Covariant Symanzik Identities - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Covariant Symanzik Identities

Résumé

Classical isomorphism theorems due to Dynkin, Eisenbaum, Le Jan, Sznitman, establish equalities in law between local times of random paths or ensemble of paths and the square of discrete Gaussian free fields on graphs. We extend these results to the case of real or complex vector bundles of arbitrary rank over graphs endowed with a connection, by providing identities in law between functionals of the covariant Gaussian free fields and holonomies of random paths. As an application, we give a formula for computing moments of a large class of random, in general non-Gaussian, sections in terms of holonomies of random paths with respect to an annealed random gauge field, in the spirit of Symanzik's foundational work on the subject.
Fichier principal
Vignette du fichier
Symanzik-hal.pdf (2.59 Mo) Télécharger le fichier
GFF-r3-n20-bis.pdf (101.87 Ko) Télécharger le fichier
GFF-r3-n20.pdf (1.77 Mo) Télécharger le fichier
bouclettes.pdf (9.44 Ko) Télécharger le fichier
connection.pdf (42.56 Ko) Télécharger le fichier
fig-symanzik.pdf (21.11 Ko) Télécharger le fichier
graph.pdf (6.34 Ko) Télécharger le fichier
grapheauneboucle.pdf (26.34 Ko) Télécharger le fichier
led.pdf (51.04 Ko) Télécharger le fichier
plusoumoins.pdf (59.73 Ko) Télécharger le fichier
vraigraphepuits.pdf (8.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02333747 , version 1 (25-10-2019)
hal-02333747 , version 2 (12-05-2020)

Identifiants

  • HAL Id : hal-02333747 , version 1

Citer

Adrien Kassel, Thierry Lévy. Covariant Symanzik Identities. 2019. ⟨hal-02333747v1⟩

Collections

UNIV-PARIS7
101 Consultations
82 Téléchargements

Partager

More