Fractional hypocoercivity - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Fractional hypocoercivity

Résumé

This research report is devoted to kinetic equations without confinement. We investigate the large time behaviour induced by collision operators with fat tailed local equilibria. Such operators have an anomalous diffusion limit. In the appropriate scaling, the macroscopic equation involves a fractional diffusion operator so that the optimal decay rate is determined by a fractional Nash inequality. At kinetic level we develop an L 2 hypocoercivity approach and establish a rate of decay compatible with the anomalous diffusion limit.
Fichier principal
Vignette du fichier
BDLS-Fractional-7.pdf (429.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02377205 , version 1 (23-11-2019)
hal-02377205 , version 2 (01-12-2021)

Identifiants

Citer

Emeric Bouin, Jean Dolbeault, Laurent Lafleche, Christian Schmeiser. Fractional hypocoercivity. 2019. ⟨hal-02377205v1⟩
363 Consultations
218 Téléchargements

Altmetric

Partager

More