Rasterization strategies for airborne LiDAR classification using attribute profiles - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Rasterization strategies for airborne LiDAR classification using attribute profiles

Résumé

This paper evaluates rasterization strategies and the benefit of hierarchical representations, in particular attribute profiles, to classify urban scenes issued from multispectral LiDAR acquisitions. In recent years it has been found that rasterized LiDAR provides a reliable source of information on its own or for fusion with multispectral/hyperspectral imagery. However previous works using attribute profiles on LiDAR rely on elevation data only. Our approach focuses on several LiDAR features rasterized with multilevel description to produce precise land cover maps over urban areas. Our experimental results obtained with LiDAR data from university of Houston indicate good classification results for alternative rasters and even more when multilevel image descriptions are used.
Fichier principal
Vignette du fichier
jurse2019florent.pdf (933 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02343901 , version 1 (13-11-2019)
hal-02343901 , version 2 (08-12-2020)

Identifiants

Citer

Florent Guiotte, Sébastien Lefèvre, Thomas Corpetti. Rasterization strategies for airborne LiDAR classification using attribute profiles. 2019 Joint Urban Remote Sensing Event (JURSE), May 2019, Vannes, France. pp.1-4, ⟨10.1109/JURSE.2019.8808945⟩. ⟨hal-02343901v1⟩
151 Consultations
246 Téléchargements

Altmetric

Partager

More