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LINEAR SUPPORT VECTOR REGRESSION WITH LINEAR
CONSTRAINTS∗

QUENTIN KLOPFENSTEIN† AND SAMUEL VAITER‡

Abstract. This paper studies the addition of linear constraints to the Support Vector Regression
(SVR) when the kernel is linear. Adding those constraints into the problem allows to add prior knowl-
edge on the estimator obtained, such as finding probability vector or monotone data. We propose
a generalization of the Sequential Minimal Optimization (SMO) algorithm for solving the optimiza-
tion problem with linear constraints and prove its convergence. Then, practical performances of this
estimator are shown on simulated and real datasets with different settings: non negative regression,
regression onto the simplex for biomedical data and isotonic regression for weather forecast.
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1. Introduction. The Support Vector Machine (SVM) [3] is a class of supervised
learning algorithms that have been widely used in the past 20 years for classification
tasks and regression. These algorithms rely on two main ideas: the first one is the
maximum margin hyperplane which consists in finding the hyperplane that maximises
the distance between the vectors that are to be classified and the hyperplane. The
second idea is the kernel method that allows the SVM to be used to solve non-linear
problems. The technic is to map the vectors in a higher dimensional space which
is done by using a positive definite kernel, then a maximum margin hyperplane is
computed in this space which gives a linear classifier in the high dimensional space.
In general, it leads to a non-linear classifier in the original input space.

From SVM to Support Vector Regression. Different implementations of the algo-
rithms haven been proposed such as C-SVM, ν-SVM [34], Least-Squares SVM [37],
Linear Programming SVM [12] among others. Each of these versions have their
strenghs and weaknesses depending on which application they are used. They dif-
fer in terms of constraints considered for the hyperplane (C-SVM and Least-Squares
SVM), in terms of norm considered on the parameters (C-SVM and Linear Program-
ming SVM) and in terms of optimization problem formulation (C-SVM and ν-SVM).
Overall, these algorithms are a great tool for classification tasks and they have been
used in many different applications like facial recognition [18], image classification
[7], cancer type classification [15], text categorization [19] to only cite a few examples.
Even though, SVM was first developped for classification, an adaptation for regression
estimation was proposed in [11] under the name Support Vector Regression (SVR).
In this case, the idea of maximum margin hyperplane is slightly changed into finding
a tube around the regressors. The size of the tube is controlled by a hyperparame-
ter chosen by the user: ε. This is equivalent to using an ε-insensitive loss function,
|y− f(x)|ε = max{0, |y− f(x)| − ε} which only penalizes the error above the chosen ε
level. As for the classification version of the algorithm, a ν-SVR method exists. In this
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2 Q. KLOPFENSTEIN AND S. VAITER

version, the hyperparameter ε is computed automatically but a new hyperparameter ν
has to be chosen by the user which controls asymptotically the proportions of support
vectors [34]. SVR has proven to be a great tool in the field of function estimation for
many different applications: predicting times series in stock trades [40], travel-time
prediction [8] and for estimating the amount of cells present inside a tumor [29].

Incorporating priors. In this last example of application, the authors used SVR to
estimate a vector of proportions, however the classical SVR estimator does not take
into account the information known about the space in which the estimator lives.
Adding this prior information on the estimator may lead to better estimation perfor-
mance. Incorporating information in the estimation process is a wide field of studies
in statistical learning (we refer to Figure 2 in [22] for a quick overview in the context
of SVM). A growing interest in prior knowledge incorporated as regularization terms
has emerged in the last decades. Lasso [38], Ridge [16], elastic-net [42] regression are
examples of regularized problem where a prior information is used to fix an ill-posed
problem or an overdetermined problem. The `1 regularization of the Lasso will force
the estimator to be sparse and bring statistical guarantees of the Lasso estimator
in high dimensional settings. Another commun way to add prior knowledge on the
estimator is to add constraints known a-priori on this estimator. The most commun
examples are the ones that constrain the estimator to live in a subspace such as Non
Negative Least Squares Regression (NNLS) [23], isotonic regression [2]. These exam-
ples belong to a more general type of constraints: linear constraints. Other types
of constraints exist like constraints on the derivative of the function that is to be
estimated, smoothness of the function for example. Adding those constraints on the
Least Squares estimator has been widely studied [2, 24, 4] and similar work has been
done for the Lasso estimator in [13]. Concerning the SVR, inequality and equality
constraints added as prior knowledge were studied in [22]. In this paper, the authors
described a method for adding linear constraints on the Linear Programming SVR
[12]. This implementation of the algorithm considers the `1 norm of the parameters
in the optimization problem instead of the classical `2 norm which leads to a lin-
ear programming optimization problem to solve instead of a quadratic programming
problem. They also described a method for using information about the derivative of
the function that is estimated.

Sequential Minimal Optimization. One of the main challenges of adding these
constraints is that it often increases the difficulty of solving the optimization problem
related to the estimator. For example, the Least Squares optimization problem has a
closed form solution whereas the NNLS uses sophisticated algorithms [4] to approach
the solution. SVM and SVR algorithms were extensively studied and used in practise
because very efficient algorithms were developped to solve the underlying optimization
problems. One of them is called Sequential Minimal Optimization (SMO) [32] and
is based on a well known optimization technic called coordinate descent. The idea
of the coordinate descent is to break the optimization problem into sub-problems
selecting one coordinate at each step and minimizing the function only via this chosen
coordinate. The developpement of parallel algorithms have increased the interest
in these coordinate descent methods which show to be very efficient for large scale
problems. One of the key settings for the coordinate descent is the choice of the
coordinate at each step, the choice’s strategy will affect the efficiency of the algorithm.
There exists three families of strategies for coordinate descent: cyclic [39], random [28]
and greedy. The SMO algorithm is a variant of a greedy coordinate descent [41] and
is the algorithm implemented in LibSVM [6]. It is very efficient to solve SVM/SVR
optimization problems. In the context of linear kernel, other algorithm are used such
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as dual coordinate descent [17] or trust region newton methods [25].
Priors and SMO. In one of the application of SVR cited above, information a-

priori about the estimator is not used in the estimation process and is only used in
a post-processing step. This application comes from the cancer research field, where
regression algorithms have been used to estimate the proportions of cell populations
that are present inside a tumor (see [27] for a survey). Several estimators have been
proposed in the biostatistics litterature, most of them based on constrained least
squares [1, 33, 14] but the gold standard is the estimator based on the Support Vector
Regression [29]. Our work is motivated by incorporating the fact that the estimator
for this application belongs to the simplex: S = {x ∈ Rn :

∑n
i=1 xi = 1, xi ≥ 0} in

the SVR problem. We believe that for this application, it will lead to better estimation
performance. From an optimization point of view, our motivation is to find an efficient
algorithm that is able to solve the SVR optimization problem where generic linear
constraints is added to the problem as prior knowledge, including simplex prior as
described. This work follows the one from [22] except that in our case, we keep the
`2 norm on the parameters in the optimization problem which is the most commun
version of the SVR optimization problem and we only focus on inequality and equality
constraints as prior knowledge.

Contributions. In this paper, we study a linear SVR with linear constraints opti-
mization problem. We show that the dual of this new problem shares similar proper-
ties with the classical ν-SVR optimization problem (Proposition 2.2). We also prove
that adding linear constraints to the SVR optimization problem does not change the
nature of its dual problem, in the fact that the problem stays a semi-definite positive
quadratic function subject to linear constraints. We propose a generalized SMO algo-
rithm that allows the resolution of the new optimization problem. We show that the
updates in the SMO algorithm keep a closed form (Definition 3.5) and prove the con-
vergence of the algorithm to a solution of the problem (Theorem 3.7). We illustrate
on synthetic and real datasets the usefulness of our new regression estimator under
different regression settings: non-negative regression, simplex regression and isotonic
regression.

Outline. The article proceeds as follows: we introduce the optimization problem
coming from the classical SVR and describe the modifications brought by adding linear
constraints in section 2. We then present the SMO algorithm, its generalization for
solving constrained SVR and present our result on the convergence of the algorithm
in section 3. In section 4, we use synthetic and real datasets on different regression
settings to illustrate the practical performance of the new estimator.

Notations. We write ||.|| (resp. 〈., .〉) for the euclidean norm (resp. inner product)
on vectors. We use the notation X:i (resp. Xi:) to denote the vector corresponding
the the ith column of the matrix X (resp. ith row of the matrix X). Throughout this
paper, the design matrix will be X ∈ Rn×p and y ∈ Rn will be the response vector.
XT will be used for the transposed matrix of X. The vector e denote the vector with
only ones on each of its coordinates and ej denotes the canonical vector with a one
at the jth coordinate. ∇xif is the partial derivative ∂f

∂xi
.

2. Constrained Support Vector Regression. First we introduce the opti-
mzation problem related to adding linear constraints to the SVR and discuss some
interesting properties about this problem.
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2.1. Previous work : ν-Support Vector Regression. The ν-SVR estimator
[34] is obtained solving the following quadratic optimization problem:

(SVR-P)

min
β,β0,ξi,ξ∗i ,ε

1

2
||β||2 + C(νε+

1

n

n∑
i=1

(ξi + ξ∗i ))

subject to yi − βTXi: − β0 ≤ ε+ ξi

βTXi: + β0 − yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0, ε ≥ 0.

By solving problem (SVR-P), we seek a linear function f(x) = βTx + β0 where
β ∈ Rp and β0 ∈ R, that is at most ε deviating from the response vector coefficient yi.
This function does not always exist which is why slack variables ξ ∈ Rn and ξ∗ ∈ Rn
are introduced in the optimization problem to allow some observations to break the
condition given before. C and ν are two hyperparameters. C ∈ R controls the toler-
ated error and ν ∈ [0, 1] controls the number of observations that will lay inside the
tube of size 2ε given by the two first constraints in (SVR-P). It can be seen as an
ε-insensitive loss function where a linear penalization is put on the observations that
lay outside the tube and the observations that lay inside the tube are not penalized
(see [36] for more details).

The different algorithms proposed to solve (SVR-P) often use its dual problem like
in [32, 17]. The dual problem is also a quadratic optimization problem with linear
constraints but its structure allows an efficient resolution as we will see in more details
in section 3. The dual problem of (SVR-P) is the following optimization problem:

(SVR-D)

min
α,α∗

1

2
(α− α∗)TQ(α− α∗) + yT (α− α∗)

subject to 0 ≤ αi, α∗i ≤
C

n

eT (α+ α∗) ≤ Cν
eT (α− α∗) = 0,

where Q = XXT ∈ R2n×2n.
The equation link between (SVR-P) and (SVR-D) is given by the following for-

mula:

β = −
n∑
i=1

(αi − α∗i )Xi:.

2.2. The constrained optimization problem. We propose a constrained ver-
sion of problem (SVR-P) that allows the addition of prior knowledge on the linear
function f that we seek to estimate. The constrained estimator is obtained solving
the optimization problem:
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(LSVR-P)

min
β,β0,ξi,ξ∗i ,ε

1

2
||β||2 + C(νε+

1

n

n∑
i=1

(ξi + ξ∗i ))

subject to βTXi: + β0 − yi ≤ ε+ ξi

yi − βTXi: − β0 ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0, ε ≥ 0

Aβ ≤ b
Γβ = d,

where A ∈ Rk1×p, Γ ∈ Rk2×p, β ∈ Rp, ξ, ξ∗ ∈ Rn and β0, ε, ∈ R.
The algorithm that we propose in section 3 also uses the structure of the dual

problem of (LSVR-P). The next proposition introduces the dual problem and some
of its properties.

Proposition 2.1. If the set {β ∈ Rn, Aβ ≤ b,Γβ = d} is not empty then,
1. Strong duality holds for (LSVR-P).
2. The dual problem of (LSVR-P) is

(LSVR-D)

min
α,α∗,γ,µ

1

2

[
(α− α∗)TQ(α− α∗) + γTAAT γ + µTΓΓTµ

+2

n∑
i=1

(αi − α∗i )γTAXi: − 2

n∑
i=1

(αi − α∗i )µTΓXi: − 2γTAΓTµ

]
+yT (α− α∗) + γT b− µT d

subject to 0 ≤ α(∗)
i ≤

C

n

eT (α+ α∗) ≤ Cν
eT (α− α∗) = 0

γj ≥ 0.

3. The equation link between primal and dual is

β = −
n∑
i=1

(αi − α∗i )Xi: −AT γ + ΓTµ.

The proof of the first statement of the proposition is given in the discussion
below whereas the proofs for the two other statements are given in the Appendix A.
We have that α, α∗ ∈ Rn, γ ∈ Rk1 is the vector of Lagrange multipliers associated the
the inequality constraint Aβ ≤ b which explains the non-negative constraints on its
coefficients. µ ∈ Rk2 are the Lagrange multipliers associated to the equality constraint
Γβ = d which also explains that there is no constraints in the dual problem on µ. The
objective function f which we will write in the stacked form as:

f(θ) = θT Q̄θ + lT θ,

where

θ =


α
α∗

γ
µ

 , l =


y
−y
b
−d

 ∈ R2n+k1+k2 , Q̄ =


Q −Q XAT −XΓT

−Q Q −XAT XΓT

AXT −AXT AAT −AΓT

−ΓXT ΓXT −ΓAT ΓΓT


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is a square matrix of size 2n+ k1 + k2.
An important observation is that this objective function is always convex. The

matrix Q̄ is the product of the matrix


X
−X
A
−Γ

 and its transpose matrix. It means

that Q̄ is a Gramian matrix and it is positive semi-definite which implies that f
is convex. The problem (LSVR-D) is then a quadratic programming optimization
problem which meets Slater’s condition if there exists a θ that belongs to the feasible
domain which we will denote by F . If there is such a θ we have strong duality holding
between problem (LSVR-P) and (LSVR-D). The only condition we need to have on
A and Γ is that they define a non-empty polyhedron in order to be able to solve the
optimization problem.

Our second observation on problem (LSVR-D) is that the inequality constraints
eT (α + α∗) ≤ Cν is replaced by an equality constraints in the same way that it was
suggested in [5] for the classical problem (SVR-D).

Proposition 2.2. If ε > 0, all optimal solutions of (LSVR-D) satisfy
1. αiα∗i = 0, ∀i
2. eT (α+ α∗) = Cν

The proof is given in Appendix B. This observation will be important for the algorithm
that we propose in section 3.

3. Generalized Sequential Minimal Optimization. In this section we pro-
pose a generalization of the SMO algorithm [32] to solve problem (LSVR-D) and
present our main result on the convergence of the proposed algorithm to the solu-
tion of (LSVR-D). The SMO algorithm is a variant of greedy coordinate descent
[41] taking into consideration non-separable constraints, which in our case are the
two equality constraints. We start by describing the previous algorithm that solve
(SVR-D).

3.1. Previous work : Sequential Minimal Optimization. In this subsec-
tion, we define f(α, α∗) = 1

2 (α−α∗)TQ(α−α∗) + yT (α−α∗) and we note ∇f ∈ R2n

its gradient. From [20], we rewrite the Karush-Kuhn-Tucker (KKT) conditions in the
following way:

(3.1) min
i∈Iup
∇αif ≥ max

j∈Ilow
∇αjf

where
Iup(α) = {i ∈ {1, . . . , l} : αi <

C

l
}

Ilow(α) = {i ∈ {1, . . . , l} : αi > 0}.

The same condition is written for the α∗ variables replacing αi by α∗i above.
These conditions leads to an important definition for the rest of this paper.

Definition 3.1. We will say that (i, j) is a violating pair of variables if one of
these two conditions is satisfied:

i ∈ Iup(α), j ∈ Ilow(α) and ∇αif < ∇αjf
i ∈ Ilow(α), j ∈ Iup(α) and ∇αif > ∇αjf.
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Because the algorithm SMO does not provide in general an exact solution in a
finite number of steps there is a need to relax the optimality conditions which gives a
new definition.

Definition 3.2. We will say that (i, j) is a τ -violating pair of variables if one of
these two conditions is satisfied:

i ∈ Iup(α), j ∈ Ilow(α) and ∇αif < ∇αjf − τ
i ∈ Ilow(α), j ∈ Iup(α) and ∇αif > ∇αjf + τ.

The SMO algorithm will then choose at each iteration a pair of violating variables
in the α block or in the α∗ block. Once the choice is done, a subproblem of size two
is solved, considering that only the two selected variables are to be minimized in
problem (SVR-D). The outline of the algorithm is presented in Algorithm 3.1.

The choice of the violating pair of variables presented in [21] was to always work
with the most violating pairs of variables, which means the variables that leads to the
largest gap compared to the optimality conditions given in (3.1). This choice is what
makes a link with greedy coordinate descent, however greedy here is related to the
largest gap with the optimality score and is not related to the largest decrease in the
objective function.

The resolution of the subproblem of size two has a closed form. The idea is to
use the two equality constraints to go from a problem of size two to a problem of size
one. Then, the goal is to minimize a quadratic function of one variable under box
constraints which is done easily. We will give more details of the resolution of these
subproblems in subsection 3.3 for our proposed algorithm.

The proof of convergence of SMO algorithm was given in [20] without conver-
gence rate. The proof relies on showing that the sequence defined by the algorithm
f(αk, (α∗)k) is a decreasing sequence and that there cannot be the same violating
pair of variables infinitely many times. The linear convergence rate was proved later
by Schmidt and She [35] as well as the identification of the support vectors in finite
time.

3.2. Optimality conditions for the constrained SVR. In this subsection
we define f as the objective function of problem (LSVR-D) and ∇f ∈ R2n+k1+k2 its
gradient. The Lagrangian of optimization problem (LSVR-D) is defined by :

L = f −
n∑
i=1

(λiαi + λ∗iα
∗
i ) +

n∑
i=1

βi(αi −
C

n
) + β∗i (α∗i −

C

n
)

− σ(

n∑
i=1

(αi + α∗i )− Cν)− δ
n∑
i=1

(αi − α∗i )−
k1∑
j=1

ηjγj .

We then give KKT conditions for each block of variables:
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Algorithm 3.1 SMO algorithm
Require: τ>0
Initializing α0 ∈ Rn, (α∗)0 ∈ Rn in F and set k = 0
while ∆ > τ do

i← argmin
i∈Iup

∇αif j ← argmax
i∈Ilow

∇αjf

i∗ ← argmin
i∈I∗up

∇α∗
i
f j∗ ← argmax

i∈I∗low
∇α∗

j
f

∆1 ← ∇αjf −∇αif
∆2 ← ∇α∗

j
f −∇α∗

i
f

∆← max(∆1,∆2) . Select the maximal violating pair

if ∆ = ∆1 then
αk+1 ← Solution of subproblem for variables αi and αj

else
(α∗)k+1 ←Solution of subproblem for variables αi∗ and αj∗

k ← k + 1
return αk, (α∗)k

The α block

∇αiL = ∇αif − λi + βi − σ − δ = 0

λiαi = 0

βi(αi −
C

n
) = 0

λi ≥ 0

βi ≥ 0

We will consider different possiblities of value for αi.

Case 1- αi = 0 then βi = 0 and λi ≥ 0

∇αif − σ − δ ≥ 0

Case 2- αi = C
n then λi = 0 and βi ≥ 0

∇αif − σ − δ ≤ 0

Case 3- 0 < αi <
C
n then βi = 0, θi = 0

∇αif − σ − δ = 0

We then consider the set of indices :

Iup(α) = {i ∈ {1, . . . , n} : αi <
C

n
}
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Ilow(α) = {i ∈ {1, . . . , n} : αi > 0}

The optimality conditions are satisfied if and only if

min
i∈Iup
∇αif ≥ max

j∈Ilow
∇αjf.

The α∗ block In this block, the conditions are very similar to the ones given for
the block α, the only difference here is that we will have two new sets of indices:

I∗up(α∗) = {i ∈ {1, . . . , n} : α∗i <
C

n
}

and
I∗low(α) = {i ∈ {1, . . . , n} : α∗i > 0}

which gives the following optimality condition:

min
i∈I∗up

∇α∗
i
f ≥ max

j∈I∗low
∇α∗

j
f.

The γ block

∇γjL = ∇γjf − ηj = 0ηjγj = 0ηj ≥ 0

We will consider different possiblities of value for γj .

Case 1- γj = 0 then

∇γjf ≥ 0

Case 2- γj > 0

∇γjf = 0

Definition 3.3. We will say that j is a τ -violating variable for the block γ if

∇γjf + τ < 0.

The µ block

∇µjL = ∇µjf = 0

Definition 3.4. We will say that j is a τ -violating variable for the block µ if

|∇µjf | > τ.

From these conditions on each block, we build an optimization strategy that
follows the idea of the SMO described in subsection 3.1. For each block of variables, we
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Algorithm 3.2 Generalized SMO algorithm
Require: τ > 0
Initializing α0 ∈ Rn, (α∗)0 ∈ Rn, γ0 ∈ Rk1 and µ0 ∈ Rk2 in F and set k = 0
while ∆ > τ do

i← argmin
i∈Iup

∇αif j ← argmax
i∈Ilow

∇αjf

i∗ ← argmin
i∈I∗up

∇α∗
i
f j∗ ← argmax

i∈I∗low
∇α∗

j
f

∆1 ← ∇αjf −∇αif ∆2 ← ∇α∗
j
f −∇α∗

i
f

∆3 ← − min
j∈{1,...,k1}

∇γjf ∆4 ← max
j∈{1,...,k2}

|∇µjf |

∆← max(∆1,∆2,∆3,∆4) . Select the maximal violating variables

if ∆ = ∆1 then
αk+1 ←Solution of subproblem for variables αi and αj

else if ∆ = ∆2 then
(α∗)k+1 ←Solution of subproblem for variables αi∗ and αj∗

else if ∆ = ∆3 then
u = argmin

i∈{1,...,k1}
∇γif

γk+1 ←Solution of subproblem for variable γu

else
u = argmax

i∈{1,...,k2}
∇µif

µk+1 ← Solution of subproblem for variable µu

k ← k + 1
return αk, (α∗)k, γk, µk

compute what we call a violating optimality score based on the optimality conditions
given above. Once the scores are computed for each block, we select the block which
has the largest score and solve an optimization subproblem in the block selected. If
the block α or the block α∗ is selected, we will update a pair of variables by solving a
minization problem of size two. However if the block γ or the block µ is selected, we
will update only one variable at a time. This is justified by the fact that the variables
α and α∗ have non-separable equality constraints linking them together. The rest of
this section will be dedicated to the presentation of our algorithm and to giving some
interesting properties such as a closed form for updates on each of the blocks and a
convergence theorem.

3.3. Updates rules and convergence. The first definition describes the closed
form updates for the different blocks of variables.

Definition 3.5. The update between iterate k and iterate k+1 of the generalized
SMO algorithm has the following form:

1. if the block α is selected and (i, j) is the most violating pair of variable then
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the update will be as follows:

αk+1
i = αki + t∗

αk+1
j = αkj − t∗,

where t∗ = min(max(I1,−
(∇αif−∇αj f)

(Qii−2Qij+Qjj)
), I2) with I1 = max(−αki , αkj − C

n )

and I2 = min(αkj ,
C
n − α

k
i ).

2. if the block α∗ is selected and (i∗, j∗) is the most violating pair of variable
then the update will be as follows:

(α∗i )
k+1 = (α∗i )

k + t∗

(α∗j )
k+1 = (α∗j )

k − t∗,

where t∗ = min(max(I1,−
(∇α∗

i
f−∇α∗

j
f)

(Qii−2Qij+Qjj)
), I2) with I1 = max(−(α∗i )

k, (α∗j )
k−

C
n ) and I2 = min((α∗j )

k, Cn − (α∗i ))
k.

3. if the block γ is selected and i is the index of the most violating variable in
this block then the update will be as follows:

γk+1
i = max(− ∇γif

(AAT )ii
+ γki , 0).

4. if the block µ is selected and i is the index of the most violating variable in
this block then the update will be as follows:

µk+1
i = − ∇µif

(ΓΓT )ii
+ µki .

This choice of updates comes from solving the optimization problem (LSVR-D)
considering that only one or two variables are updated at each step. One of the key
elements of the algorithm is to make sure that at each step the iterate belongs to F .
Let’s suppose that the block α is selected as the block in which the update will happen
and let (i, j) be the most violating pair of variables. The update is the resolution of
a subproblem of size 2, considering that only αi and αj are the variables, the rest
remains constant. The two equality constraints in (LSVR-D),

∑n
i=1 αi − α∗i = 0 and∑n

i=1 αi+α∗i = Cν, lead to the two following equalities: αk+1
i +αk+1

j = αki +αkj . The
later yields to using a parameter t for the update of the variables leading to:

αk+1
i = αki + t,

αk+1
j = αkj − t.

Updating the variable in the block α this way will force the iterates of Algorithm 3.1
to meet the two equalities constraints at each step. We find t by solving (LSVR-D)
considering that we minimize only over t. Let u ∈ R2n+p+k1+k2 be the vector that
contains only zeros except at the ith coordinate where it is equal to t and at jth
coordinate where it is equal to −t. Therefore, we find t by minimizing the following
optimization problem:

min
t∈R

ψ(t) =
1

2

[
(θk + u)T Q̄(θk + u)

]
+ lT (θk + u)

subject to 0 ≤ αk+1
i , αk+1

j ≤ C

n
.
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First we minimize the objective function without the constraints and since it is a
quadratic function of one variable we just clip the solution of unconstrained problem to
have the solution of the constrained problem. We will use the term "clipped update"
or "clipping" when the update is projected unto the constraints space and is not
the result of the unconstrainted optimization problem. As we only consider size one
problem for the updates, it will mean that the update will be a bound of an interval.
We will use the notation K as a term containing the terms that do not depend on t.
We write that

ψ(t) =
1

2
uT Q̄u+ uT Q̄θk + lTu+K

=
1

2
t2(Q̄ii + Q̄jj − 2Q̄ij) + uT∇f(θk) +K

=
1

2
t2(Q̄ii + Q̄jj − 2Q̄ij) + t(∇αif(θk)−∇αjf(θk)) +K.

It follows that the unconstrained minimum of ψ(t) is tq =
−(∇αif(θk)−∇αj f(θk))

(Q̄ii+Q̄jj−2Q̄ij)
. Tak-

ing the constraints into account we have that:

0 ≤ αki + t ≤ C

n
,

0 ≤ αkj − t ≤
C

n
,

it yields to t∗ = min(max(I1, tq), I2) with I1 = max(−αi, αj−Cn ) and I2 = min(αj ,
C
n−

αi). The definition of the updates for the block α∗ relies on the same discussion.
Let’s now make an observation that will explain the definition of the updates for

the blocks γ and µ. Let i be the index of the variable that will be updated. Solving
the problem:

θk+1
i = argmin

θi

1

2
θT Q̄θ + lT θ,

leads to the following solution θk+1
i = −∇if(θk)

Q̄ii
+ θki .

Let’s recall that the update for the block γ has to keep the coefficient of γ positive
to stay in F hence we have to perform the following clipped update with i ∈ {2n +
p+ 1, . . . , 2n+ p+ k1}:

θk+1
i = max(

−∇γif(θk)

Q̄ii
+ θki , 0).

Then noticing that Q̄ii = AATii for this block, we obtain the update for the block γ.
There are no constraints on the variables in the blok µ, so the update comes from

the fact that Q̄ii = ΓΓTii for i ∈ {2n+p+k1+1, . . . , 2n+p+k1+k2} which corresponds
to the indices of the block µ.

From these updates we have to make sure that Qii + Qjj − 2Qij 6= 0, let us
recall that Qij = 〈Xi:, Xj:〉 which means that Qii +Qjj − 2Qij = ||Xi: −Xj:||2. This
quantity is zero only when Xi: = Xj: coordinate wise. It would mean that the same
row appears two times in the design matrix which does not bring any new information
for the regression and can be avoided easily. (AAT )ii = 〈Ai:, Ai:〉 is zero if and only
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if Ai: = 0 which means that a row of the matrix A is zero, so there is no constraint
on any variable of the optimization problem which will never happen. It is the same
discussion for (ΓΓT )ii.

The next proposition makes sure that once a variable (resp. pair of variables) is
updated, it cannot be a violating variable (resp. pair of variables) at the next step.
This proposition makes sure, for the two blocks α and α∗, that the update t∗ cannot
be 0.

Proposition 3.6. If (i, j) (resp.i) was the pair of most violating variable (resp.
the most violating variable) in the block α or α∗ (resp. block γ or µ) at iteration k
then at iteration k + 1, (i, j) (resp. i) cannot be violating the optimality conditions.

The proof of this proposition is left in the Appendix C.
Finally, we show that the algorithm converges to a solution of (LSVR-D) and

since strong duality holds it allows us to have a solution of (LSVR-P).

Theorem 3.7. For any given τ > 0 the sequence of iterates {θk}, defined by
the generalized SMO algorithm, converges to an optimal solution of the optimization
problem (LSVR-D)

The proof of this theorem relies on the same idea as the one proposed in [26]
for the classical SMO algorithm and is given in Appendix D. We show that it can
be extended to our algorithm with some new observations. The general idea of the
proof is to see that the distance between the primal vector generated by the SMO-
algorithm and the optimal solution of the primal is controled by the following expres-
sion 1

2 ||β
k − βopt|| ≤ f(θk)− f(θopt), where βk is the kth primal iterate obtained via

the relationship primal-dual and θk and where βopt is a solution of (LSVR-P). From
this observation, we show that we can find a subsequence of the SMO-algorithm θkj

that converges to some θ̄, solution of the dual problem. Using the continuity of the
objective function of the dual problem, we have that f(θkj )→ f(θ̄). Finally, we show
that the sequence {f(θk)} is decreasing and bounded which implies its convergence
and from the convergence monotone theorem we know that to f(θk) converges to
f(θ̄) since one of its subsequence converges. This proves that ||βk − βopt|| → 0 and
finishes the proof. The convergence rate for the SMO algorithm is difficult to obtain
considering the greedy choice of the blocks and the greedy choice inside the blocks. A
proof for the classical SMO exists but with uniformly at random choice of the block
[35]. Convergence rate for greedy algorithms in optimization can be found in [30] for
example but the assumption that the constraints must be separable is a major issue
for our case. The study of this convergence rate is out of scope of this paper.

4. Numerical experiments. The code for the different regression settings is
available on a GitHub repository1, each setting is wrapped up in a package and is
fully compatible with scikit learn [31] BaseEstimator class.

In order to compare the estimators, we worked with the Mean Absolute Error
(MAE) and the Root Mean Squared Error (RMSE) which are given by the following
expressions:

MAE =
1

p

p∑
i=1

|β∗i − β̂i|,

RMSE =

√
1

p
||β∗ − β̂||2,

1https://github.com/Klopfe/LSVR

https://github.com/Klopfe/LSVR
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where β∗ are the ground truth coefficients and β̂ are the estimated coefficients. We
also used the Signal-To-Noise Ratio (SNR) to control the level noise simulated in the
data. We used the following definition:

SNR = 10 log 10(
E(Xβ(Xβ)T )

Var(ε)
).

4.1. Non Negative regression. First, the constraints are set to force the co-
efficient of β to be positive and we compare our constrained-SVR estimator with the
NNLS [23] estimator which is the result of the following optimization problem:

(NNLS)
min
β

1

2
||y −Xβ||

subject to βi ≥ 0.

In this special case of non-negative regression, A = −Ip, b = 0, C = 0, d = 0,
the constrained-SVR optimization problem which we will call Non-Negative SVR
(NNSVR) then becomes:

(NNSVR)

min
β,β0,ξi,ξ∗i ,ε

1

2
||β||2 + C(νε+

1

n

n∑
i=1

(ξi + ξ∗i ))

subject to βTXi: + β0 − yi ≤ ε+ ξi

yi − βTXi: − β0 ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0, ε ≥ 0

βi ≥ 0.

Synthetic data. We generated the design matrix X from a gaussian distribution
N (0, 1) with 500 samples and 50 features. The true coefficients to be found β∗ were
gererated taking the exponential of a gaussian distribution N (0, 2) in order to have
positive coefficients. Y was simply computed as the product between X and β∗. We
wanted to test the robustness of our estimator compared to NNLS and variant of
SVR estimators. To do so, we simulated noise in the data using different types of
distributions, we tested gaussian noise and laplacian noise under different levels of
noise. For this experiment, the noise distributions were generated to have a SNR
equals to 10 and 20, for each type of noise we performed 50 repetitions. The noise
was only added in the matrix Y the design matrix X was left noiseless. We compared
different estimators NNLS, NNSVR, the Projected-SVR (P-SVR) which is simply
the projection of the classical SVR estimator unto the positive orthant and also the
classical SVR estimator without constraints. The results of this experiment are in
Table 4.1. We see that for a low gaussian noise level (SNR = 20) the NNLS has a
lower RMSE and lower MAE. However, we see that the differences between the four
compared methods are small. When the level of noise increases (SNR = 10), the
NNSVR estimator is the one with the lowest RMSE and MAE. The NNLS estimator
performs poorly in the presence of high level of noise in comparison to the SVR based
estimator. When a laplacian noise is added to the data, the NNSVR is the estimator
that has the lowest RMSE and MAE for low level of noise SNR = 20 and high level
of noise SNR = 10.

4.2. Regression unto the simplex. In this subsection, we study the perfor-
mance of our proposed estimator on simplex constraints Simplex Support Vector Re-
gression (SSVR). In this case, A = −Ip, b = 0, Γ = e and d = 1. The optimization
problem that we seek to solve is:
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Table 4.1: Results for the Support Vector Regression (SVR), Projected Support
Regression (P-SVR), Non-Negative Support Vector Regression (NNSVR) and Non-
Negative Least Squares (NNLS) for simulated data with n = 500 and p = 50. The
mean (standard deviation) of the Root Mean Squared Error (RMSE) and the Mean
Absolute Error (MAE) over 50 repetitions are reported. Different noise distribution
(gaussian and laplacian) and different Signal to Noise Ratio (SNR) values were tested.

Distribution Estimator RMSE MAE

Gaussian noise SVR 2.238 (0.081) 29.288 (2.452)
P-SVR 2.178 (0.087) 27.248 (2.545)

SNR = 20 NNSVR 2.174 (0.089) 27.224 (2.480)
(σ = 773.1) NNLS 2.120 (0.114) 25.226 (2.699)

Gaussian noise SVR 2.732 (0.099) 44.764 (4.230)
P-SVR 2.584 (0.154) 39.687 (5.963)

SNR = 10 NNSVR 2.536 (0.105) 37.740 (3.866)
(σ = 2444.9) NNLS 3.478 (0.208) 60.553 (7.923)

Laplacian noise SVR 2.086 (0.109) 25.538 (3.181)
P-SVR 2.039 (0.109) 23.978 (3.059)

SNR = 20 NNSVR 2.035 (0.115) 23.827 (3.146)
(b = 546.7) NNLS 2.115 (0.103) 25.028 (2.571)

Laplacian noise SVR 2.665 (0.148) 42.245 (5.777)
P-SVR 2.526 (0.198) 37.745 (7.271)

SNR = 10 NNSVR 2.480 (0.157) 35.786 (5.761)
(b = 1728.8) NNLS 3.463 (0.230) 63.940 (8.375)

(SSVR)

min
β,β0,ξi,ξ∗i ,ε

1

2
||β||2 + C(νε+

1

n

n∑
i=1

(ξi + ξ∗i ))

subject to βTXi: + β0 − yi ≤ ε+ ξi

yi − βTXi: − β0 ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0, ε ≥ 0

βi ≥ 0∑
i

βi = 1.

Synthetic data. We first tested on simulated data generated by the function
make_regression of scikit-learn. Once the design matrix X and the response vector
y were generated using this function, we had access to the ground truth that we will
write β∗. This function was not designed to generate data with a β∗ that belongs to
the simplex so we first projected β∗ unto the simplex and then recomputed y mul-
tiplying the design matrix by the new projected β∗S . We added a centered gaussian
noise in the data with the standard deviation of the gaussian was chosen such as
the signal-to-noise ratio (SNR) was equal to a defined number, we used the following
formula for a given SNR:

σ =

√
Var(y)

10SNR/10
,
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where σ is the standard deviation used to simulate the noise in the data. The choice
of the two hyperparameters C and ν was done using 5-folds cross validation on a grid
of possible pairs. The values of C were taken evenly spaced in the log10 base between
[−3, 3], we considered 10 different values. The values of ν were taken evenly spaced
in the linear space between [0.05, 1.0] and we also considered 10 possible values. We
tested different size for the matrix X ∈ Rn×p to check the potential effects of the
dimensions on the quality of the estimation and we did 50 repetitions for each point
of the curves. The measure that was used to compare the different estimators is the
RMSE between the true β and the estimated β̂.

We compared the RMSE of our estimator to the Simplex Ordinary Least Squares
(SOLS) which is the result of the following optimization problem:

(SOLS)

min
β

1

2
||y −Xβ||

subject to βi ≥ 0,
p∑
i=1

βi = 1,

and to the estimator proposed in the biostatics litterature that is called Cibersort.
This estimator is simply the result of using the classical SVR and project the obtained
estimator unto the simplex. The RMSE curves as a function of the SNR are presented
in subsection 4.2. We observe that the SSVR is generally the estimator with the lowest
RMSE, this observation becomes clearer as the level of noise increases in the data.
We notice that when there is a low level of noise and when n is not too large in
comparison to p, the three compared estimator perform equally. However, there is a
setting when n is large in comparison to p (in this experiment for n = 250 or 500 and
p = 5) where the SSVR estimator has a higher RMSE than the Cibersort and SOLS
estimator untill a certain level of noise (SNR < 15). Overall, this simulation shows
that there is a significant improvement in the estimation performance of the SSVR
mainly when there is noise in the data.

Real dataset. In the cancer research field, regression algorithms have been used
to estimate the proportions of cell populations that are present inside a tumor. In-
deed, a tumor is composed of different types of cells such as cancer cells, immune
cells, healthy cells among others. Having access to the information of the propor-
tions of these cells could be a key to understanding the interactions between the cells
and the cancer treatment called immunotherapy [9]. The modelization done is that
the RNA extracted from the tumor is seen as a mixed signal composed of different
pure signals coming from the different types of cells. This signal can be unmixed
knowing the different pure RNA signal of the different types of cells. In other words,
y will be the RNA signal coming from a tumor and X will be the design matrix
composed of the RNA signal from the isolated cells. The number of rows represent
the number of genes that we have access to and the number of columns of X is the
number of cell populations that we would like to quantify. The hypothesis is that
there is a linear relationship between X and y. As said above, we want to estimate
proportions which means that the estimator has to belong to the probability simplex
S = {x : xi ≥ 0 ,

∑
i xi = 1}.

Several estimators have been proposed in the biostatistics litterature most of them
based on constrained least squares [33, 14, 1] but the gold standard is the estimator
based on the SVR.
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Fig. 4.1: The Root Mean Squared Error (RMSE) as a function of the Signal to Noise
Ration (SNR) is presented. Different dimensions for the design matrix X and the
response vector y were considered. n represents the number of rows of X and p the
number of columns. For each plot, the blue line represents the RMSE for the Linear
Simplex SVR (LSSVR) estimator, the green one the Simplex Ordinary Least Squares
(SOLS) estimator and the orange on the Cibersort estimator. Each point of the curve
is the mean RMSE of 50 repetitions. The noise in the data has a gaussian distribution.

We compared the three same estimators on a real biological dataset where the
real quantities of cells to obtain were known. The dataset can be found on the GEO
website under the accession code GSE111032. For this example n = 584 and p = 4 and
we have access to 12 different samples that are our repetitions. Following the same
idea than previous benchmark performed in this field of application, we increased the
level of noise in the data and compared the RMSE of the different estimators. gaussian
and laplacian distributions of noise were added to the data. The choice of the two
hyperparameters C and ν was done using 5-folds cross validation on a grid of possible
pairs. The values of C were taken evenly spaced in the log10 base between [−5,−3],
we considered 10 different values. The interval of C is different than the simulated
data because of the difference in the range value of the dataset. The values of ν were
taken evenly spaced in the linear space between [0.05, 1.0] and we also considered 10
possible values.

We see that when there is no noise in the data (SNR = ∞) both Cibersort and
SSVR estimator perform equally. The SOLS estimator already has a higher RMSE
than the two others estimator probably due to the noise already present in the data.

2The dataset can be downloaded from the Gene Expression Omnibus website under the accession
code GSE11103.

https://www.ncbi.nlm.nih.gov/geo/
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Fig. 4.2: The Root Mean Squared Error (RMSE) as a function of the Signal to Noise
Ration (SNR) is presented on a real dataset where noise was manually added. Two
different noise distribution were tested: gaussian and laplacian. Each point of the
curve is the mean RMSE of 12 different response vectors and we repeated the process
four times for each level of noise. This would be equivalent to having 48 different
repetitions.

As the level of noise increases, the SSVR estimator remains the estimator with the
lowest RMSE in both gaussian and laplacian noise settings.

4.3. Isotonic regression. In this subsection, we will consider constraints that
impose an order on the variables. This type of regression is usually called isotonic
regression. Such constraints appear when prior knowledge are known on a certain
order on the variables. This partial order on the variables can also be seen as an
acyclic directed graph. More formally, we note G = (V,E) a directed acyclic graph
where V is the set of vertices and E is the set of nodes. On this graph, we define a
partial order on the vertices. We will say for u, v ∈ V that u ≤ v if and only if there
is a path joining u and v in G. This type of constraints seems natural in different
applications such as biology, medicine, weather forecast.

The most simple example of this type of constraints might be the monotonic
regression where we force the variables to be in a increasing or decreasing order. It
means that with our former notations that we would impose that β1 ≤ β2 ≤ . . . ≤ βp
on the estimator. This type of constraints can be coded in a finite difference matrix
(or more generally any incidence matrix of a graph)

A =


1 −1 0 . . . 0

0 1 −1
. . .

...
...

. . . . . . . . . 0
0 . . . 0 1 −1



and Γ = 0, b = 0, d = 0 forming linear constraints as in the scope of this paper.
The Isotonic Support Vector Regression (ISVR) optimization problem is written as
follows:
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(ISVR)

min
β,β0,ξi,ξ∗i ,ε

1

2
||β||2 + C(νε+

1

n

n∑
i=1

(ξi + ξ∗i ))

subject to βTXi: + β0 − yi ≤ ε+ ξi

yi − βTXi: − β0 ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0, ε ≥ 0

β1 ≤ β2 ≤ . . . ≤ βn.

We compare our proposed ISVR estimator with the classical least squares isotonic
regression (IR) [2] which is the solution of the following problem:

(IR)
min
β

1

2
||β − y||2

subject to β1 ≤ β2 ≤ . . . ≤ βn.

Synthetic dataset. We first generated data from a gaussian distribution (µ = 0,
σ = 1) that we sorted and then added noise in the data following the same process as
described in subsection 4.2 with different SNR values (10 and 20). We tested gaussian
noise and laplacian noise. We compared the estimation quality of both methods using
MAE and RMSE. In this experiment, the design matrix X is the identity matrix. We
performed grid search selection via cross validation for the hyperparameters C and
ν. C had 5 different possible values taken on the logscale from 0 to 3, and ν had 5
different values taken between 0.05 and 1 on the linear scale. The dimension of the
generated gaussian vector was 50 and we did 50 repetitions. We present in Table 4.2
the results of the experiment, the value inside a cell is the mean RMSE or MAE over
the 50 repetitions and the value between brackets is the standard deviation over the
repetitions. Under a low level of gaussian noise or laplacian noise, both methods are
close in term of RMSE and MAE with a little advantage for the classical isotonic
regression estimator. When the level of noise is important (SNR = 10), our proposed
ISVR has the lowest RMSE and MAE for the two noise distribution tested.

Real dataset. Isotonic types of constraints can be found in different applications
such as biology, ranking and weather forecast for example. Focusing on global warm-
ing type of data, reserchers have studied the anomaly of the average temperature
over a year in comparison to the years 1961-1990. These temperature anomalies have
a monotenous trend and keep increasing since 1850 untill 2015. Isotonic regression
estimator was used on this dataset3 in [13] and we compared our proposed ISVR esti-
mator for anomaly prediction. The hyperparameter for the ISVR were set manually
for this simulation. subsection 4.3 shows the result for the two estimators. The classi-
cal isotonic regression estimator perform better than our proposed estimator globally
which is confirmed by the RMSE and MAE values of RMSEIR = 0.0067 against
RMSEISV R = 0.083 and MAEIR = 0.083 against MAEISV R = 0.116. Howevever, we
notice that in the portions where there is a significant change like between 1910-1940
and 1980-2005, the IR estimation looks like a step function whereas the ISVR estima-
tion follows an increasing trend without these piecewise constant portions. Note that
the bias induced by the use of constraints can be overcome with reffiting methods
such as [10].

3This dataset can be downloaded from the Carbon Dioxide Information Analysis Center at the
Oak Ridge National Laboratory.

https://cdiac.ess-dive.lbl.gov/trends/temp/jonescru/jones.html
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Table 4.2: Results for the Isotonic Support Vector Regression (ISVR), and the Isotonic
regression (IR) for simulated data with p = 50. The mean (standard deviation) of
the Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE) over
50 repetitions are reported. Different noise distribution (gaussian and laplacian) and
different Signal to Noise Ratio (SNR) values were tested.

Distribution Estimator RMSE MAE
Gaussian noise ISVR 0.212 (0.02) 0.254 (0.06)
SNR = 20 IR 0.203 (0.02) 0.229 (0.04)

Gaussian noise ISVR 0.284 (0.04) 0.446 (0.12)
SNR = 10 IR 0.311 (0.04) 0.534 (0.12)

Laplacian noise ISVR 0.202 (0.03) 0.223 (0.05)
SNR = 20 IR 0.203 (0.02) 0.221 (0.04)

Laplacian noise ISVR 0.276 (0.05) 0.414 (0.11)
SNR = 10 IR 0.312 (0.05) 0.513 (0.13)

1850 1875 1900 1925 1950 1975 2000 2025
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0.4

0.2

0.0
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0.4

0.6

0.8 I-SVR
Isotonic Regression

Fig. 4.3: Global warming dataset. Annual temperature anomalies relative to 1961-
1990 average, with estimated trend using Isotonic Support Vector Regression (ISVR)
and the classical Isotonic Regression (IR) estimator.

4.4. Performance of the GSMO versus SMO. We compared the efficiency
of the SMO algorithm to solve the classical SVR optimization problem and the SSVR
optimization problem. To do so, we used the same data simulation process described
earlier in this subsection and set the number of rows of the matrix X, n = 200 and
the number of columns p = 25. Two different settings were considered here, one
without any noise in the data and another one with gaussian noise added such that
the SNR would be equal to 30. The transparent trajectories represent the decrease of
the objective function or the optimality score ∆ for the classical SMO in blue and for
the generalized SMO in red for the 50 repetitions considered. The average trajectory
is represented in dense color. Figure 4.4a and Figure 4.4b are the results for the
noiseless setting and Figure 4.4c and Figure 4.4d for the setting with noise. When
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(b) Delta optimality score without noise
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(d) Optimality score: Delta with noise

Fig. 4.4: Plots of 50 trajectories of the dual objective function value (Figure 4.4a,
Figure 4.4c) and the optimality score (Figure 4.4b, Figure 4.4d) in function of the
number of iterations for the classical SMO algorithm in blue and the proposed gener-
alized SMO in red. Two settings were used, one without noise and another one with
additive gaussian noise.

there is not noise in the data, the generalized SMO decreases faster than the classical
SMO. It is important to remind that the true vector here belongs to the simplex so
without any noise it is not surprising that our proposed algorithm goes faster than
the classical SMO. However, when noise is adding to the data, it takes more iterations
for the generalized SMO to find the solution of the optimization problem.

5. Conclusion. In this paper, we studied the optimization problem related to
SVR with linear constraints. We showed that for this optimization problem, strong
duality holds and that the dual problem is convex. We presented a generalized SMO
algorithm that solve the dual problem and we proved its convergence to a solution.
This algorithm uses a coordinate descent strategy where a closed form of the updates
were defined. The proposed algorithm is easy to implement and shows good perfor-
mance in practise. We demonstrated the good performance of our proposed estimator
on different regression settings. In presence of high level of noise, our estimator has
shown to be robust and has better estimation performance in comparison to Least
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Squares based estimators or projected SVR estimators.
This work leaves several open questions for future works. The question of the

convergence rate of the algorithm is very natural and will have to be address in the
future. Another natural question rises about the possiblity to extend our method
on non-linear function estimation with linear constraints. From our point of view, it
is a very challenging question because the dual optimization problem of the linearly
constrained SVR loses its only dependance on the inner product between the columns
of X, crossed terms appear in the objective function which makes it difficult to use
the kernel trick as it would naturally be used for classical SVR.
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Appendix A. Proof of Proposition 2.1.

Proof. We prove the part 2 and 3 of Proposition 2.1 starting by writing the
Lagrangian associated to Problem (LSVR-P):

L =
1

2
||β||2 + C(νε+

1

n

n∑
i=1

(ξi + ξ∗i )) +

n∑
i=1

αi(−ε− ξi − yi + βTXi: + β0)

+

n∑
i=1

α∗i (−ε− ξ∗i + yi − βTXi: − β0)−
n∑
i=1

λiξi + λ∗i ξ
∗
i − ηε

+γT (Aβ − b)− µT (Γβ − d)

(A.1)

We will use the notation x(∗)
i to denote xi or x∗i . From (A.1), we write the KKT

conditions:

∇βL = β +

n∑
i=1

(αi − α∗i )Xi: +AT γ − ΓTµ = 0(A.2a)

∇β0L =

n∑
i=1

αi − α∗i = 0(A.2b)

∇
ξ
(∗)
i
L =

C

n
− α(∗)

i − λ
(∗)
i = 0(A.2c)

∇εL = Cν −
n∑
i=1

αi + α∗i − η = 0(A.2d)

α
(∗)
i ≥ 0(A.2e)
η ≥ 0(A.2f)

λ
(∗)
i ≥ 0(A.2g)
γj ≥ 0(A.2h)

αi(−ε− ξi − yi + βTXi: + β0) = 0(A.2i)

α∗i (−ε− ξ∗i + yi − βTXi: − β0) = 0(A.2j)

λ
(∗)
i ξ

(∗)
i = 0(A.2k)
ηε = 0(A.2l)

γj(Aβ − b)j = 0.(A.2m)

From (A.2c), we have that:

(A.3) λ
(∗)
i =

C

n
− α(∗)

i .

From (A.2e) and (A.2g), we have that:

(A.4)
C

n
≥ α∗i ≥ 0.

From (A.2d), we have that:

(A.5) η = Cν −
n∑
i=1

(αi + α∗i ).
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From (A.2a),

(A.6) β = −
n∑
i=1

(αi − α∗i )Xi: −AT γ + ΓTµ.

From (A.2b),

(A.7)
n∑
i=1

(αi − α∗i ) = 0.

From (A.2f),

(A.8) Cν ≥
n∑
i=1

(αi + α∗i ).

Using (A.3), (A.5), (A.7), we obtain:

L =
1

2
||β||2 + Cνε+

C

n

n∑
i=1

(ξi + ξ∗i )− ε
n∑
i=1

(αi + α∗i )−
n∑
i=1

αiξi + α∗i ξ
∗
i

+

n∑
i=1

(αi − α∗i )(−yi + βTXi:)−
n∑
i=1

(
C

n
− αi)ξi + (

C

n
− α∗i )ξ∗i

−(Cν −
n∑
i=1

(αi + α∗i ))ε+ γT (Aβ − b)− µT (Γβ − d),

and

L =
1

2
||β||2 −

n∑
i=1

(αi − α∗i )yi +

n∑
i=1

(αi − α∗i )βTXi: + γT (Aβ − b)− µT (Γβ − d).

Replacing β by the expression obtained in (A.6) yields to:

L =
1

2
〈−

n∑
i=1

(αi − α∗i )Xi: −AT γ + ΓTµ,−
n∑
i=1

(αi − α∗i )Xi: −AT γ + ΓTµ〉

−
n∑
i=1

(αi − α∗i )yi + 〈−
n∑
i=1

(αi − α∗i )Xi: −AT γ + ΓTµ,

n∑
i=1

(αi − α∗i )Xi:〉

+γT (A(−
n∑
i=1

(αi − α∗i )Xi: −AT γ + ΓTµ)− b)

−µT (Γ(−
n∑
i=1

(αi − α∗i )Xi: −AT γ + ΓTµ)− d),
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L =
1

2

n∑
i=1

n∑
j=1

(αi − α∗i )(αj − α∗j )〈Xi:, Xj:〉+
1

2
γTAAT γ +

1

2
µTΓΓTµ

+

n∑
i=1

(αi − α∗i )γTAXi: −
n∑
i=1

(αi − α∗i )µTΓXi: − γTAΓTµ−
n∑
i=1

(αi − α∗i )yi

−
n∑
i=1

n∑
j=1

(αi − α∗i )(αj − α∗j )〈Xi:, Xj:〉 −
n∑
i=1

(αi − α∗i )γTAXi:

+

n∑
i=1

(αi − α∗i )µTΓXi: −
n∑
i=1

(αi − α∗i )γTAXi: − γTAAT γ + γTAΓTµ− γT b

+

n∑
i=1

(αi − α∗i )µTΓXi: − µTΓΓTµ+ γTAΓTµ+ µT d,

and finally

L =− 1

2
(α− α∗)TQ(α− α∗)− 1

2
γTAAT γ − 1

2
µTΓΓTµ−

n∑
i=1

(αi − α∗i )γTAXi:

+

n∑
i=1

(αi − α∗i )µTΓXi: + γTAΓTµ−
n∑
i=1

(αi − α∗i )yi − γT b+ µT d.

(A.9)

Using the constraints derived from (A.2h), (A.7), (A.8), (A.4) and the expression of
the Lagragian (A.9), the dual problem is as follows:

min
α,α∗,γ,µ

1

2
((α− α∗)TQ(α− α∗) + γTAAT γ + µTΓΓTµ+ 2

n∑
i=1

(αi − α∗i )γTAXi:

−2

n∑
i=1

(αi − α∗i )µTΓXi: − 2γTAΓTµ) +

n∑
i=1

(αi − α∗i )yi + γT b− µT d

subject to 0 ≤ α(∗)
i ≤

C

n
n∑
i=1

αi + α∗i ≤ Cν

n∑
i=1

αi − α∗i = 0

γj ≥ 0.

(A.10)

The equation linking the primal and the dual optimization problems is given by
(A.6) which finishes the proof.

Appendix B. Proof of Proposition 2.2.

Proof. To prove part 1., let’s recall that αi, α∗i are the lagrange multipliers asso-
ciated to the optimization problem (LSVR-P) constraints:

(B.1)
βTXi: + β0 − yi ≤ ε+ ξi

yi − βTXi: − β0 ≤ ε+ ξ∗i .
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The complementary optimality conditions leads to

αi(β
TXi: + β0 − yi − ε− ξi) = 0

α∗i (yi − βTXi: − β0 − ε− ξ∗i ) = 0.

Let’s now suppose that αi > 0 and α∗i > 0 which implies that

βTXi: + β0 − yi − ε− ξi = 0

yi − βTXi: − β0 − ε− ξ∗i = 0.

It follows that −2ε = ξi + ξ∗i and ξi, ξ∗i ≥ 0 which implies ξi = ξ∗i = ε = 0. This goes
against our condition ε > 0.

To prove part 2., we need to remind the optimality conditions given in Appen-
dix A, (A.2l) and (A.5) leads to

(Cν −
l∑
i=1

αi + α∗i )ε = 0.

Thus, if ε > 0 we have that
∑n
i=1 αi + α∗i = Cν.

Appendix C. Proof of Proposition 3.6.
We start by giving a lemma that will be usefull to prove the proposition for the

blocks α and α∗.

Lemma C.1. If the update between iteration k and k + 1 happens in the block α
(or α∗) and that (i, j) is the most violating pair of variables then

∇αif(θk+1)−∇αjf(θk+1) = ∇αif(θk)−∇αjf(θk) + t∗(Qii +Qjj − 2Qij)

Proof. Let’s recall that the update in the block α (or α∗) has the following form

αk+1
i = αki + t∗

αk+1
j = αkj − t∗,

with t∗ as defined in Definition 3.5. In a stacked form we have that

∇αif(θk+1)−∇αjf(θk+1) = (Qθk+1)i + li − (Qθk+1)j − lj

=

2n+k1+k2∑
s=1

Qisθ
k+1
s + li −

2n+k1+k2∑
s=1

Qjsθ
k+1
s − lj

= ∇αif(θk)−∇αjf(θk) + t∗(Qii −Qij) + t∗(Qjj −Qij)
= ∇αif(θk)−∇αjf(θk) + t∗(Qii +Qjj − 2Qij).

This lemma is helpful for the proof the blocks γ and µ.

Lemma C.2. If θi is the updated variable at iteration k, then the following holds:

∇if(θk+1) = Q̄ii(θ
k+1
i − θki ) +∇if(θk)
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CC DD

AA BB

Fig. C.1: Possible update for the block α or α∗

Proof. The proof is straightforward,

∇if(θk+1) =(Q̄θk+1
i )i + li

=

2n+k1+k2∑
s=1

Q̄isθ
k+1
s + li

=

2n+k1+k2∑
s6=i

Q̄isθ
k+1
s + li + Q̄iiθ

k+1
i

=∇if(θk) + Q̄iiθ
k+1
i − Q̄iiθki

=Q̄ii(θ
k+1
i − θki ) +∇if(θk).

Let’s now give the proof of Proposition 3.6.

Proof. Let’s consider that the update between iteration k and k + 1 takes place
in the block α. We will define (i, j) as the most violating pair of variables as defined
in section 3. From the discussion in subsection 3.3, we know that minimizing the
objective function of (LSVR-D) considering that only the parameter t is a variable
leads to minimizing the following function:

(C.1) ψ(t) =
1

2
t2(Q̄ii + Q̄jj − 2Q̄ij) + t(∇αif(θk)−∇αjf(θk)) +K

We recall that t is the parameter that will be used for the update of αi and αj and
K is a constant term. We also have the following result from Lemma C.1:

(C.2) ∇αif(θk+1)−∇αjf(θk+1) = ∇αif(θk)−∇αjf(θk) + (Q̄ii + Q̄jj − 2Q̄ij)t
∗

The minimization update takes place in the square S = [0, Cn ]× [0, Cn ] illustrated
in Figure C.1.

At points B and C of the square S, (i, j) cannot be a τ -violating pair of variables
because they belong to the same set of indices Iup (or Ilow). Everywhere else, violation
can take place.

• On ]CA], αi = 0 and αj > 0 so i ∈ Iup and j ∈ Ilow which means that by
definition of τ -violating pair of variable

∇αif(θk)−∇αjf(θk) < −τ < 0
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which means tq =
−(∇αif(θk)−∇αj f(θk))

(Q̄ii+Q̄jj−2Q̄ij)
> 0. Let’s remind that :

(C.3) max(−αi, αj −
C

n
) ≤ t∗ ≤ min(

C

n
− αi, αj)

It means that on ]CA], (C.3) becomes : 0 ≤ t∗ ≤ αj There are then two
possibilities:
– if tq ≥ αj , it implies because of the constraints on t∗, that t∗ = αj . The

update becomes then αk+1
i = αki +αkj and αk+1

j = 0. Then j belongs to
the set of indices Iup and i belongs to Ilow. From (C.2), we deduce that
∇αif(θk+1)−∇αjf(θk+1) ≤ 0 which proves that (i, j) is not a violating
pair of variable anymore and that αk+1 6= αk

– Second possibility is that tq ≤ αj then t∗ = tq, then (αk+1
i , αk+1

j ) belongs
to int(S). From (C.2), we deduce that ∇αif(θk+1) − ∇αjf(θk+1) = 0,
(i, j) is not a τ -violating pair of variables anymore and αk+1 6= αk.

• On ]CD], αi > 0 and αj = 0 so i ∈ Ilow and j ∈ Iup which means that by
definition of τ -violating pair of variable

∇αif(θk)−∇αjf(θk) > τ

which yields to tq < 0. It means that on ]CD], (C.3) becomes : −αi ≤ t∗ ≤ 0
There are then two possibilities:
– tq ≤ −αi, it implies because of the constraints on t∗, that t∗ = −αi.

The update becomes then αk+1
i = 0 and αk+1

j = αki . Then j belongs
to the set of indices Ilow and i belongs to Iup at αk+1. From (C.2), we
deduce that ∇αif(θk+1) − ∇αjf(θk+1) ≥ 0 which proves that (i, j) is
not a violating pair of variable anymore and that αk+1 6= αk

– Second possibility is that tq ≥ −αi then t∗ = tq. Implying that (αk+1
i , αk+1

j )

belongs to int(S). From (C.2), we deduce that∇αif(θk+1)−∇αjf(θk+1) =
0, (i, j) is not a τ -violating pair of variables anymore and αk+1 6= αk.

• On [AB[, 0 ≤ αi <
C
n and αj = C

n so i ∈ Iup and j ∈ Ilow which means that
by definition of τ -violating pair of variable

∇αif(θk)−∇αjf(θk) < −τ < 0,

which implies tq > 0.
It means that on [AB[, (C.3) becomes 0 ≤ t∗ ≤ C

l − αi. There are then two
possibilities:
– if tq ≥ C

l − αi, it implies, because of the constraints on t∗, that t∗ =
C
n − αi. The update is αk+1

i = C
n and αk+1

j = αki . Then j belongs to
the set of indices Iup and i belongs to Ilow. From (C.2) we deduce that
∇αif(θk+1)−∇αjf(θk+1) ≤ 0 which proves that (i, j) is not a violating
pair of variable anymore and that αk+1 6= αk.

– Second possibility is that tq ≤ C
n − αi. Thus t

∗ = tq, then (αk+1
i , αk+1

j )

belongs to int(S). From (C.2), we deduce that∇αif(θk+1)−∇αjf(θk+1) =
0, (i, j) is not a τ -violating pair of variables anymore and αk+1 6= αk.

• On ]BD], αi = C
n and 0 ≤ αj <

C
l . Thus we have that i ∈ Ilow and j ∈ Iup

which means that by definition of τ -violating pair of variable

∇αif(θk)−∇αjf(θk) > τ,
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which yields to tq < 0. It means that on ]BD], (C.3) becomes αj−C
n ≤ t

∗ ≤ 0.
There are then two possibilities:
– if tq ≤ αj − C

n , it implies that t∗ = αj − C
n . The update becomes

αk+1
i = αkj and αk+1

j = C
n . Then j belongs to the set of indices Ilow

and i belongs to Iup at αk+1. From (C.2), we deduce that ∇αif(θk+1)−
∇αjf(θk+1) ≥ 0 which proves that (i, j) is not a violating pair of variable
anymore and that αk+1 6= αk.

– Second possibility is that tq ≥ αj − C
n . Then t

∗ = tq and (αk+1
i , αk+1

j ) ∈
int(S). From (C.2), we deduce that ∇αif(θk+1)−∇αjf(θk+1) = 0, (i, j)
is not a τ -violating pair of variables anymore and αk+1 6= αk.

• Inside the square S, if i ∈ Ilow and j ∈ Iup, we have that tq < 0. Then
there will be three possibilities for the update coming from this inequality
max(−αi, αj − C

n ) ≤ t∗ < 0. The same discussion as the one we had for
the edges of S gives the desired results, the only difference here is that there
are three different possibilities: 2 clipped updates possibilities and the update
using tq. The same observation is true for the case where i ∈ Iup and j ∈ Ilow,
it will only change the sign of tq. Thus changing the 2 possible clipped update
using the upper bound of (C.3) or the update using tq. Everything leads to
the conclusion that (i, j) cannot be a violating pair of variables at iteration
k + 1 and that αk+1 6= α.

The same arguments are used to prove the same for the block α∗, the proof is
similar.

Let’s now prove that when the update takes place at index i in the block γ then i
is not violating variable at iteration k+1. Then we need to show that ∇γif(θk+1) ≥ 0.

Let’s start with the case where the update γk+1
i =

∇γif(θk)

Q̄ii
−γki . Using Lemma C.2, we

have that ∇γif(θk+1) = 0. The second possible case is γk+1
i = 0 because −∇γif(θk)

Q̄ii
+

γki ≤ 0. If γk+1
i = 0 then ∇γif(θk+1) = −Q̄iiγki +∇γif(θk). Q̄ii is positive because

it is a diagonal element of a Gram matrix (ATA) thus we get that ∇γif(θk+1) ≥ 0,
which proves that i is not a violating variable anymore.

The proof for the block µ relies on the same idea except that it is simpler because
there is no clipped updates possible so ∇µif(θk+1) = 0 if the updates takes place
at µi which also proves that i is not a violating variable for this block of variables
anymore.

Appendix D. Proof of Theorem 3.7.
We begin the proof of the theorem by giving several preliminary results that will

be hepful for giving the final proof. The first result gives a bound for controlling
the distance of the primal iterates generated by the algorithm and the solution of
(LSVR-P).

Lemma D.1. For any SMO-LSSVR iterate βk = −
∑n
i=1(αki −(α∗i )

k)Xi:−AT γk+
ΓTµk, βopt a solution of (LSVR-P) and θopt a solution of (LSVR-D), it holds that

1

2
||βk − βopt|| ≤ f(θk)− f(θopt).

Proof. A first observation is that the relationship between the primal optimization
problem and the dual leads to this equality

(D.1) f(θk) =
1

2
||βk||2 + lT θk.
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Replacing βk by −
∑n
i=1(αki − (α∗i )

k)Xi: − AT γk + ΓTµk leads to (D.1). We
have already seen that there is strong duality between both problems so the dual
gap is zero at the solutions. Thus it means that for any primal optimal solution
(βopt, βopt

0 , ξopt, ξopt, εopt) and any dual solution θopt, it holds true that

1

2
||βopt||2 + C(νεopt +

1

n

n∑
i=1

ξopt
i + ξopt

i ) = −f(θopt) = −1

2
||βopt||2 − lT θopt.

Using the equation link between primal and dual yields to

〈β, βopt〉 = 〈−
n∑
i=1

(αi − α∗i )Xi: −AT γ + ΓTµ, βopt〉

= −〈AT γ, βopt〉 −
n∑
i=1

(αi − α∗i )〈Xi:, β
opt〉+ 〈ΓTµ, βopt〉.

Since
∑n
i=1(αi − α∗i ) = 0, we have that

〈β, βopt〉 = −〈AT γ, βopt〉 −
n∑
i=1

(αi − α∗i )〈Xi:, β
opt〉+ 〈ΓTµ, βopt〉 − βopt

0

n∑
i=1

(αi − α∗i )

= −〈AT γ, βopt〉 −
n∑
i=1

αi(〈Xi:, β
opt〉+ βopt

0 ) +

n∑
i=1

α∗i (〈Xi:, β
opt〉+ βopt

0 )

+ 〈ΓTµ, βopt〉.

Moreover, using the constraints of (LSVR-P) and the fact that α ≥ 0 and α∗ ≥ 0 it
holds that:

〈β, βopt〉 ≥ −〈AT γ, βopt〉+

n∑
i=1

αi(−yi − εopt − ξopt
i ) +

n∑
i=1

α∗i (yi − εopt − (ξ∗i )opt)

+ 〈ΓTµ, βopt〉

= −〈AT γ, βopt〉 −
n∑
i=1

(αi − α∗i )yi − εoptCν −
n∑
i=1

αiξ
opt
i + α∗i (ξ

∗
i )opt

+ 〈ΓTµ, βopt〉

Finally we have

1

2
||βk − βopt||2 =

1

2
||βk||2 − 〈βk, βopt〉+

1

2
||βopt||2

≤ 1

2
||βk||2 + 〈AT γk, βopt〉+

n∑
i=1

(αki − (α∗i )
k)yi + εoptCν

+

n∑
i=1

αki ξ
opt
i + (α∗i )

k(ξ∗i )opt − 〈ΓTµk, βopt〉+
1

2
||βopt||2

Since βopt statisfies the constraints of the primal optimization problem, it holds
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that 〈ΓTµ, βopt〉 = µT d and since γ ≥ 0 we have 〈AT γ, βopt〉 ≤ γT b, thus

1

2
||βk − βopt||2 ≤ 1

2
||βk||2 + γT b+

n∑
i=1

(αki − (α∗i )
k)yi + εoptCν

+

n∑
i=1

αki ξ
opt
i + (α∗i )

k(ξ∗i )opt − µT d+
1

2
||βopt||2.

The linear term that we wrote l in the objective function of (LSVR-D) defines
lT θ =

∑n
i=1(αi − α∗i )Xi: + γT b − µT d which in combination with the equality (D.1)

gives

1

2
||βk − βopt||2 ≤ 1

2
f(θk) + εoptCν +

n∑
i=1

αki ξ
opt
i + (α∗i )

k(ξ∗i )opt +
1

2
||βopt||2.

Each αki , (α∗i )
k is bounded by C

n which yields to

1

2
||βk − βopt||2 ≤ f(θk) + εoptCν +

C

n

n∑
i=1

ξopt
i + (ξ∗i )opt +

1

2
||βopt||2.

We recognize the objective function of the primal optimization problem and using
that there is no dual gap at the optimum it follows that

εoptCν +
C

n

n∑
i=1

ξopt
i + (ξ∗i )opt +

1

2
||βopt||2 = −f(θopt),

which finishes the proof.

Before the next statement, we need to give a definition that we will use in the
next proofs.

Definition D.2. Let (i, j) (i ∈ Ilow and j ∈ Iup) be the most violating pair of
variables in the block α, (i∗, j∗) (i∗ ∈ I∗low and j∗ ∈ I∗up) for the block α∗. Let s1

be the index of the most violating variable in the block γ and s2 in the block µ. We
will call "optimality score" at iteration k the quantity ∆k = max(∆k

1 ,∆
k
2 ,∆

k
3 ,∆

k
4),

where ∆k
1 = max(∇αjf(θk) − ∇αif(θk), 0), ∆k

2 = max(∇αj∗ f(θk) − ∇αi∗ f(θk), 0),
∆k

3 = max(−∇γs1 f(θk), 0) and ∆k
4 = max(|∇µs2 f(θk)|, 0).

The next result states that the sequence {f(θk)} is a decreasing sequence. This result
already states the convergence to a certain value f̄ because we know that the sequence
is bounded by the existing global minimum of the function since f is convex.

Lemma D.3. The sequence generated by the Generalized SMO algorithm {f(θk)}
is a decreasing sequence. This sequence converges to a value f̄ .

Proof. We first prove that f(θk)− f(θk+1) ≥ 0 when minimization takes place in
the block α. Let (i, j) be the indices of the variables selected to be optimized and let
u ∈ R2n+k1+k2 be the vector with only zeros except at the ith coordinate where it is
equal to t∗ as defined in Definition 3.5 and at the jth coordinate where it is equal to

−t∗. We will also define tq =
−(∇αif(θk)−∇αj f(θk))

Qii+Qjj−2Qij
, the unconstrained minimum for
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the update in α block. Let us compute

f(θk)− f(θk+1) =
1

2
(θk)T Q̄θk + lT θk − 1

2
(θk+1)T Q̄θk+1 + lT θk+1

=
1

2
(θk)T Q̄θk + lT θk − 1

2
(θk + U)T Q̄(θk + u) + lT (θk + u)

= −1

2
uT Q̄u− uT (Qθk + l)

= −1

2
uT Q̄u− uT (∇f(θk))

= − (t∗)2

2
(Qii +Qjj − 2Qij)− t∗(∇αif(θk)−∇αjf(θk)).

We first study the case when there is no clipping which means that t∗ = tq
1. No clipping. Replacing t∗ by its expression leads to the following result:

f(θk)− f(θk+1) =
(∆k

1)2

2(Qii +Qjj − 2Qij)

=
(∆k

1)2

2||Xi: −Xj:||2
≥ 0.

2. Clipping takes place because tq ≤ t∗ = max(−αi, αj − C
n )

We notice that tq ≤ max(−αi, αj − C
n ) ≤ 0 which implies that i ∈ Ilow and j ∈ Iup.

In that case ∆k
1 = ∇αif(θk)−∇αjf(θk). Replacing tq by its expression leads to

−(∇αif(θk)−∇αjf(θk)) ≤ t∗(Qii +Qjj − 2Qij)

∆k
1t
∗

2
≤ −(t∗)2

2
(Qii +Qjj − 2Qij)

∆k
1t
∗

2
− t∗∆k

1 ≤
−(t∗)2

2
(Qii +Qjj − 2Qij)− t∗(∇αif(θk)−∇αjf(θk))

−1

2
∆k

1t
∗ ≤ −(t∗)2

2
(Qii +Qjj − 2Qij)− t∗(∇αif(θk)−∇αjf(θk))

Thus we have that if t∗ = −αi,

f(θk)− f(θk+1) ≥ 1

2
∆k

1αi ≥ 0

and that if t∗ = αj − C
n ,

f(θk)− f(θk+1) ≥ 1

2
∆k

1(
C

n
− αj) ≥ 0.

3. Clipping takes place because tq ≥ t∗ = min(Cn − αi, αj).
This time tq ≥ min(Cn − αi, αj) ≥ 0 which also implies that i ∈ Iup and j ∈ Ilow and
that ∆k

1 = ∇αjf(θk)−∇αif(θk). The only difference here is that multiplying by −t∗
will imply a change in the inequality.
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−(∇if(θk)−∇jf(θk)) ≥ t∗(Qii +Qjj − 2Qij)

−∆k
1t
∗

2
≤ −(t∗)2

2
(Qii +Qjj − 2Qij)

−∆k
1t
∗

2
+ t∗∆k

1 ≤
−(t∗)2

2
(Qii +Qjj − 2Qij)− t∗(∇if(θk)−∇jf(θk))

1

2
∆k

1t
∗ ≤ −(t∗)2

2
(Qii +Qjj − 2Qij)− t∗(∇if(θk)−∇jf(θk))

Thus we have that if t∗ = C
n − αi

f(θk)− f(θk+1) ≥ 1

2
∆k

1(
C

n
− αi) ≥ 0,

and if t∗ = αj ,

f(θk)− f(θk+1) ≥ 1

2
∆k

1αj ≥ 0.

To prove that f(θk)− f(θk+1) ≥ 0 when the update takes place in the block γ and µ
we first need to observe that when only one variable is updated between iteration k
and k + 1 it follows that

f(θk)− f(θk+1) =
1

2
Q̄ii(θ

k
i − θk+1

i )2.

Therefore, we now prove the result for the block γ. If the update is not a clipped
update and i is the index of the updated variable, it holds that

γki − γk+1
i =

∇γif(θk)

(AAT )ii
,

which gives the following bound

(D.2) f(θk)− f(θk+1) =
1

2(AAT )ii
(∇γif(θk))2 ≥ 0.

Moreover, if a clipped update takes place in this block, we know that it happens when
0 ≤ γki ≤

∇γif(θk)

(AAT )ii
. It yields to the following bound

f(θk)− f(θk+1) =
1

2
(AAT )ii(γ

k
i )2 ≥ 0.

The result for the block µ is obtained using the same arguments except that there is
no clipped updates.

Lemma D.4. There exists a subsequence {θkj} of iterations generated by the gen-
eralized SMO where clipping does not take place.

Proof. Let’s suppose the contrary, which means that there exists an iteration K
such that for all k ≥ K we only perform clipped updates. The number of variables
Nk
B that belong to the boundary of its contraints (0 or C

n for the blocks α or α∗ and
0 for the block γ) is non-decreasing for all k ≥ K and it is bounded thus it must
converge to another integer N∗.
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This convergence implies that there exists k∗ such that for all k ≥ k∗, Nk
B = N∗

since Nk
B and N∗ are integers. This observation allows us to conclude that for all

k ≥ k∗ clipped updates only take place in the blocks α or α∗ since the updates in
the block γ are made on only one variable and that the number of clipped variables
has reached its maximum value. An update in the block γ would strictly increase the
number of clipped variables which is not possible for all k ≥ k∗ or the update would
not change the value of θ and we showed before that this situation is not possible
(Proposition 3.6).

For all k ≥ k∗, we have that updates in the block α (resp. α∗) have this necessary
scheme: αki or αkj is equal to 0 or C

n thus after the update, one of them will leave
the boundary and the other one goes to it in order to keep the number of clipped
variables equals to N∗. The different possibilities are then the following:

• if αki = 0 and 0 < αkj ≤ C
l the only possible update following the Definition 3.5

is
αk+1
i = αki + αkj = αkj

αk+1
j = αkj − αkj = 0.

• if αkj = C
l and 0 ≤ αki <

C
l the only possible update following the Defini-

tion 3.5 is
αk+1
i = αki + (

C

l
− αki ) =

C

l

αk+1
j = αkj − (

C

l
− αki ) = αki .

It stays true for the block α∗ and the discussion is similar. It is clear that from the
description of the updates made above that there is only a finite number of ways to
shuffle the values which means that there exists k1, k2 ≥ k∗ such as θk1 = θk2 and with
k1 < k2. Therefore f(θk1) = f(θk2) which contradicts the decrease of the sequence
f(θk) (Lemma D.3).

Lemma D.5. Let {θkj} be a subsequence generated by the Generalized SMO algo-
rithm where clipping does not take place. We then have that ∆kj → 0.

Proof. We have that f(θkj ) − f(θkj+1) ≥ (∇αif(θkj )−∇αj f(θkj ))2

2D2 = (∆kj )2

2D2 where
D = max

p,q
||Xp:−Xq:|| when the update happens in the blocks α or α∗. When it happens

in the block γ with no clipping we have the following inequality f(θkj )− f(θkj+1) ≥
(∇γif(θkj ))2

2 = (−∆kj )2

2 = (∆kj )2

2 . When the update takes place in the block µ, we

have that f(θkj )− f(θkj+1) ≥ (∇µif(θkj ))2

2 ) = (∆kj )2

2 . We then define a sequence

ukj =

{
1

2D2 (∆kj )2 if the update takes place in the blocks α or α∗.
1
2 (∆kj )2 if the update takes place in the blocks γ or µ.

The sequence {ukj} → 0 because of the bound given above and the fact that
f(θkj )− f(θkj+1)→ 0 too (Lemma D.3). This implies that ∆kj → 0 as well.

A consequence of the lemma above is that ∆
kj
1 → 0, ∆

kj
2 → 0, ∆

kj
3 → 0 and ∆

kj
4 → 0

because ∆kj is defined as the maximum of those four positive values.

Lemma D.6. Let {θkj} be a subsequence generated by the generalized SMO algo-
rithm where clipping does not take place. This subsequence is bounded.
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Proof. To prove the statement, we will show that ||θkj − θopt||2 is bounded where
θopt belongs to the set of solution of (LSVR-D). Since each αi and α∗i is belongs to
[0, Cn ], we have that

||θkj+1 − θopt||2 = ||αkj+1 − αopt||2 + ||(α∗)kj+1 − (α∗)opt||2 + ||γkj+1 − γopt||2

+ ||µkj+1 − µopt||2

≤ 2C2

n
+ ||γkj+1 − γopt||2 + ||µkj+1 − µopt||2.

We will work on the bound for the quantity ||µkj+1 − µopt||2 first. If the update
happens in the block µ at coordinate µj , we have the following

||µkj+1 − µopt||2 = ||µkj − ej
∇µjf(θkj )

(ΓΓT )jj
− µopt||2

= ||µkj − µopt||2 − 2〈µkj − µopt, ej
∇µjf(θkj )

(ΓΓT )jj
〉+ ||ej

∇µjf(θkj )

(ΓΓT )jj
||2

= ||µkj − µopt||2 +
∇µjf(θkj )2

(ΓΓT )2
jj

− 2
∇µjf(θkj )

(ΓΓT )jj
(µ
kj
j − µ

opt
j ).

We then have that

−2
∇µjf(θkj )

(ΓΓT )jj
(µ
kj
j − µ

opt
j ) = 2(µ

kj+1
j − µkjj )(µ

kj
j − µ

opt
j )

= 2〈µkj+1 − µkj , µkj − µopt〉
≤ 2||µkj+1 − µkj || · ||µkj − µopt||

≤ 2
|∇µjf(θkj )|

(ΓΓT )jj
||µkj − µopt||

≤ 2
∆
kj
4

(ΓΓT )jj
||µkj − µopt||

From Lemma D.5, we have that ∆
kj
4 → 0 then it can be bounded by a constant M0.

We know from (D.2) that
∇µj f(θkj )2

(ΓΓT )2
jj

= 2
(ΓΓT )jj

(f(θkj )−f(θkj+1)). From Lemma D.3,

we know that f(θkj )−f(θkj+1)→ 0 then it can be bounded by a constantM1. Overall
we have that

||µkj+1 − µopt||2 ≤ ||µkj − µopt||2 + 2
M0

(ΓΓT )jj
||µkj − µopt||+ 2

(ΓΓT )jj
M1.

By recursion we have

||µkj+1 − µopt||2 ≤ ||µ0 − µopt||2 + 2
M0

(ΓΓT )jj
||µ0 − µopt||+ 2

(ΓΓT )jj
M1 <∞.

Since there is no clipped update on the subsequence {θkj}, the proof for the block
γ is similar which proves that ||θkj − θopt|| is bounded.
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Lemma D.7. Let {θkj} be a subsequence generated by the generalized SMO algo-
rithm where clipping does not take place. There exists a sub-subsequence that converges
to θ̄, with θ̄ being a solution of (LSVR-D).

Proof. From Lemma D.6, we have that {θkj} is a bounded sequence, it means that
we can extract a converging subsequence that we will write {θkj} not to complicate
the notations. Since F is closed, θ̄ meets the constraints of the dual optimization
problem and belongs to F . We now want to prove that it belongs to the set of solution
of (LSVR-D) by showing that ∆̄1(θ̄) ≤ 0, ∆̄2(θ̄) ≤ 0, ∆̄3(θ̄) ≤ 0 and ∆̄4(θ̄) ≤ 0. Let’s
make two observations that will be used for the following proof. The first one comes
from the continuity of the gradient which implies that for all ε there exists K1 such
that for all kj ≥ K1, |∇if(θkj ) − ∇if(θ̄)| < ε for all i. The second observation is
that it is possible too chose an ε small enough such that there exists K2 such that
for all kj ≥ K2: if ᾱi > 0, we have αkji > 0 and if ᾱi < C

n we have αkji < C
n .

In other words, we say that all the indices in the set Ilow(ᾱ)( resp. Iup) are also in
Ilow(αkj )( resp. Iup). The same argument holds for indices in the block α∗.

Let’s assume that ∆̄1 > 0, it means that there exists at least one violating pair
of variables that we will note (̄i, j̄) at θ̄. From the discussion above, we know that
ī ∈ Ilow for all kj ≥ K2 and that j̄ ∈ Iup for all kj ≥ K2. We then have that for all
ε > 0, there exists K1 such as for all kj ≥ max(K1,K2),

∆
kj
1 = min

i∈Iup
∇if(θkj )− max

i∈Ilow
∇if(θkj )

≥ ∇īf(θkj )−∇j̄f(θkj )

≥ (∇īf(θ̄)− ε)− (∇j̄f(θ̄) + ε)

= ∆̄1 − 2ε.

We choose ε = ∆̄1

2 − ε
′ where 0 < ε′ < ∆̄1

2 which leads to :

∆
kj
1 ≥ ∆̄1 − 2ε′ = 2ε′ > 0.

This inequality is true for all kj ≥ max(K1,K2) which contradicts the fact that
∆
kj
1 → 0. The proof is similar to show that ∆̄2 ≤ 0.
Let’s now suppose that ∆̄3 > 0 it means that there exists an index ī such that

∇γif(θ̄) < 0. For all ε > 0, there exists K1, K2 such as for all kj > max(K1,K2)

∆
kj
3 = − min

i∈{1,...,k1}
∇γif(θkj )

≥ −∇γīf(θkj )

≥ −(∇γīf(θ̄) + ε)

= ∆̄3 − ε.

We choose ε = ∆̄3 − ε′ where 0 < ε′ < ∆̄3 which leads to :

∆
kj
3 ≥ ∆̄3 − ε = ε′ > 0.

This inequality is true for all kj ≥ max(K1,K2) which contradicts the fact that
∆
kj
3 → 0.
Finally let’s assume that ∆

kj
4 > 0, it means that |∇µif(θkj )| 6= 0. Using the

continuity of the gradient we write that for all ε > 0 there exists K1 such that for all
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kj ≥ K1 we have |∇µif(θkj )−∇µif(θ̄| < ε. Using triangle inequality we get that∣∣∣∣|∇µif(θkj )| − |∇µif(θ̄)|
∣∣∣∣ ≤ |∇µif(θkj )−∇µif(θ̄)| < ε.

Thus
−ε ≤ |∇µif(θkj )| − |∇µif(θ̄)| ≤ ε,

which means that
|∇µif(θ̄)| − ε ≤ |∇µif(θkj )|.

Then we have the following:

∆
kj
4 = max

i∈{1,...,k2}
|∇µif(θkj )|

≥ ∇µīf(θkj )|
≥ |∇σf(θ̄)| − ε
= ∆̄4 − ε.

We choose ε = ∆̄4 − ε′ where 0 < ε′ < ∆̄4 which leads to

∆
kj
4 ≥ ∆̄4 − ε = ε′ > 0.

This inequality is true for all kj ≥ max(K1,K2) which contradicts the fact that
∆
kj
4 → 0.

Proof. We are now able to give the proof of the Theorem 3.7. From Lemma D.1,
we have that 1

2 ||β
k − βopt|| ≤ f(θk) − f(θopt). Moreover, from Lemma D.5 we know

that there is a subsequence {θkj} generated by the Generalized SMO algorithm where
clipping does not take place and that converges to θ̄, with θ̄ a solution of (LSVR-D).
The continuity of the objective function f allows us to say that f(θkj )→ f(θ̄). From
Lemma D.3, we know that {f(θkj )} is decreasing and bounded so the monotone
convergence theorem implies that the whole sequence f(θk) → f(θ̄) and it follows
that 1

2 ||β
k − βopt|| → 0 and finally that βk → βopt.
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