ |u(v)| |v| . |v|−(d+σ−2) .
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To get a bound from below on u(v) · v, we cut the integral in two pieces and
use the fact that |v| > 1 and |w − v| < 1/2 implies w · v > 0. First∫

|w−v|>1/2
|w+v|>1/2

w · v
|w|d+σ

dw

〈w − v〉d+γ
=

(∫
|w−v|>1/2
w·v>0

+

∫
|w+v|>1/2
w·v<0

)
w · v
|w|d+σ

dw

〈w − v〉d+γ

=

∫
|w−v|>1/2
w·v>0

(
1

〈w − v〉d+γ
− 1

〈w + v〉d+γ

)
w · v
|w|d+σ

dw ,

which is positive since 〈w + v〉2 − 〈w − v〉2 = 2w · v ≥ 0. The remaining terms
are dealt with as follows∫

|w−v|≤1/2
or

|w+v|≤1/2

w · v
|w|d+σ

dw

〈w − v〉d+γ

=

∫
|w−v|< 1

2

(
1

〈w − v〉d+γ
− 1

〈w + v〉d+γ

)
w · v
|w|d+σ

dw

≥
(
(4/5)d+γ − (2/5)d+γ

) ∫
|w−v|< 1

2

w · v
|w|d+σ

dw ,

since |w + v| ≥ 2 |v| − |w − v| ≥ 3
2 . Finally, if |v| > 1 and |w − v| < 1

2 , we get

2w · v = |v|2 + |w|2 − |w − v|2 ≥ |v|2 − 1

2
≥ |v|

2

2
,

|w| ≤ |v|+ |w − v| ≤ 2 |v| ,

so that ∫
|w−v|< 1

2

w · v
|w|d+σ

dw ≥ |B0(1/2)|
2d+σ+2

1

|v|d+σ−2
.

This implies u(v) ·v ≥ C |v|−(d+σ−2) for some C > 0. Since u is radial, we proved
that

u(v) = G(v)
v

|v|d+σ

where G ∈ L∞(Rd) and G−1 ∈ L∞(Bc0(1)) and the conclusion holds with β =
σ − γ.
• Case σ ∈ [1, 2). The gradient of v 7→ |v|2−d−σ is a distribution of order 1 that
can be defined as a principal value. Indeed, in the sense of distributions, for any
ϕ ∈ D(Rd), we have〈

∇v|v|2−d−σ, ϕ
〉
D′,D = −

∫
Rd

∇vϕ(v)

|v|d+σ−2
dv = −

∫
Rd

∇v(ϕ(v)− ϕ(0))

|v|d+σ−2
dv

= (d+ σ − 2)

∫
Rd

v

|v|d+σ
(ϕ(v)− ϕ(0)) dv

=: (d+ σ − 2)

〈
pv

(
v

|v|d+σ

)
, ϕ

〉
D′,D

.
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Identity (29) is replaced by

u(v)

d+ σ − 2
= pv

(
v

|v|d+σ

)
∗ 1

〈v〉d+γ
=

∫
Rd

w

|w|d+σ

(
1

〈v − w〉d+γ
− 1

〈v〉d+γ

)
dw ,

so that, after computations like the ones in the proof of Lemma 10,

|u(v)|
d+ σ − 2

≤
∫
Rd

1

|w − v|d+σ−1

∣∣∣∣∣ 1

〈w〉d+γ
− 1

〈v〉d+γ

∣∣∣∣∣ dw . 1

〈v〉d+σ−2
.

Now estimate u(v) · v by

∫
|w|≥ 1

2

w · v
|w|d+σ

(
1

〈v − w〉d+γ
− 1

〈v〉d+γ

)
dw

=

∫
|w|≥ 1

2

w · v
|w|d+σ

1

〈v − w〉d+γ
dw &

1

〈v〉d+σ−2
.

and∣∣∣∣∣
∫
|w|< 1

2

w · v
|w|d+σ

(
1

〈v − w〉d+γ
− 1

〈v〉d+γ

)
dw

∣∣∣∣∣
≤ sup
w∈Bv(1/2)

(d+ γ) |v|
〈w〉d+γ+1

∫
|w|< 1

2

dw

|w|d+σ−2
.

1

〈v〉d+γ
.

The result follows from the fact that d+ γ > d > d+ σ − 2. ut
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