Linear Support Vector Regression with Linear Constraints - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Linear Support Vector Regression with Linear Constraints

Résumé

This paper studies the addition of linear constraints to the Support Vector Regression (SVR) when the kernel is linear. Adding those constraints into the problem allows to add prior knowledge on the estimator obtained, such as finding probability vector or monotone data. We propose a generalization of the Sequential Minimal Optimization (SMO) algorithm for solving the optimization problem with linear constraints and prove its convergence. Then, practical performances of this estimator are shown on simulated and real datasets with different settings: non negative regression, regression onto the simplex for biomedical data and isotonic regression for weather forecast.
Fichier principal
Vignette du fichier
article.pdf (2.31 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02349160 , version 1 (05-11-2019)

Identifiants

Citer

Quentin Klopfenstein, Samuel Vaiter. Linear Support Vector Regression with Linear Constraints. 2019. ⟨hal-02349160⟩
70 Consultations
193 Téléchargements

Altmetric

Partager

More