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Abstract—This paper evaluates rasterization strategies and the
benefit of hierarchical representations, in particular attribute
profiles, to classify urban scenes issued from multispectral
LiDAR acquisitions. In recent years it has been found that
rasterized LiDAR provides a reliable source of information on
its own or for fusion with multispectral/hyperspectral imagery.
However previous works using attribute profiles on LiDAR rely
on elevation data only. Our approach focuses on several LiDAR
features rasterized with multilevel description to produce precise
land cover maps over urban areas. Our experimental results
obtained with LiDAR data from university of Houston indicate
good classification results for alternative rasters and even more
when multilevel image descriptions are used.

Index Terms—airborne LiDAR, land cover mapping, attribute
profiles, multilevel image description

I. INTRODUCTION

Airborne LiDAR systems are a common source of aquisition
for elevation data. Such systems provide accurate 3D point
clouds of the scanned scenery. LiDAR is very popular over
urban areas where it brings a valuable complementary source
of information when used with multispectral or hyperspectral
optical data in order to achieve land cover or land use mapping.

LiDAR data are voluminous, irregularly distributed point
clouds coming along with intensity features and acquisition
meta-data. Due to this complexity, LiDAR data for land cover
mapping are often simplified to a digital elevation model
(DEM) used as additional information for fusion with multi-
spectral or hyperspectral images. In this work, we focused on
providing such maps with LiDAR data only using multilevel
image description. Classification of several urban classes was
derived based on features from LiDAR data such as intensities,
elevation and number of echoes.

In the following we review simple yet effective rasterization
strategies of LiDAR data, that are subsequently used for
multilevel image description with attribute profiles (APs). By
doing so, we are then able to efficiently derive a precise land
cover map through supervised classification.
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II. RELATED WORK

A. Classification of LiDAR data

Numerous methods have already been proposed in the past
decade for LiDAR point cloud classification, coming from var-
ious scientific fields such as geosciences (flow, erosion, rock
deformations, . . . ), computer graphics (3D reconstruction) or
Earth observation (detection of trees, roads, buildings, . . . ).

Among efficient techniques, some directly exploit the 3D
point cloud structure [1], [10], [12] while in many applica-
tions the point cloud is first binned into a 2D regular grid
(rasterization process) on which computer vision approaches
can be applied (see e.g. [9]). Apart from some specific ap-
plications where LiDAR points are fused with other data (e.g.
hyperspectral images [5]–[7], [13]), most techniques consist in
computing features to describe the point clouds, before using
such features to classify the scene under study. While first
works have been focused on the characterization of single
points (often through height and intensity) without including
information related to their neighbours [9], more advanced
approaches have included spatial relationships using a set of
spheres or cylinders (of variable radius) around each point
to extract consistent geometric features [10], [12], [15]. In
this context, multiscale local 3D features (main orientation,
variability around each point, . . . ) have proven their efficiency
to classify LiDAR scenes (see e.g. [1]). Even if it is very
efficient, the sphere used to assess the neighbourhood of
points is isotropic (no orientation is promoted) which is not
optimal since the geometry of objects is not taken into account.
Therefore other multi-scale approaches have been proposed on
LiDAR DEM, such as the popular attribute profiles [4] that
produce a multiscale description of the pixel and his surround-
ing [6], [7], [13] before proceeding to the classification. The
main idea behind is to compute multi-scale spatial features by
taking into account the geometry of the scene. In this work,
we suggest to explore various information derived from the
LiDAR point cloud within the framework of attribute profiles.

B. Attributes profiles

Introduced in 2010 for remotely-sensed images, morpholog-
ical APs [4] enable a multi-scale description of data driven by
their spatial and spectral information. Efficient computation
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Fig. 1: Some rasters over residential area, for first echo (a-b-c-d) and last echo (e-f-g-h) with original rasters (a-e), SDAP
filtering with Λ = 10 (b-f), Λ = 200 (c-g) and Λ = 5000 (d-h). One can observe the interest of the last echo (second line)
since structures below vegetation are clearly highlighted.

of APs is achieved through tree-based representation of the
gray level sets with either a max or a min-tree. They have
then been superseded by self-dual attribute profiles (SDAPs)
[3] built from a unique multi-scale representation of an image
through the tree of shapes. In this tree, all nodes represent
nested connected regions of similar pixels, with leaves made
of the local extrema and the root gathering all pixels of the
image. Then, successive filterings of the image (or equivalently
the tree representation) are performed according to some
predefined characteristics computed for each node such as
area, moment of inertia, or standard deviation of the connected
components. The filtered images are finally stacked together to
form description vectors called SDAPs. The concatenation of
the SDAPs from different bands in a single vector are called
extended self-dual attribute profiles (ESDAPs) [2]. From the
concept of SDAPs, the differential self-dual attribute profiles
(DSDAPs) contains the same information but expresses the
difference between successive levels of the SDAPs.

Previous works combining APs and LiDAR data only focus
on DEM (cf. Sec. II-A). Yet, in recent LiDAR acquisition
systems, multi-spectral information can be extracted and the
question of the description of other features than DEM is open.

In this study we aim to enhance existing LiDAR classifica-
tion methods using SDAPs and their derivative to better de-
scribe several features extracted from LiDAR data. Validation
is performed on the IEEE DFC 2018 public dataset.

III. RASTERIZATION STRATEGIES

In this section we provide the features we extracted from
LiDAR data and the multi-scale filtering we have chosen for
the spatial description.

A. LiDAR features

LiDAR systems are usually exploited to provide unstruc-
tured 3D point clouds used to derive a DEM. Though a
DEM brings useful information, additional features issued
from LiDAR can still be exploited, in particular:

1) The spectral intensity associated with the first echo in
each spectral band.

2) The number of echoes in each spectral band. Some
structures, especially in vegetated areas, do not fully
backscatter the laser pulse and yield in multi-echoes
signals.

3) The position of the last echo. For multi-echoes backscat-
tered signals, this enables to localize the last element
encountered. In some situations (especially with vegeta-
tion), this enables to localize the ground surface.

4) The associated intensities of last echo. Analogously
to the paired information of first echo position and
intensities we have used the last echo spectral intensities
in addition to its position.

The two last information are usually less employed. Neverthe-
less, they can help the classification process since all vegetated
areas are removed, as illustrated by Fig. 1(e).

The rasterization process aims to provide in each cell some
representative values of the aforementioned features. For the
sake of simplicity, we have chosen to average the values of
intensity, elevation and number of echoes contained in each
cell. Furthermore, we fill potential empty cells (missing data)
through linear interpolation.

B. Attribute filtering

As previously indicated, we consider here the application of
attribute profiles over different rasterized versions of LiDAR
data. In this paper, for the sake of performance as well as
simplicity, we have chosen to filter all LiDAR features solely
based on the area attribute whose values have been set in the
urban context. More precisely, we consider three main scales:

• small values (1 to 5 m2) remove small-sized objects (e.g.
power lines) and can be regarded as denoising filters;

• moderate values (5 to 50 m2) remove medium-sized
objects (cars, trees, . . . );

• large values (more than 50 m2) remove larger objects
(e.g. buildings) and therefore enable to automatically
derive a digital terrain model (DTM).

IV. EXPERIMENTS

A. Dataset and setup

1) Dataset: Our method was tested on the multi-spectral
LiDAR acquisition of the University of Houston issued from
2018 IEEE GRSS Data Fusion Contest dataset1. The associ-
ated ground truth map has a spatial resolution of 0.5m.

1cf http://www.grss-ieee.org/community/technical-committees/data-fusion/
data-fusion-contest/



Fig. 2: Classification of the scene using DSDAPs with all features {N, I, Ir, D,Dr}.

2) Classes: We choose generic urban classes (roads, grass,
trees, residential buildings, non-residential buildings, cars and
trains) of the dataset to evaluate the overall accuracy.

3) Classifier: We choose random forest (RF) with 100 trees
to classify our data since such a setting provides reliable results
with respect both to accuracy and computational efficiency [8].

4) Feature computation: ESDAPs have been created by
filtering each raster with area attributes. According to observa-
tions made in Sec. III-B, the attributes have been constructed
using thresholds Λ = {10, 200, 5000}. In practice, all features
mentioned in previous sections are tested independently and
combined together. These features are digital surface model
(DSM) (noted D), intensities (noted I), intensities of last echo
(noted Ir), number of backscattered echoes (noted N ) and po-
sition of the last echo (noted Dr) . For the sake of comparison,
we also ran the classification only with initial rasters (without
multiscale analysis through APs) to evaluate the benefits of
APs and variants. The ESDAPs can be formulated as:

ESDAP = {SDAP(D),SDAP(I), ...,SDAP(N)}
5) Train and test data: Unlike most common multi-scale

features that rely on spatial windows, attribute profiles rely
on specific connectivity that prevents the use of random
points to train and test a classifier. As a matter of fact, two
pixels in various spatial areas of the image but with similar
characteristics are likely to share common nodes, and hence
common features. Therefore a random choice of train and test
points is unfair. To cope with such a bias, one solution is
to spatially split the dataset in two images where the first
one is used to train the classifier and the other to test it, and
conversely. In practice, we split horizontally the dataset in
order to maximize the class distribution in each sub-image.

6) Validation criteria: From the training split, 10% of the
points have been randomly selected to train and evaluate our
approach. The process has been repeated 100 times and we
provide averaged overall accuracy (OA) and Cohen’s kappa
coefficient (κ) for each experience.

B. Results

Quantitative evaluations are depicted in Tab. I. As expected
and reported in previous works [5], [6], [13], SDAPs improves
the classification when used with DEM D only (first line). This

observation is almost valid for all other features. Performances
of DSDAPs are slighlty higher than SDAPs except for DEM.

On this dataset, it is surprising to note that multi-spectral
intensities (first echo I or last echo Ir) are performing better
than DSM D (lines 5, 3, 1 respectively). This information is
likely to be an interesting feature to separate urban elements.

It is also worth noting that regarding positions, the last
echo Dr feature is more useful than first echo D (lines 1, 4)
when combined with hierarchical features, with a significant
improvement (about ∼ 10%). The ability of the last echo to
assess buildings can explain such an observation.

Finally, as expected, the combination of all features (last
lines) enables to achieve the best accuracy. Though the dif-
ference between DSDAPS and SDAPs is limited, the im-
provement with respect to the baseline is important and this
demonstrates the ability of APs-based features to properly
classify LiDAR data in urban environments. We can assess
an improvement of κ = 0.06 while comparing pixelwise and
DSDAPs description both with all features. We also can assess
an improvement of κ = 0.30 while comparing SDAPs on DSM
only with SDAPs on all LiDAR features.

For the sake of illustration, we provide in Fig. 2 the classi-
fication obtained using all features with DSDAPS, line 14 of
Tab. I. The 7 classes are represented as follows: roads in white,
grass in green, trees in dark green, residential buildings in light
grey, non-residential buildings in medium grey, cars in red and
trains in purple. Let us remind that in practice, the overall
image has been horizontally split to avoid common features
issued from APs between train and test data. Therefore, as
some classes appear in few parts of the image, they have not
been learned and hence, not properly classified (for instance
the grassy slope at the bottom right has been classified as a
building). Despite this difficulty, both quantitative evaluations
and qualitative maps are interesting. The prediction map is
indeed consistent as the objects exhibit few noise and proper
borders. Even if some irregularities on the edges of some
objects (e.g. buildings) appear, they are mainly due to the
irregularity of the initial point cloud sampling.

V. CONCLUSION

In this study, we have addressed the classification of multi-
spectral LiDAR using rasterized features and attribute filtering.



Description Pixel SDAPs DSDAPs

Evaluation metric OA(%) κ(×100) d OA(%) κ(×100) d OA(%) κ(×100) d

1 D 64.79 46.52 1 72.67 58.80 4 69.46 54.77 4
2 N 52.30 8.43 3 52.27 10.01 12 52.74 10.64 12
3 Ir 67.82 51.06 3 70.42 54.35 12 72.54 57.84 12
4 Dr 63.91 45.12 1 73.94 59.73 4 72.76 58.29 4
5 I 68.36 52.18 3 72.00 57.30 12 73.28 59.25 12
6 {D,Dr} 69.65 54.19 2 77.22 64.85 8 77.24 65.36 8
7 {N,Dr} 68.64 52.56 4 78.88 67.44 16 78.45 67.05 16
8 {I,D} 83.97 75.64 4 86.29 78.90 16 87.39 80.71 16
9 {I,Dr} 82.26 72.84 4 86.97 79.86 16 87.93 81.46 16

10 {N, I,D} 85.99 78.64 7 87.45 80.68 28 88.69 82.69 28
11 {N, I,Dr} 84.80 76.70 7 88.29 81.91 28 88.99 83.09 28
12 {I,D,Dr} 84.59 76.50 5 88.21 81.80 20 89.28 83.56 20
13 {N, I,D,Dr} 85.87 78.46 8 88.92 82.90 32 90.04 84.74 32
14 {N, I, Ir, D,Dr} 86.20 78.93 11 89.05 83.09 44 90.16 84.91 44

TABLE I: Overall accuracy (OA) and Cohen’s Kappa coefficient (κ) using DSDAPS, SDAPs and without hierarchical
representations for each feature and combination of features. The dimension of the feature vector (d) is also indicated (intensities
(I, Ir) and number of echos N are taken in each of the three spectral bands).

Results showed that combination of different rasterized
strategies can improve classification with the sole use of
LiDAR data. In addition, considering APs to model multiscale
spatial organization futher improved our results to the point it
allowed us to produce a precise land cover map over urban
area. Futhermore, the proposed method is fast and can be used
with any supervised classifier (see [11]).

Additional improvements can be designed for this method in
the future. On the one hand, we can extract many more features
from LiDAR such as point density, orientation within a cell,
ratio between spectral bands and summarize the cell with
other metrics than mean value such as standard deviation or
quantiles. On the other hand, we can enhance APs by filtering
more attributes such as moment of inertia, by using more
advanced APs based methods such as the local feature-based
attribute profiles (LFAPs) [14] or even by creating LiDAR
specific attributes to be included during the construction of
the tree. Regarding classification of overlapping classes (e.g.
buildings beneath trees), it could also be interesting to head for
3D classification. With this in mind, 3D ground-truth would
be optimal for LiDAR data.
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