N

HAL

open science

Covariant Symanzik Identities

Adrien Kassel, Thierry Lévy

» To cite this version:

‘ Adrien Kassel, Thierry Lévy. Covariant Symanzik Identities. 2019. hal-02333747v1

HAL Id: hal-02333747
https://hal.science/hal-02333747v1

Preprint submitted on 25 Oct 2019 (v1), last revised 12 May 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02333747v1
https://hal.archives-ouvertes.fr

COVARIANT SYMANZIK IDENTITIES

ADRIEN KASSEL AND THIERRY LEVY

ABsTRACT. Classical isomorphism theorems due to Dynkin, Eisenbaum, Le Jan, Sznitman,
establish equalities in law between local times of random paths or ensemble of paths and the
square of discrete Gaussian free fields on graphs. We extend these results to the case of real or
complex vector bundles of arbitrary rank over graphs endowed with a connection, by providing
identities in law between functionals of the covariant Gaussian free fields and holonomies of
random paths. As an application, we give a formula for computing moments of a large class of
random, in general non-Gaussian, sections in terms of holonomies of random paths with respect
to an annealed random gauge field, in the spirit of Symanzik’s foundational work on the subject.
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INTRODUCTION

Hay que sentarse a la orilla
del pozo de la sombra

y pescar luz caida
1

Pablo Neruda

con paciencia

This paper is concerned with some relationships between covariant random vector fields and
holonomies of random paths on finite graphs.

At the root of our study is the by now classical subject of isomorphism theorems relating
local times of either Markovian paths or Poissonian ensembles of Markovian loops to squares of
Gaussian free fields. This subject of study originated in an approach of Symanzik to constructive
quantum field theory [Sym69|, which was initially implemented by Brydges, Frohlich, Spencer,
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discrete gauge theory, holonomy.

IWe must sit on the rim/of the well of darkness/and fish for fallen light /with patience.
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2 ADRIEN KASSEL AND THIERRY LEVY

and Sokal [BFS82, BFS83| in the context of classical spin systems, and later developped by
Dynkin who expressed these physics ideas in the formal language of Markov processes [Dyn83,
Dyn84a, Dyn84b]. Further developments followed, with the isomorphisms of Eisenbaum [Eis95],
Le Jan |LJ08], and Sznitman [Sznl2a|, among others. See [MR06, LJ11, Szn12b] and the refer-
ences therein for expository accounts of these results and their relation to the earlier Ray-Knight
theorems. The introduction of the Brownian loop soup by Lawler and Werner [LW04] was fol-
lowed by [LJ10], and the whole subject has seen further recent developments, attested among
many other papers by [Lupl6, Werl5, QW15, Zhal4, DLI16].

Our work however does not build on these previous results, but instead considers a more
general geometric setup, which can be specialised to obtain back these classical results. The
general framework that we consider is that of real or complex vector bundles of arbitrary rank
over graphs. The case of vector bundles of low rank was investigated by Kenyon [Kenll|, and
the slightly different but related case of graph coverings in a recent work by Le Jan [LJ16].

In this geometric framework, the usual Gaussian free field is naturally replaced by its covariant,
or vector valued, version, and a natural class of multiplicative functionals of paths is provided
by holonomy. However, the multiplicative functionals of interest in the classical isomorphism
theorems are of a different nature, namely exponential functionals of local times. We reconcile
these two classes by defining an extended notion of holonomy, twisted by an external potential.

The relations that we prove between holonomies and fields extend the known relations be-
tween random paths and Gaussian fields, since the class of functionals obtained from twisted
holonomies captures more faithfully, thanks to the non-commutativity of the gauge groups, the
actual geometry of paths, whereas local times ignore much of the chronological unfolding of
events in a trajectory.

Sections 1-3 are devoted to setting the basic setup of vector bundles over graphs which we use
throughout. The main novelty consists in the introduction, in Section 3, of a notion of twisted
holonomy (Definition 3.5) which, we believe, is a fruitful extension in our geometric framework
of classical exponential functionals of local times.

One of the most useful result for our study is a covariant Feyman—Kac formula (Theorem 4.1)
which we prove in Section 4. This formula can be thought of as a discrete analogue of a continuum
version which can be traced back at least to the work of Norris [Nor92] (see also [AHKHKS&9])
in stochastic differential geometry, and which can also be found, in a different guise for discrete
time walks, in earlier works of Brydges, Frohlich, and Seiler [BFS79] on lattice gauge theories as
we discovered after completing our work.

The last three sections contain the main results of the paper. Section 6 presents a very
general formulation of both Dynkin’s (Theorem 6.1) and Eisenbaum’s (Theorem 6.2) isomorphism
theorems. Our formulation is targetted at giving more insight into the relation between these
isomorphism theorems and the probabilistic formulation of potential theory, see for instance (38).

Section 7 presents a unified formulation (Theorem 7.6) of the isomorphisms of Le Jan and
Sznitman in the context of vector bundles.

Finally, Section 8 builds on the previous sections to prove a statement (Theorem 8.3) relating
moments of a large class of random sections to holonomies of random paths under an annealed
gauge field.

Acknowledgements. We thank, for their hospitality and support, the Forschungsinstitut
fiir Mathematik (FIM) in Zurich, the Centre Interfacultaire Bernoulli (CIB) in Lausanne, and
the ETH Zurich where parts of this work were completed.
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1. GRAPHS

1.1. Graphs with a well. In this first section, we give a precise definition of the graphs that
we will consider throughout this paper. One aspect in which this definition differs from that
used for example in [Szn12b| or [LJ11] is that we allow more than one edge between two vertices
of a graph. We also allow loop edges, that is, edges with identical end points.

Definition 1.1. A graph is a quintuple G = (U, E, s,t,7) consisting of
e two finite sets U and E such that U # @,
o two maps s,t: E— U, and
e a fized-point free involution i defined on a subset E¥ of E, such that the equality t o = s
holds on this subset.

If EY = E, the graph is said to be symmetric.

The elements of U are the wvertices of the graph, the elements of E its edges. Each edge e is
oriented and joins its source s(e) to its target t(e).

The involution 4 induces an equivalence relation on EV and the elements of the set

(E*/i) U (E\ EY)

are called, if need be, the geometric edges of the graph. Accordingly, two edges of a pair {e,i(e)},
where e € E¥, are understood as being the two orientations of one and the same geometric edge.
In contrast, we think of an element of E\ E? as the only existing orientation of the corresponding
geometric edge. Thus, in a sense which will be made precise later (see Section 3.2), the elements
of E¥ should be counted as one half of an edge, and the elements of E \ E¥ as one full edge (see
also Figure 1 below).

We will often write e = s(e), € = t(e) and e~ = i(e) for the source, target, and inverse of an
edge. We will also write a graph simply as a pair (U, E) and not mention the maps s,t,i.

FIGURE 1. The graph depicted on the left has 6 vertices and 12 geometric edges. Out
of these 12 edges, 2 have a fixed orientation and the other 10 admit the two orientations.
The picture on the right shows the 22 edges of this graph.

Consider a graph G = (U, E, s,t,4). Let V be a subset of U. We define the subset
Ev ={e € E:s(e) € Vandt(e) €V}
of E. The maps s,t and ¢ restrict to V and E, and we define the subgraph Gy to be the graph
(V, Elv, S, t, 7,)

In this paper, we will always work on graphs with a well, in the sense of the following definition.
Definition 1.2. A graph with a well is a graph G = (U,E), the set of vertices of which is
partitioned into two non-empty subsets V and W such that

* the subgraph Gy is symmetric,
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o cvery vertex of W is the target of at least one edge issued from a vertex of V,
* no edge is issued from any verter of W.

In this situation, the set W is called the well of the graph, and the elements of V are called its
proper wertices. The subset

OV={xeV:3eckE, s(e) =z and t(e) € W}

of V is called the rim of the well. The elements of V' \ OV are called inner vertices. The subgraph
Gy s called the proper subgraph of G.

Note that there exists at most one partition of the set of vertices of a graph G = (U, E) which
satisfies the three properties above. Indeed, W must be the set of vertices of the graph which
are the target of at least one edge and the source of none. For the graph to be a graph with a
well, there remains to check that neither W nor U \ W are empty, and that the restriction of G
to U\ W is symmetric.

In this paper, we shall always denote by U = V U W the partition of the set of vertices of a
graph with a well.

Graphs with a well arise naturally as follows (see also Figure 2 below). Consider a symmetric
graph and a subset V of the set of vertices of this graph. Define W to be the set of all vertices of
the graph that are not in V but that are the target of at least one edge issued from a vertex of V.
Define then U as VUW and E as the set of edges which either join two vertices of V or a vertex
of V to a vertex of W. Thus, although we shall not pursue this line of thought in the present
paper, graphs with a well provide a convenient framework to work with increasing exhaustions
of an infinite graphs by finite subgraphs.

o o

FIGURE 2. 1In this picture, proper vertices are black and vertices of the well are white.
Vertices of the rim are square and inner vertices are round.

1.2. Weights and measures. We will gradually introduce a certain amount of structure on
the graphs that we consider. We start with a weighting of the edges.

Definition 1.3. Let G = (U, E) be a graph. A conductance on G is a positive real-valued function
X : E = (0, +00) such that x oi = x on the set EL.

We think of x as a measure on the set of edges of the graph. We shall usually write . instead
of x(e) for the conductance of an edge e. The pair (G, x) is called a weighted graph.

Let G = (U, E) be a graph with a well endowed with a conductance x. We say that a function
AU — (0,400) is a reference measure on G if

(1) Vo eV, Aa= > Xe

ecE.e=x
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Let us emphasise that )\ takes a positive value at every vertex, that this value is completely
determined by the conductance at a proper vertex, and that this value is arbitrary at every
vertex of the well. In the situation where the graph with a well arises by restriction from a larger
graph as explained at the end of Section 1.1, the value of A at a vertex of the well is understood
as being the sum of the conductances of the edges of the original graph that were issued from
that vertex, and that are now forgotten.

The part of A that is due to the conductances of edges joining a proper vertex to a vertex of
the well plays a special role. We define, for every vertex x,

Ry = Z Xe-

ecE:e=x,ecW

By definition, the support of the measure k, that is, the set of vertices x such that x; > 0, is the
rim of the well.

In this paper and unless explicitly stated otherwise, by a weighted graph with a well, we will
always mean the data of the collection of objects (U =V UW,E, s,t,i,x,\, k) as defined in this
section, and with this notation. We will moreover always assume that the graph is connected, in
the sense explained at the end of Section 2.1.

Let us conclude this section by a few terminological remarks. Firstly, the reader may find that
there is a confusion between measures and functions in our presentation, as we took advantage
of the discrete nature of our framework to identify the measures x, A, k with their densities with
respect to the counting measures on E and U. We adopted these identifications because they
allow for a simpler and lighter notation, but we also believe that they hide to some extent the
true nature of the objects which one manipulates. Therefore, we invite the reader to check
periodically that our statements are consistent in this respect and that our formulas are, in the
physical sense, homogeneous.

Secondly, the objects that we are considering are very classical and receive several different
names in the literature. The vertex or set of vertices that we call the well is sometimes called
the sink, and sometimes also the cemetery, and the authors who use the latter name call the
quantity that we denote by x the killing rate. We prefer to avoid a morbid terminology, and,
following Neruda [Ner73|, find wells and their rims more inspiring than sinks. However, we
respect the tradition and keep the notation k. An electric analogy is also often used in this
context, accounting for the name of the conductance. In this terminology, the well should be
though of as an electric ground. This may be the place to mention that, depending on the analogy
which one choses, the conductance of an edge can be understood as the inverse of an electric
resistance, the inverse of a length, or the section of a water pipe.

2. PATHS AND LOOPS

Paths in graphs will play a crucial role in this study. The reader will soon notice that it is not
only important for us to know which vertices a path visits, but also which edges it traverses, and
because this is not the most widespread point of view, we give complete definitions of the objects
that we consider. We will mainly study paths indexed by continuous time, but it is convenient
to define paths indexed by discrete time first.

2.1. Discrete paths. Let G = (U, E) be a graph. Let us introduce the fibre products
(2) UxgE={(z,e) e UxE:z=s(e)} and E xgU = {(e,z) € Ex U:t(e) =x}.

We extend this notation in the obvious way to alternated Cartesian products of U and E.
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Definition 2.1. Let n > 0 be an integer. The set of discrete paths of length n in G is the set
(3) DP,(G) = U x¢ (E xg U)*e™.

The set of discrete paths on G is the disjoint union

(4) DP(G) = | J DP.(G).

n>0

For example, a discrete path of length 0 is simply a vertex, and a discrete path of length 2 is
a well-chained sequence (z, e1, 21, €2, x2) of vertices and edges. The length of a path, sometimes
called its combinatorial length, is the number of edges traversed by this path.

A discrete path of positive length k is of course completely characterised by the sequence of
k edges which it traverses. Nevertheless, despite the fact that edges will play for us a more
important role than is usual, we will still pay a lot of attention to the sequence of vertices visited
by paths, and it is useful to keep explicit track of this information in their definition.

The initial and final vertex of a discrete path p = (zg,e1,...,z,) are respectively denoted by
p=x9 and p = x,.

Definition 2.2. A discrete loop is a discrete path with identical initial and final vertices. The
set of discrete loops of length n is denoted by DL, (G) and the set of all discrete loops by

DL(G) = ] DL(G).
n>0
Note that DLy(G) = DPy(G) = U.

A graph is usually said to be connected if any two vertices x and y are respectively the starting
and finishing point of some discrete path. However, a graph with a well is never connected in
this sense, because no edge starts from any vertex of the well. Thus, with our usual notation,
we will say that a graph with a well G is connected if its proper subgraph G}y is connected. We
will always assume that graphs with a well are connected in this sense.

2.2. Continuous paths. A path indexed by continuous time is a discrete path which spends,
at each vertex that it visits, a certain positive amount of time. Here is the formal definition.

Definition 2.3. Let G = (U,E) be a graph. A continuous path in G is an element of the set
P(G) = [ (DP,(G) x (0, +00)" x (0,+00]).
n>0

A continuous loop in G is an element of the set

L(G) = [ J (DLa(G) x (0,+00)" x (0, +00)).

n>0
If p = (xo,€1,...,2,) is a discrete path, 79, ..., 7,1 are positive reals and 7, is an element of
(0, +0o0], then we will denote the continuous path (p, 79, ...,7,) by
Y= (($07 7—0)7 €1, (.1‘1, 7—1)7 --56n, (xna Tn))

This path is understood as the trajectory of a particle which starts from zg, spends time 7y at
xg, jumps to x1 through the edge ey, spends time 71 at x1, and so on. The path p is said to be
the discrete path underlying the continuous path . Note that a continuous loop spends at least
two intervals of time at its starting point, one at the beginning and the other at the end of its
course.

The times 79, ..., T, are called the holding times of v. The lifetime of ~ is

T(V) =710+ ...+ 7 € (0,400].
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To the path 7, we associate a right-continuous function from [0,7(v)) to U, which we also
denote by . It is defined as follows: for every t € [0,7(7)), there is a unique k € {0,...,n} such
that 7o+...+ 7,1 <t <7p+...+ 7k, and we set v, = xp. If t € [0,79), then £k = 0 and v, = xo.

Informally,

Tt = ZxkH[TO+~~+TI€717T0+-..+T;€)(t)-
k=0
For every t € (0,7(7)), we define the restriction of the continuous path v to [0,¢) by setting

Mo, = (w0, 70), €15+ -+ s k-1, (Th—1, Tk—1); €k (Thy t — (T0 + -+ + T1)))s

where k is the same integer as before. Note that the right-continuous function from [0,¢) to V
associated to the continuous path 7|jp is equal to the restriction to [0,t) of the right-continuous
function from [0, 7(7)) to V associated to ~.

Finally, if the lifetime of 7 is finite and ~ traverses only edges of E¥, we define the time-reversal,
or inverse of v as the path

7_1 = ((xna Tn)v en1> (xnfla Tn71)7 ceey 61_17 (CL'O, TO))'

The lifetime of y~1 is the same as that of v, and the right-continuous function from [0, 7(Y)) to
U associated to 7! is defined by
-1 .
t)y=1 .
7 () = lim ~(s)
2.3. Discrete time random walk. We will now describe the natural random walk on a
weighted graph with a well. It is a random continuous path on the graph, of which we will
start by describing the underlying random discrete path.
The transition matriz of a weighted graph with a well is the matrix P € My g(R) such that,
forall z € U and e € E,
P:lj e — { ;\(7; if Q - $7

’ 0  otherwise.

Proposition 2.4. Let G be a weighted graph with a well. For every vertex x € U, there is
a unique probability measure Q, on the countable set DP(G) such that for every discrete path
(xo,€1,...,6en,Ty), one has

n—1

(5> Qx({(xo, €1y...,€n, xn)}) = ]l{m}(xo)]lw(xn) H ka,€k+1'
k=0

Note that the probability Q, is supported by the set of paths joining = to the well.

Proof. The only thing to check is that the total mass of Q. is 1. Let us introduce the vertex
transition matrix () defined, for all z,y € U, by

Q;B,y = Z Pa:,e7

where the sum extends over all edges e of E such that e =z and € = y.

Each row of ) corresponding to a proper vertex has sum 1. Each row corresponding to a
vertex of the well is identically zero. Moreover, the fact that G is connected implies that there
exists a power of (J in which all entries of all proper rows are positive. The rows corresponding
to the well are always 0. These facts and an elementary argument of linear algebra imply that
the spectral radius of () is strictly smaller than 1.
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Let us define the columns V' = (1y(z))zcy and W = (1w(z))zeu. For each vertex z, the total
mass of Q. is

(6) Q1) =) (@"W)..

n>0
On the other hand, the identity Q(V + W) =V can be rewritten (I — Q)V = QW so that for
all n > 0, we have (Q" — Q"t1)V = Q""'W. Summing over n and using the fact that Q" tends
to 0 as n tends to infinity, we find ano Q"W =V 4+ W, a column of 1. O

2.4. Continuous time random walk. The definition 2.3 of the set P(G) of continuous paths on
G as a countable union of Cartesian products of a finite set and finitely many intervals suggests
the definition of a o-field on P(G) which we adopt but do not deem necessary to write down
explicitly.

Definition 2.5. Let G be a weighted graph with a well. For every x € U, we denote by P, the
unique probability measure on P(G) such that, for every bounded measurable function F on P(G),

F(ydPo() =) > Q)

P(G) 750 pebPo(G)
p=(%0,€1;---,Tn)
o /< ) F(((xo,70), €15 - - -, (Tn—1, Ta—1), €n, (¥, +00))) e 1 drg ... dTn1.
0,400)"

In words, a sample of P,, can be obtained by first sampling QQ,., in order to obtain a discrete path
(zo,€1,...,6€n,Ty), and then sampling n independent exponential random variables g, ..., Th—1
of parameter 1. The continuous path

((x07 T0)7 el) LR 767’7,—17 (xn—:[? T’Vl—l)? e?’l? (’rnﬂ +OO))

has the distribution P,.

Note that P, is supported by continuous paths with infinite lifetime. Moreover, for all ¢t > 0,
on the event {v: ¢ W}, the inverse of v is well defined (see the end of Section 2.2).

The following lemma expresses the reversibility, or more precisely the A-reversibility of the
continuous time random walk on G.

Lemma 2.6. Let G be a weighted graph with a well. Let x,y € V be proper vertices of G. Let
t > 0 be a positive real. Let F' be a bounded measurable function on P(G). Then

Az F(7_1>H{7t=y} sz(’Y) - )‘y/ F(’Y)]l{%:x} d]py(’}/)'
P(G) P(G)

Proof. The left-hand side is equal to

oo

—t

e E g MeProer - Pry_1en
n=0

= peDP,

p:(x(:helv---vxn)
TO=T,Tn=Y

/ Fll(amst— ), et (@1t — t1), e, (w0, 1)) dt - . .
O<t1<...<tn<t

Using the A-reversibility of the discrete random walk, that is, the relation Ayy Py e, - - . P.

* P Tn—1,6n T

Ao, P 1., P 1, and performing the change of variables s; =t —¢; for ¢ € {1,...,n}, we

In™ Tp,epn x1,e

find an expression of the right-hand side. O
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2.5. Measures on paths and loops. In this section, we will use the probability measures P,
to construct two families of measures on P(G) which will play a central role in this work. We
assume again that G is a weighted graph with a well.

The first family of measures is defined as follows.

Definition 2.7. Let x,y € V be proper vertices. The measure vy, is the measure on P(G) such
that for all non-negative measurable function F' on P(G), we have

1
/ F(')’)de,yW) = / F(’Y|[o,t])ﬂ{%=y}7 dPy(7y)dt.
P(G) P(G)x(0,400) Y

The measure v, is defined by
Uy = Z V:Jc,y)\ya

yeVv

so that for all bounded measurable function F' on P(G ), we have

/ ¥)dvz(y / / F(0,q) dtdPz().
P(G)

Finally, the measure v is defined by
=Y 0

zeV

In Section 4, we shall compute various integrals with respect to these measures, and we will
see in particular that they are finite.
The second family of measures is the following, and was introduced in [LJ11].

Definition 2.8. Let z,y € V be proper vertices. The measure p, , is the measure on P(G) such
that for all non-negative measurable function F' on P(G), we have

1 dt
F(y)dptg () = / F Lo, — dPy ()=
o FOMme) = [ POy 00

The measure p, is defined by

MHx = Z Nx,y)\ya

yeV
so that for all bounded measurable function F' on P(G ), we have

dt
/ ) d i (y / / F(0,) —dPz(7).
P(G)

Finally, the measure 1 is defined by
p=) b

zeV

The measures i, are finite when x # y, but the measures p, , are infinite, because of the
contribution of short loops, which in the present discrete setting are constant loops. Let us split
the measure p in a way that allows us to isolate this divergence.

Definition 2.9. The measures u® and i are defined as follows:

Ne = Z ,ux,:(:)\x and fi = Z Mr,y>\ya

zeV z,yeV,x#y
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so that u° is the restriction of u to the set L(G) of continuous loops. We now split the measure
u° as

pe =l
where p’ is the restriction of u® (and hence of ) to the set of constant loops, and p° its restriction
to the set of non-constant loops.

Note that the measure p' has a very simple expression: for every measurable function F' on

P(G), we have
’ = o x e*t@
e, PO ) = > | Feoe

The measure p° is in particular infinite, and we shall see that u — p* = p°® + i is finite.
The following straightforward consequence of Lemma 2.6 will be useful.

Lemma 2.10. With the notation of Definitions 2.7 and 2.8, the respective images by the map
v = v~ of the measures Vgy and iz, are the measures vy, and jiy .. The measure p® is
invariant under the map v — v 1.

3. VECTOR BUNDLES

In this section, we introduce the notion which plays the main role in our study, namely that
of vector bundle over a graph.

3.1. Bundles and bundle-valued forms. Let G = (U,E) be a graph. Let us choose a base
field K to be either R or C. Let r > 1 be an integer.

Definition 3.1. A K-vector bundle of rank r over G is a collection F = ((F3)zeu, (Fe)ece) of
vector spaces over K which all have the same dimension r, and such that for all edge e € E7,

Fo=F,-1.

We say that the bundle F is Euclidean (if K = R), or Hermitian (if K = C), if each of the
vector spaces of which it consists are Euclidean, or Hermitian. The bilinear, or sesquilinear form
on the vector space F, (resp. F.) is denoted by (-, ), (resp. (-,-)c). When K = C, we take this
form to be antilinear in the first variable and linear in the second, according to the physicists’
convention. We also denote by || - ||, and || - || the associated norms.

Most of our results will have the same form in the real and complex cases, up to the adjustment
of a few constants. In order to uniformise the results, it turns out to be useful to introduce the
parameter

(8) 8 = dimp K.
In fact, this parameter will not be used until Section 5.1, and will be redefined there.

Definition 3.2. Let F be a vector bundle over a graph G = (U,E). Let S be a subset of U The
space of sections of F over S, or 0-forms on S with values in F, is the vector space

0°(S,F) = PF..
x€S

If S1 and So are two subsets of U such that Sy C S, we identify Q°(S1,F) with the subset of
00(Sa, F) consisting of sections that vanish identically on S\ S1. We denote by 7s, the linear
operator on Q°(Sa, f) such that for every section f of F over S, and for every x € So,

9) (s, f)(x) = Ls, () f ().
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The space of 1-forms on G with values in F is the space

Q'(E,F) = {w c@PF.:VeecE we) = —w(e)}.
ecE

It would of course be possible to define 1-forms on subsets of E, but we will not use this
construction in this work.

A fundamental example of a vector bundle over a graph G is the trivial vector bundle of rank
r, denoted by K¢, which is such that for all « € VUE, the fibre (Kg), over a is K". When r =1,
the sections of this bundle are exactly the functions over V, and 1-forms with values in this
bundle are the usual scalar-valued 1-forms on the graph G, for example in the sense of [LJ11].

3.2. Hermitian structures. Let us now assume that G is a weighted graph with a well. What
matters here is not so much the well as the availability of the measures xy on E and A on U. In
what follows, we use the word Hermitian in place of Fuclidean or Hermitian.

For all f1, f> € Q°(U,F), we set
(f1: f)ao = Y Al fi(@), fo(@))a:

zeU

This endows Q°(U, F) with the structure of a Hermitian space.

In the case where F is the rank 1 trivial bundle K¢, of which sections are simply functions
on the graph, we use the notation (-,-) without any subscript for the Hermitian structure on
Q20(U, Kg).

There is also a Hermitian scalar product on the space of 1-forms with values in F. To define
it, we need to associate to each edge e € E the symmetry factor

1 .
L jfecEl

=) 2! ’
(10) fe { 1 otherwise.

Thus, the symmetry factor is equal to % for each edge which joins two proper vertices, and to 1
for each edge which joins a proper vertex to a vertex of the well.
For all wy,ws € QY(E, F), we define

(11) (wl"")?)ﬂl = ZS€X€<W1(6)’°J2(€)>€'

ecE
3.3. Connections. Recall from (2) the definition of the fibre products U x¢g E and E x¢ U.

Definition 3.3. A connection on the Hermitian (resp. Euclidean) vector bundle F is a collection
h of unitary (resp. orthogonal) isomorphisms between some of the vector spaces which constitute
F, namely the data,

o for each (z,e) € U xg E, of a unitary isomorphism he o : Fy — Fe, and

o for each (e,x) € E xg U, of a unitary isomorphism hy . : Fe — Fg,

such that for all (x,e) € U x¢ E¥, the relation Ny e = hg . holds.

This definition is illustrated in Figure 3 below. We shall denote the set of connections on F
by A(F).

Our notation for the isomorphisms which constitute a connection may seem complicated. To
remember it, one should notice that, whether a and b be vertices or edges, h,p sends the fibre
over b to the fibre over a. Moreover, although this is redundant, the edge is written with the
orientation which is consistent with the parallel transport expressed by hg .

As a useful example, let us mention that KY-, the trivial bundle of rank r carries a connection
that we call the canonical connection, for which all the isomorphisms A, ; are the identity of K".
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F
Fo ) Fy
hx7e—1 hefl,y
- -
—h. | o~

FIGURE 3. The isomorphisms h. , and h, . correspond to parallel transport along the
oriented edge e.

3.4. Holonomy. Let h be a connection on the vector bundle F over the graph G. For each edge
e € E, we define the holonomy along e as the isomorphism

he = hgeohee : Fe — Fe.
The holonomy of the connection h along a discrete path p = (zg,e1,...,en, z,) is defined as
holy,(p) = he, © -+~ 0 he, : Fgy — Fa,.

This definition extends to the case of a continuous path v with underlying discrete path p (see
Section 2.2) by setting

holx () = holx(p).

3.5. Twisted holonomy. The definition of the holonomy along a continuous path which we
just gave is natural, but it depends only on the discrete path which underlies it. It is perhaps
one of the contributions of the present work to propose a definition of the holonomy along
a continuous-time trajectory in a graph which is genuinely dependent on its continuous time
structure.

In order to give this definition, we need to introduce a new ingredient. From the bundle F, we
can form a new bundle End(F) such that for all a € U U E, the fibre of End(F) over a is

End(F), = End(F,),

the vector space of K-linear endomorphisms of F,. We give a name to some sections of this new
bundle.

Definition 3.4. Let G be a weighted graph with a well. Let F be a Fuclidean (resp. Hermitian)
vector bundle over G. A potential on F is an element H € Q°(V,End(F)), that is, a section of
the vector bundle End(F) over V such that for every vertex x € V, the operator H, € End(F;) is
symmetric (resp. Hermitian).

Let us emphasise that, according to our convention regarding sections of bundles over subsets
of U, a potential on F vanishes at every vertex of the well.
We can now give an enhanced definition of the holonomy along a continuous path.

Definition 3.5. Let h be a connection and H a potential on a Hermitian vector bundle F over a
graph G. Let v = ((z0,70), €1, - - €n, (Tn, ™)) be a continuous path in G. Assume that 1, < oo
or Hy, = 0. The holonomy of h twisted by H along ~ is the linear map

holy i (v) = e e o he, 0+ 0 e THzy o he, © e~ T0Hzo Fro — Fu, -
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Let us emphasise that the twisted holonomy does not behave well with respect to the time-
reversal of paths: in general, even if the path y~! is defined (see the end of Section 2.2), it may
be that

holp i (v™1) # holnm (7).
For example, if v = ((z,7)) is a constant path at a vertex z such that H, # 0, then v~
holp, (v~ 1) = e THe £ eTHe — holp i (7). Note however that the equality

(12) holp, i (y™") = holp, i (7)*

holds.

We would expect the definition of the twisted holonomy to seem rather strange to some readers,
especially after the comment that we just made, and we hope that the results that will be proved
in this paper will convince them of its interest. In the meantime, let us devote the next paragraph
to a discussion of two points of view from which, we hope, this definition can be found natural.

L' =~ but

3.6. Twisted holonomy and hidden loops. The first point of view is quite informal and
inspired by quantum mechanics. We already alluded to the fact that a path in a graph can
be seen as a discrete model for the time evolution of a particle in space. In this picture, the
connection represents the way in which an ambient gauge field acts on the state of the particle
as it moves around. If we now understand the operator H;, up to a factor i or i/h, as the
Hamiltonian of the particle at the point z, then the term e+ represents the evolution of the
state of the particle as it spends a stretch of time 7, at the vertex x, and the twisted holonomy
along the path followed by the particle simply represents the subsequent modification of its state.

From a second and more mathematical point of view, the twisted holonomy as we defined it
can be seen, at least in the case where the operators H, are non-negative, as an averaged version
of the ordinary holonomy in a larger graph, which has a small loop attached to each vertex.

To explain this, let us consider a weighted graph with a well G. Let us associate to G a new
graph G° = (U, E°) which has the same vertices as G, and an extended set of edges

EC=EU (J{ll;'},
zeV

where the edge [, and its inverse have source and target x. We call these new edges looping
edges.

FIGURE 4. The graphs G° obtained from the graph depicted in Figure 2.

Let us assume that for every x € V, the operator H, is Hermitian non-negative on F,. For
each z € V, let us associate to the edge [, a positive jump rate r, and a holonomy #A;,, in such
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a way that

Hy =7, (20dg, — (hy, + 1Y)
It is indeed the case that every Hermitian non-negative operator can be written, although not
uniquely, as 7(2Id — (U + U~!)) with » > 0 and U unitary. One can for example take any r
larger than one quarter of the largest eigenvalue of H, and U = expiarccos(1 — %)

Let us now consider the continuous time random walk in the graph G° which, when it stands
at a vertex x, jumps from x through the edge e € E at rate P, ., and through each of the looping
edges [, and I;! at rate r,. It will be convenient to use probabilistic language, and for this, we
will denote this random continuous path on G° by I'°. Let us emphasise that I'° is not exactly a
random walk on the graph G° in the sense of Section 2.3, because it jumps at rate 1 + 2r, from
the vertex x, whereas the random walk on a weighted graph normally jumps at rate 1.

The reason for our change of jumping rate in the definition of I'° is the following: from I'°,
we can recover the usual random walk, which we will denote by I'; in the original graph G, by
simply ignoring the jumps across the loop-edges of G°. More formally, there is a shearing map
S : P(G®) — P(G) which forgets the jumps across the looping edges of E°\ E, and we are claiming
that S(I'°) and I" have the same distribution. We reckon that a formal definition of I'> and the
map S, followed by a formal proof of this claim, would take a lot of space and time, and bring
little additional light on the present discussion.

Let us now compare the ordinary holonomy hol; of the connection A in the graph G° with the
holonomy holy, i of h twisted by H in G.

Proposition 3.6. For allt > 0 and all x € V, the following equality almost surely holds in
Hom(F.,Fx,):
Ex[holi(Fﬁo,ﬂ)!S( \O[O,t])] = h°|h,H(S(Fﬁ0,t]))~
The way in which we want to read this equality is the following: for every path v in G with
lifetime ¢, the holonomy of h twisted by H along ~ is given by

holy 11 (7) = Efholj, (I7)|S (T 4) = 1,

the average over a set of non-observed paths in the larger graph G° of an ordinary unitary
holonomy, and of which the observed path ~ is an approximation.

Proof. Conditional on S(I'f, ;) = ((xo,70),€1,- .-, (Tn, ™)), the path o, 18 equal to S(F|O[0 t])

10,2]
to which have been grafted, at each of its stays at one of the vertices z1,...,Z,, an independent
Poissonian set of excursions through the loop-edges at this vertex.
For each k € {0,...,n}, let Nj be an independent Poisson variable with parameter 2r,, 75, and

let Bz, 7. be a random discrete loop of length IV}, based at xj, which traverses IV}, times one of
the edges [, and I;! (and no other), independently with equal probability at each jump. Then

Ex[holi(Xﬁo,t})\S(Xﬁo,t]) = (w0, 70), €1, (Tn, Tn))] =
E[hol, (Bz,,m)] © he,, o E[hol}, (Bz, 1.7, 1)] 0.0 hey o E[holy (Bzg,7)]-
On the other hand, for each k € {0,...,n},
o —27%, T] . (2T$ Tk)n 1 - n m n—m
]E[h0|h(/8-l’k,7'k)] =€ 2ok T Z +27n Z hlxk hl—1

n! m
n=0 m=0 k

—Thray (2ldr,, —(hi,, H@i )

= eiTksz s

and the expected result follows. O
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3.7. Occupation measures and local times. A particular case of interest of the twisted
holonomy is that where for every vertex x, the operator H, is scalar. In this case, the twisted

holonomy of a path can be related to its occupation measure, or to its local time, which we now
define.

Definition 3.7. Let v = ((x0,70),€1,---,€n, (Tn,Tn)) be a continuous path. The occupation
measure of 7y is the measure ¥(y) on U such that for all verter x,

ﬁz(fy) = Z 5$,zk7—k-
k=0

The local time of v is the density of its occupation measure with respect to the reference measure
A: for every vertex x,

Ve 1<
g:v(ﬁ)/) = /\(7) = )\7 Zax,xk'rk-
x i

From Section 7 on, we will consider Poissonian ensembles of paths. We will then use the
following extended definition of the occupation measures and local times: if P is a set of paths,
we define, for all vertex x,

l(P) =Y La(y) and 05(P) = > (7).

YEP YEP

The following lemma is a straightforward consequence of the definition of the twisted holonomy.
In its statement, we use the same notation for a scalar operator and its unique eigenvalue.

Lemma 3.8. Assume that for all vertex x, the operator H, is scalar on F,, that is, equal to
H,Idr, for some H, € K. Let v be a continuous path. Assume that () < 400 or Hy = 0.
Then one has the equality

(13) holp 1 (7) = e~ Zwev He¥s(Mhol, ().

This lemma shows how the twisted holonomy, which, in the classical language of the theory
of Markov processes, could be called a multiplicative functional, extends the classical definition
of exponential functionals of local times.

3.8. Differentials. Let us consider a graph G = (U, E), a vector bundle F over G and a connec-
tion h on F.

Definition 3.9. The differential is the linear operator
d: Q°(U,F) - Q'(E,F) c EPF.
ecE

defined by setting, for every f € Q°(U,F) and every e € E,
(df)(e) = he12f(€) — hef(€)-

The range of d is contained in Q!(E,F): indeed, if the inverse of the edge e is defined, then
replacing e by e~! in this definition exchanges e and €, so that (df)(e™!) = —(df)(e) as expected.

The definition of d depends on the connection h, but we prefer not to use the notation d”,
which we find too heavy.

Let us now assume that the graph G is a weighted graph with a well. Recall from (10) the
definition of the symmetry factor s. of an edge e.
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\

/(@) YN /@)

FIGURE 5. The computation of df (e).

Definition 3.10. The codifferential is the operator
d*: QYE,F) = Q°(U,F)
defined by setting, for all w € QY(E,F) and all x € U,
d*w(z) = X eegzx SeXeha ew(e) — )\1:2 eegzx SeXehy c—1w(e).
The following lemma justifies the notation that we used for the codifferential.

Lemma 3.11. The operators d and d* are adjoint of each other with respect to the Hermitian
forms (-, -)qo and (-, ).

Let us emphasise that the proof of this lemma depends on the fact that the connection A
consists in unitary operators.

Proof. Let f € QO(U F) and w € Ql(E F). We have

(f,d*w)go = > Aelf (2))e

eV
= Z Z 56X6<f( wew Z Z SeXe xe 1w(€)>r
zeV ecEe=zx z€V ecEe=x
= Z seXe(f he cw(e Z seXe(f he e~ w(e))e
ecE ecE
= Z SeXe(he-12f(€),w(e))e — Z SeXe(heef(e),w(e))e
ecE ecE
= sexe(df (), w(e))e = (df,w)q -
ecE
We used the unitarity of A between the third and the fourth line. O

Note that if x is a proper vertex of G, that is, not an element of the well, then the value at z
of the codifferential of a 1-form w can be written more simply as

(14) dw(@)=— Y Puchy.1w(e).

ecEe=x
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3.9. Laplacians. To the situation that we are describing since the beginning of this paper, is
associated a Laplace operator, which is our main object of interest. A simple definition of this
operator, acting on Q°(U, F), would be to set

A =d*od e End(Q°(U,F)).

However, the Laplacian that we will use most of the time is a compression of this operator to the
subspace Q°(V, F), which consists of sections that vanish on the well. In the following definition,
we will use the notation 7y defined by (9).

Definition 3.12. Let G be a weighted graph with a well. Let F be a vector bundle over G. Let h
be a connection on F. The h-Laplacian, or simply Laplacian, on Q°(V,F) is the linear mapping

Ap=myod'o d|Q0(V,F) S EHd(QO(V7 F))
Consider f € Q°(V,F) and choose z € V. Thanks to (14), we have

(Anf)(@) == D Prchyer(df)(e)

ecEe=x
— Z Ppeo(f(x) = he-1f(e))
ecEe=z
(15) = f(l‘) — Z Pz,ehe—lf(é)‘
ecEe=x

This last expression will be useful in the sequel.
Using the Laplacian, we can define the covariant Dirichlet energy functional on Q°(U, F).

Definition 3.13. Let f be an element of Q°(V,F). The covariant Dirichlet energy of f is the
real number

gh(f) = (f7 Ahf)ﬂo .
A short computation yields

(16) &l = 3 S xlf (@) — heer FE@IE,

ecE

which makes it obvious that &,(f) is non-negative.
Proposition 3.14. The operator A, is Hermitian, non-negative, and invertible on Q°(V,F).

Proof. 1t follows from Lemma 3.11 that the operator my o d* o d o my is Hermitian and non-
negative on Q°(U,F). Moreover, it leaves the subspace Q°(V,F) invariant. Thus, A, which is
the restriction of this operator to Q°(V,F), is Hermitian and non-negative. There remains to
prove that it is invertible.

Consider a section f such that Ay f = 0. Consider a vertex x on the rim of the well, that is, a
vertex which is joined to a vertex of the well. Since f vanishes identically on the well, (16) and
the fact that &,(f) = 0 imply that f(z) = 0. Then, since f(€) = hef(e) for every edge e, and
since the proper subgraph Gy is connected, f vanishes identically. O

In the special case of the trivial bundle K¢ over G endowed with the canonical connection (see
the end of Section 3.3), we will denote the Laplacian simply by A.
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3.10. The smallest eigenvalue of the Laplacian. It follows from Lemma 3.14 that the lowest
eigenvalue of Ay, is positive. In this section, we give a lower bound on this first eigenvalue. Let
us define

(17) op = minSpec Ay, = min M .

re20(VAN0}  (f; fao
On the trivial bundle K with the usual Laplacian A, we denote this quantity by o.
Proposition 3.15 (Discrete Kato’s lemma). The following inequality holds:
op>0>0.

Proof. The inequality o > 0 is a special case of Lemma 3.14. Let us prove that o, > o. For this,
consider a section f € Q°(V,F). For all e € E, we have

1£(e) = he=1f@)le = |1 (@)lle = Ihe-1 f@le| = [If(©)lle = £ @)l
because h, is unitary. Using (16), this implies the inequality
(f, Anfao = (1, Al

where || f|| is the function on V defined by || f||(z) = ||f(x)||.. Since (f, f)qo = (|| fll,|[f]]), the
inequality o;, > o follows. 0

?

3.11. Generalized Laplacians. We will consider linear operators on the space of sections of
F that are similar to, but more general than the Laplacian Ap. In analogy with the case of a
Hermitian vector bundle over a Riemannian manifold, for which there exists many second order
differential operators with the same symbol, which all deserve to be called Laplacians, and which
differ by a term of order 0, we set the following definition.

Recall from Definition 3.4 that we call potential a section of the vector bundle End(F) over
V such that H, is Hermitian (or, in the real case, symmetric) for each x € V. There is a
natural inclusion Q°(End(F)) € End(Q2°(F)) thanks to which a potential can act on a section of
F. Concretely, if H is a potential and f a section of F, then the section H f is simply defined by
the fact that for all z € V,

(Hf)(z) = Hy(f(x)).

Definition 3.16. Let F be a Hermitian vector bundle over a graph with a well G, endowed with
a connection h. Let H be a potential on F. The generalised Laplacian on F associated to h and
H, or (h, H)-Laplacian, is the following linear endomorphism of Q°(V,F):

ZXMH':AAh-%ff

Imitating Definition 3.13, we define the generalised covariant Dirichlet energy of a section f
as the number

(18) Ena(f) = (f,(An+ H)f)go
= % D Xellf(e) = he=r F@Z+ D Xa(f (), Hof ())e.
ecE zeV

Recall from the previous section that we denote by oy, the smallest eigenvalue of Ay, and that
op > 0. If H, > —oy, for every vertex x, then the operator Ay, g is invertible. This is in particular
the case as soon as H, > 0 for every vertex z.
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3.12. Gauge transformations. Let us conclude this section by a study of the action of the
group of automorphisms of our vector bundles on the various objects that we defined.

For every Hermitian (resp. Euclidean) vector space F', let us denote by U(F') the group of
unitary (resp. orthogonal) linear transformations of F.

Definition 3.17. The gauge group of the vector bundle F over G = (U, E) is the group
Aut(F) = {J € H U(Fz) x HU(Fe) i Je = Je—1 for all e € E$}.
zeU ecE

The elements of the gauge group are called gauge transformations.

The gauge group Aut(F) acts on the set A(F) of connections on F, as follows. Let h be a
connection on F. Let j be a gauge transformation. The connection j - h is defined by

U for (e,z) € E xg U and

(.7 ' h)e,x = je S he,x O];
(-h)ze=Jz0ohge oj;1 for (z,e) € U xg E.

The next formula expresses the modification of the holonomy along a continuous path induced
by the action of a gauge transformation on the connection. Suppose h is a connection, j a gauge
transformation, and - a path, discrete or continuous, in our graph. Then

h0|j.h(’y) =J5o0 holp () Ojl_l.

Let us write the corresponding formula for twisted holonomies. For this, we need to explain
how the gauge group acts on the space of potentials. Let H be a potential and j a gauge
transformation. We define j - H as the potential such that

(7 H)e=jroHyoj;"
Then, for all continuous path v, we have the relation
holj.hJ.H(fy) = jgo hOIh,H('Y) Ojl_l.

The gauge group also acts naturally on Q°(U, F) : for all gauge transformation j and all section
f, the section j - f is defined by
(- @) = ja(f ().

This action extends to an action by conjugation on End(Q°(U, F)): if B is an endomorphism of
0°(U,F) and f is a section, then

(G- B)f) =7 (BG 1))

These actions allow us to express the way in which the Laplacians are acted on by the gauge
group: with our current notation,

joAmH — ATRIH

Since the gauge group acts on each fibre by unitary transformations, it follows that the Dirichlet
energy satisfies

Ejngu(G-f)=Enu(f)
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4. A COVARIANT FEYNMAN-KAC FORMULA

4.1. A Feynman—Kac formula. In this section, we will prove our first theorem, which is a
covariant version of the Feynman—Kac formula and which will be one of the most useful results
for our study.

Theorem 4.1 (Feynman—Kac formula). Let G be a weighted graph with a well. Let F be a vector
bundle over G, endowed with a connection h and a potential H. Let X be the random walk on G
defined in Section 2.5.

Let f be an element of Q°(V,F). For all x €V and all t > 0, the following equality holds:

(7" Am f) () = /P(G) holy, 11 (4i0g) f (V) L ()5 tveevy dPa(7)-

The indicator of the event {; € V} is there to make sure that the inverse of the path v 4 is
well defined. In any case, f vanishes identically on the well, and there should be no contribution
to the right-hand side coming from paths that reach the well.

Proof. We will use the fact that for any two endomorphisms A and B of a finite dimensional
vector space and all real t > 0,

[e.9]

e ATB) = / oA Bl | Bel=t-1)A gty dty,_y,
k=0 0<tp<..<tp_1<t

a formula that can be checked by expanding the exponentials on the right-hand side in power

series, computing the Eulerian integrals that appear, and observing that one recovers the left-

hand side. In our context, we use this formula in the following way: we first write e *®nH =

e~ te tHHt(1d=An) and deduce that
oo

etAnH _ ot / e H(1d — Ay)em 0 H [ (1d — Ap)eC-DH G dty .
k=0 0<to<..<tp_1<t
Let f be a section of F and x a vertex of G. Using the expression (15) of Ay, we find

oo
(1) @) =e"> > PeeyPeies-- Primic

k=0e1,...,.er€E

(19) / e~ollap e~ (mtoHer | o=t e £y dtg ... dty— .
0<to<...<tp_1<t ! k
On the other hand, according to (7),
hol -1 1 dP,(vy) =
o h,H(7|[07t})f(7t) {r(v)>t,v+€V} :B('Y) - Z Qx({p})
P(G) 0<k<n
peEDP,(G)
p=(x0,€1,-.,€n,Tn)
/ e toHz b1 e~ (t1—to)Hay .he_le_(t_t’“*l)H“”k f(ﬂfk;)e_t"*l dtg...dty_1
0<to<..<tp_1<t<tp<..<tp_1 ° k

00 [e.9]
=e Z Z Pz,elpa,@ T Pﬁ,ek (Z Z Pa’e/l Paaelz o Pei—ue;ﬂW(e;)>

k=0e1,...,ex€E =0 6’1,...762€E

/ e toHe h, 1 e~ (ti—to)Her hefle_(t_t’“—l)HWf(ﬁ) dtg...dtg_1.
0<to<...<tr_1<t ! k
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The sum over | between the brackets is the total mass of the probability measure Qg;, that is,
1, and we recover the right-hand side of (19). O

We will often use a slightly different, but equivalent, version of the Feynman—Kac formula. In
order to state it, let us introduce the following notation. The vector space of linear endomor-
phisms of Q°(V, F) is isomorphic to

End(Q°(V, F)) = End(@Fm> = P Hom(F,,F.).

eV z,yeVv

This decomposition is nothing more than the block decomposition of the matrix representing an
endomorphism of Q°(V, F), each block corresponding to one of the fibres of the bundle. For all
linear operator B € End(Q°(V,F)) and all z,y € V, we will denote by By, the linear map from
Fy, to F, which appears in the right-hand side of the decomposition above.

Proposition 4.1 immediately implies the following.

Corollary 4.2. Under the assumptions of Theorem .1, and for all z,y € V, the following
equality holds in Hom(F,, F.):

(e—tAh,H)m’y = /P(G) h0|h,H(’Y\I01,t])H{T(’Y)>t7’Yt=y} dPy(7)-

Provided we are careful enough about the source and target spaces of the linear operators that
we are writing, we can express the corollary in the following more compact form:

e tAnH — @ (e—tAh,H)%y = / ho|h7H(’Y[017t])]l{q—(y)>t} dPy().
zeV P(©)

4.2. The Green section. We devote this very short section to the definition of the covariant
analogue of the Green function. For this, let us define the operator A on Q°(U, F) such that for
all section f and all vertex = € V,

(Af) (@) = A f ().

Definition 4.3. Let G be a weighted graph with a well. Let F be a fibre bundle over G. Let h be
a connection on F and H be a potential on F. The Green section associated with h and H is the
operator

Ghi = (Ao Ay )t € End(Q0(V, F)).

Let us make a brief comment about the distinction between sections and measures. The
operator A takes a section and multiplies it by a measure. The result of this operation is an
object that can be paired pointwise with a section, using the Hermitian scalar product of each
fibre, thus producing a scalar function that can be integrated over the graph. It would thus
be fair to say that A sends Q2°(U, F) into its dual space, and, since Ap g is a genuine operator
on Q°(V,F), that Gy g sends the dual of Q°(V,F) into Q°(V,F) itself. In a sense that we will
not make very precise, the kernel of G, g is thus the covariant analogue of a function of two
variables.

4.3. Two elementary algebraic identities. The Feynman-Kac formula relates the semigroup
of the generalised Laplacian to the average of the twisted holonomy along the paths of the random
walk in the graph. In this paragraph, we will derive two consequences of this formula which will
be the bases of our proofs of the isomorphism theorems. The two formulas which we will now
prove ultimately rely on the following elementary lemma.
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Lemma 4.4. Let A and B be two positive Hermitian matrices of the same size. Then

(20) / e tAdt=A""
0
and
00 eftA o eftB
(21) / fdt =logB —logA.
0

Proof. 1t suffices to prove that for all positive real a,

o ,—ta __ ,—t
/ €7 w= —loga.
0 t

Now, tfor alle >0, [ e;m dt = [~ % dt and the integral that we want to compute is equal to
L= 2+ O(g), from which the result follows immediately. O

From the Feynman-Kac formula (Theorem 4.1), the definition of the measure v (Definition
2.7), and (20), we deduce the following proposition.

Proposition 4.5. For all x,y € V the equality

(22) [ olha () vy () = (G,
P(G) ’
holds in Hom(F,, F,). Moreover, we have the following equality in End(Q°(V,F)):

(23) / ol 1 (v~1) dv(7) = A7,
P(G)

)

Similarly, from Theorem 4.1, Definition 2.8 and (21), we deduce the following.

Proposition 4.6. Let h,h' be two connections on F and H, H' be two non-negative potentials.
We have the following identity in End(Q°(V,F)):

(24) /P o (o071 b (671) () = o A o A

It turns out that (24) is difficult to use in its present form, and that it is often more convenient
to use the less detailed but still informative equation obtained from it by taking the trace of both
sides. Here, by the trace, we mean the usual trace in the space of endomorphisms of Q°(V,F).
Thus, if B is such an endomorphism, we call trace of B the number

Tr(B) = Y Tre,(Bea).

zeV
Corollary 4.7. Let h be a connection and H a mon-negative potential. We have the identity

det A
) Tr hol 1y _ Trhol, (v 1) du®(~) = log ———1 .
(25) ¢ (POl ™") = Trholu71) d(7) = o g 0

The reader may wonder why we wrote Proposition 4.6 as we did with a difference of holonomies,
and what the integral of the twisted holonomy along a random path with respect to the measure
w is. The answer is that this integral is ill defined, because of the presence of the infinite measure
- within p. However, it makes sense to compute this integral against g — . The result is given
by the next proposition.



COVARIANT SYMANZIK IDENTITIES 23

Proposition 4.8. Let h be a connection and H a positive potential. In End(Q°(V,F)), we have
the identity

(26) / holp i (v~ ) d(p — ) (7) = —log Ap g + log(Id + H) .
P(G)

Proof. Consider x and y in V. We have

1 _ dt
Lh.s. of (26) = / ho'(’7|[01,t])]l{T('y)>t,’yt=y}(1 — ]l{’Y\[o,t]:(w,t)}) dPx(rﬂ?
P(G)x(0,4-00)

Ay

L[ i —t_—tH, 9t
:)\y/o ((e P )y — Orye e )7
_ 1
=3

(o) e_tAh,,H _ 6—t(Id+H)
dt
0 t
x7y

Summing over y with respect to the reference measure A and over x with respect to the counting
measure, and using (21), we find the expected result. O

5. THE COVARIANT (GAUSSIAN FREE FIELD

In this section, we consider a weighted graph with a well G, over which we are given a vector
bundle F with a connection h and a potential H. In this setting, we will construct a Gaussian
probability measure on Q°(V,F).

5.1. Probability measures on Q°(V,F). Recall from Section 3.11 that if H, is a non-negative
Hermitian operator on F, for every x € V, then the operator Ay is positive Hermitian on
Q°(V,F). We are going to use it to define a probability measure on Q°(V, F).

Let us first discuss Lebesgue measures on Q°(V,F). Let us agree that the natural Lebesgue
measure on a Euclidean or Hermitian space is that which gives measure 1 to any real cube the
edges of which have length 1. With this convention, there is a natural Lebesgue measure Lebgo
on Q°(V,F) and, for each z € V, a natural Lebesgue measure Leb, on F,. Considering the way
in which the Euclidean or Hermitian structures on Q°(V, F) on one hand and on the fibres of F
on the other hand are related, through the measure A, we find the equality

8y
Lebgo = (X) <>\§ Lebx> ,

zeV
where, in order to treat the Euclidean and Hermitian cases simultaneously, we used the constant
(27) 8 = dimg K,

equal to 1 in the Euclidean case and to 2 in the Hermitian case.
Let us denote by |V| the cardinality of V. We define the probability measure P on Q°(V,F)
by setting

det Ah,H

8
VI > * 5B oo dLebgo (f)-
7-‘-7'

(29) ) =

We shall denote by ® the canonical process (that is, the identity map) on Q°(V,F), so that for
all bounded measurable function F : Q°(V,F) — R, we have

EnH[F(@)] = / F(f) PP ().
QO(V,F)

The random section ® is called the covariant Gaussian free field on G associated with h and H.
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We will often consider the Gaussian free field associated to a connection h and the zero
potential. In that case, we will use the notation E” instead of E0.

5.2. Covariance. The measure P is Gaussian on Q°(V, F) and we will now compute its co-
variance function. Let us introduce some notation which will be useful to express this covariance,
and several of the results that we shall prove.

Consider a Euclidean or Hermitian vector space (V,(+,-)). Recall that if V' is Hermitian, we
take the Hermitian scalar product to be linear in the second variable. We define the conjugation
map to be the following:

V— V"
v— T = (v,-).
This map is an antilinear isomorphism between V' and its dual, and it satisfies, for every scalar
z and every vector v, the relation zv = Z v.
If V and W are Euclidean or Hermitian spaces, and if v and w are elements of V and W

respectively, then w ® v is an element of W ® V* ~ Hom(V,W'). More specifically, w ® v is the
linear map of rank 1 from V' to W such that for all u € V,

(w®7v)(u) = (v,u)w.
With this notation, a standard Gaussian computation yields the following identity.

Proposition 5.1. Let F be a vector bundle over G, endowed with a connection h and a potential
H. Let ® be the associated covariant Gaussian free field on G. Then

B0 6 F) = A,
In other words, for all f,g € QV(V,F),
(29) EMTI(f, ®)00 (P, 9)ao] = (f, Ay 59)ao-

Note that this formulation is true in the Euclidean case as well as in the Hermitian case.

It is often useful to have an expression of the covariance of the values of the Gaussian free field
in two specific fibres of F. Passing from the space of sections to the individual fibres involves the
reference measure A, so that the inverse of the Laplacian will be replaced by the Green section.

Proposition 5.2. Let F be a vector bundle over G, endowed with a connection h and a potential
H. Let ® be the covariant Gaussian free field on G. Let G, g be the Green section of F. For all
x,y € V, we have the following identity in Hom(F,, F;):

(30) M| 8: ©F,| = (Grur)as

Proof. Let us choose two vertices  and y in V and two vectors £ € F, and € F,. Applying
Proposition 5.1 to the sections f = {1,y and g = nly,;, which vanish respectively everywhere
except at x and y, and satisfy f(z) =& and g(y) =7, we find

)\m)\th’H [<£7 (I)x>x<(1)ya 77>y] = )‘ff <£’ (A;}I)%y,'ﬁx.

This equality can be written

BN (€, @2)0( Dy, m)y] = (6, (A}:711{A_1)x7y77>xa

or even
(&EM [0, 08, [n) = (€ (Gn),y,n)a

which, because it is true for all £ and 7, implies the result. O
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5.3. Laplace transform. For future reference, let us record the Laplace transform and a formula
for the higher moments of the covariant Gaussian free field. We keep the notation of the previous
section.

The next proposition follows from (29) and the standard computation of a Gaussian integral.
Note that it is written in such a way as to be true in the real case as well as in the complex case.

Proposition 5.3. For all f € Q°(V,F), we have

EhH [ (@) g0 ] A Do

The following formula, which is a reformulation of Wick’s theorem (see [Jan97]) in our context,
combined with (23), will be useful in the proof of the covariant Symanzik identity (Theorem 8.3).
It is one of the results where the real and complex case are quite different.

Proposition 5.4. Assume that K = R. Then, for all integer k > 0 and all f1,..., fr € Q°(V,F),
we have

k
(31) EMH [H fi, @
=1

where the sum is over all partitions of the set {1,...,k} by pairs. In particular, this expectation
18 zero if k is odd.

Assume that K = C. Then, for all integers k,1 >0, all f1,..., fr and f{,..., f] in Q°(V,F),
we have

k l
@)\ [T w [T0 Y1 Lo

o 1=1 (G)

=S T [t 50 vt

T {ijyer’ (@

), holy, 1 (7 l)f:,(i) (V))y dv(y),

where the sum is over all bijections from {1,... k} to {1,...,l}. In particular, this expectation

is zero if k #£ 1.

5.4. Square of the shifted Gaussian free field. In this section, and in preparation for the
proof of Theorem 7.6, we record a useful lemma which expresses the Laplace transform of the
square of the shifted Gaussian free field. This is a generalisation of [Szn12b, Proposition 2.14|
to the present covariant setting. Recall the definition of o} from Proposition 3.15.

Proposition 5.5. Let h be a unitary connection and H a potential on F. Assume that H > —oy,.
For all f € Q°(V,F), we have

(33) Eh [e—%@%—fﬂ(@-i-f))no} _Eh [e—%(é,H%o] 3 (ARS (AL E=2DAS) g0

Proof. Let us compute the left-hand side of the equality to prove. We will successively apply
the definition (28) of the measure P, writing dy instead of dLebqo (), then perform the usual
completion of the square, then use the invariance by translation of the Lebesgue measure. We
find

A\ 7
77 Eh [6—%(‘I’+f,H(¢+f))Qo} _ / e~ Bt FHE D)0 =3 (0818)00
det Ah QO(V,F)

_ / o3 (P AL HEAn i (oA H ) o di A (FHAL HH)F)
QO(V,F)

:/ e*%(w,Ah,H«:)Qod(p o3 (Anf (A =AAR) o
QO(V,F)
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In the second exponential of the last line, we used the equality
ala+b)ra—a=(a+b—-0)(a+b) Hat+b—0)—a=0ba+b)tb—b

which is true in any associative algebra and that we applied in this instance to a = H and b = Ay,
in the algebra End(Q°(V, F)).

Now, in the integral on the right-hand side we recognise, up to the normalisation factor by
which we multiplied both sides, the expectation on the right-hand side of (33). O

6. ISOMORPHISM THEOREMS OF DYNKIN AND EISENBAUM

In this section, we explain how the two classical isomorphism theorems of Dynkin [Dyn&84al
and Eisenbaum [Eis95] extend to the present setting, in a way which incorporates the geometry
of the vector bundle over the graph. Our main tool will be the following combination of (22)
and (30), which reads, for any two vertices z and y of a weighted graph with a well,

(34 B0 [0, 0B, = Grn,y = [ Hohn(7) dvey(2).

6.1. Dynkin’s isomorphism. Our generalisation of Dynkin’s isomorphism is the following. We
use the notation fl/z . to denote the integral with respect to the finite measure v, ,. Recall from

(27) the definition of the constant f.

Theorem 6.1. Let G be a weighted graph with a well. Let F be a Hermitian or Euclidean vector
bundle over G. Let h be a connection on F and H a potential on F. For all vertices x,y of V,
the following identity holds in Hom(F,, F):

(35) Eh @ L [e—é(fb,Hé)Qo ho'h,H(”)/_l)} _fgh [e—é(é,ch)Qo >, ®(}ﬁy} _
Proof. By definition of the measure P»# | we have
Rh [efé(é,mb)ﬂo ®, ® (}ﬁy}

Eh [e—%({%H@)go}

— ]Eh,H |:(I):E ® gy} ,

which equals [ , [holp i (v~1)] by (34). The result follows immediately. O

Vg,

Let us explain how successive specialisations of this theorem will allow us to recover Dynkin’s
isomorphism in its classical version. Let us consider first the case where H is a scalar potential,
that is, the case where for each vertex x € V, the operator H, has a unique eigenvalue, which
we also denote by H,. In that case, according to Lemma 3.8, the twisted holonomy along a
continuous path can be expressed in terms of its classical holonomy and an exponential functional
of its local time, and (35) becomes

E' @ b [ef%zzevAsz(ncbzu2+ez<v)>ho|h(¢1)} — &P [ef%zzevAtzH@uP@x@ay} _

Going one step further in the specialisation, let us apply this formula to the case of the trivial
real bundle of rank 1 endowed with the trivial connection. In that case, ® is a random real valued
function on V and we find one of the classical formulations of Dynkin’s isomorphism, namely

E® [ [e_% 2cev /\wa(|q’x|2+Zx(7))} =E [e_% 2cev AwHw@xP(I)xq)y} )
Ve,y
It appears that Dynkin’s theorem is one of these deep results that, with the benefit of a few

decades of hindsight and the appropriate set of preliminary definitions, become almost tautologi-
cal. Nevertheless, from our point of view, it remains definitely not trivial in that it expresses the
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covariance of the covariant Gaussian free field as a weighted sum of holonomies along paths in
our graph. For example, if we pick a vertex x, then the covariance matrix of the random vector
®,. in the vector space F, is given by

EH [q)x ®E} = /L(G) holp 5 (v™1) dvs () € End(F,).

Let us make a few comments on this expression. Firstly, the left-hand side makes it clear that
the endomorphism of F, which both sides of this equality express is Hermitian and non-negative.
If H = 0, the Hermitian character of the right-hand side can be easily recognised from the
invariance of the measure v, by inversion, by writing

_ 1 _
[ oY) da) = [ 5 (h0h(3) + hola(3) 1) dria(2).
L(G) L(G)

Secondly, let us compute an example of this formula. Let G be the graph with two vertices: z
and w, and three edges: two looping edges e and e~! based at x, and one edge joining = to w.
Of course, z is a proper vertex and w constitutes the well of this graph.

FIGURE 6. A very simple graph.

Let x. denote the conductance of e, and k, the conductance of the edge that joins x to w. A
computation similar to the one that we did in the proof of Proposition 3.6 yields

/L MO () = (e, — (he 4 17 )

As we explained there, this operator can be made, by appropriate choices of x., x; and he,
equal to any positive Hermitian operator on F,. This shows that the presence of the connection
can make the Gaussian free field as anisotropic as one wishes at a given vertex, and that this
anisotropy is an effect of the non-triviality of the holonomy of the connection.

6.2. Eisenbaum’s isomorphism. We will now state a generalisation of Eisenbaum’s isomor-
phism. Our understanding is that this theorem gives a probabilistic expression in terms of the
Gaussian free field of the difference between the inverses of the Laplacians associated to a same
connection but to different potentials (see (38) below).

Theorem 6.2. Let G be a weighted graph with a well. Let F be a Hermitian or Euclidean vector
bundle over G. Let h be a connection on F and H a potential on F. Let f be a section of F. Then
the following identity holds in Q°(V,F):

(36) B [, [ HOHPH@ aoholy i (77| Apf = BF [em 2P0 (@ 4 f))

More concretely, for all verter x, we have

" [e—é(<1>+f,H<<1>+f)>go((pz + fx)}
Eh [67%(‘1>+f,H(<I>+f))QO]

B Xh [ b (BhNW) vy () =

yeV Va,y
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Before we prove the theorem, let us make a few comments. The first remark is that, although
the left-hand side of (37) depends in a manifestly linear way on f, it is not clear that the right-
hand side does. This is however the case, as will be clear from the proof. This feature is shared
by Eisenbaum’s original statement, which we shall deduce from our theorem later.

A second remark is that one of the prominent features of Eisenbaum’s theorem, namely the use
of unconditioned measures on the trajectories of the Markov process, seems to have disappeared
in our statement. We shall explain below how to fill this apparent gap between our formulation
and Eisenbaum’s original statement.

A third remark is that, in the right-hand side of (37), f can be taken out of the expectation,
thus producing, thanks to (23), a statement of the form

AyAf=F+...

where the dots hide a non-obviously linear functional of f. Applying this formula not to f but
to A,_Llf, we find

Ehfe— 3@+, S H @A D)oo )

Ehe— 300, LH@AL Dgo]

(38) Ayyf =00+

the announced probabilistic expression of the difference between the inverses of two Laplacians.
Let us now turn to the proof of the theorem.

Proof. Using successively (23) and Proposition 5.1, we find

(/P(G) holp, i (v ™) du(’Y)Ahf) () = A7 % (AR f) (@) = EMH [(@, A oo, ).

We now use the following Gaussian lemma. Let (X,Y) be an (r + 1)-dimensional Gaussian
vector such that X is r-dimensional and Y is 1-dimensional. Assume that the vector (X,Y") is
symmetric, that is, centred in the real case, and, in the complex case, such that (ei(’X , ewY) has
the same distribution as (X,Y’) for every real . Then

E[e®Y X]
E[eﬁy] ’
We apply this lemma X = &, and Y = (Apf, ®)qo. The Gaussian vector (X,Y’) is symmetric

because ® and —® have the same distribution and, in the complex case, the same distribution
as ¢?® for all real . We find

E[Y X] =

Eh’H [e%(fb,Ahf)Qo (I):v]

</P(G) holp i (v ™1) dV(’Y)Ahf) (z) = WA [R5 P

Replacing, by an affine change of variables, ® by ® + f in the numerator and the denominator,
we find that this quotient is equal to
EhH [e—éft(cb,Hf)Qo(q)x + f2)] Eh[ef%(*PH,H(@Jrf))Qo(q)x + f2)]

Eh.H [e—éﬁ(<1>,Hf)Qo] N Eh[ef%(éJrf,H(@Jrf))Qo]

as expected. O

The next lemma will help us to bridge the gap between Theorem 6.2 and Eisenbaum’s original
isomorphism. In order to state it, let us introduce a piece of notation.
For every continuous path -, define

T,=sup{t>0:y eV} =inf{t >0:v € W},
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the hitting time of the well by «. For every vertex z, the path ;9,7 ] is Py-almost surely a path
in the proper subgraph G)y. This path joins x to a point V1 of OV, the rim of the well.

Lemma 6.3. Let x be a proper vertex of G. Let F be a non-negative measurable function on
P(G). Then

2 /P(G) Fr) dveal) = /P(G) F(o,,) dP()-

Proof. Let us compute the left-hand side. It is equal to

>3 / ety S PoeiPricy-rPoye
y JO

yeVv n=0 (z,e1,%1,...Zn—1,€n,y) EDP,(G)

/ F((x,tl), e, (a:l,tg — tl), ceey (y,t — tn)) dty ...dt,,
O<t1<...<tn <t

that is, to

Z Qz((z, 61,...,y,e,e))/ F((z,710), €1y, (y,m))e "™ dry ...d7y,

+1
(z,e1,...,y)EDP,(G) (0,4-00)™
ecE:e=y,ecW

in which we recognise the right-hand side. O

Using this lemma, we will now state a corollary of Theorem 6.2 from which it will be easy to
deduce the classical statement.
Let us introduce the operator K on Q°(V, F) defined by

(Kf) (@) = ko f ().

Corollary 6.4. Let F be a Hermitian vector bundle over a weighted graph with a well G. Let h
be a connection on F and H a potential on F. Let x be a vertex of G. Let b be a section of F over
OV. Define a global section f of F over V by setting

f=GpKb.
Then the following identity holds in F:
(39) E' @ E, 6*%(<b+f,H(<D+f))Qo h0|th(7|I01,Tw])(b)] — Eh [e*%(<1>+f,H(<I>+f))Qo (P, + fx)] )

Proof. According to Lemma 6.3 and (34),
Ez[holn i (Vg7 ) (0)] = (Gh,n Kb)(2) = A} [ ALS,
which, given (23), is computed by Theorem 6.2. O

Just as in the case of Dynkin’s isomorphism, this result can be specialised to the original
version of Eisenbaum’s isomorphism. Assume that H is scalar in each fibre F,, equal to H,IdF,.
In that case, observing that the full trajectory of the random walk and the trajectory stopped
at the hitting time of the well have the same local time at every vertex of V, (39) becomes

E'QE, |e~3 Zeev AmHac(||<I>ae+fae||2+1fm(X))ho|h(m)1m)(b)} = kM [g%Zmev AeHol| et 1o (, 4 fx)] ]

Assume now that the fibre bundle is the trivial real bundle of rank 1 and the connection is the
trivial connection. Let b be the section, that is, the function, which is identically equal to a real
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number s on dV. In that case, f = GKb = sGk = sly, the function identically equal to s on V.
Then the formula above becomes

Er QE, e—ézxev Angc((q>x+s)2+em(X))} s — Eh [6_521@ A,ch(@ers)?(q)x + S)] .

Provided s is not zero, dividing by s yields one of the classical formulations of Eisenbaum’s
isomorphism.

Let us finally explain how the results of this section can be understood in terms of the resolution
of a Dirichlet problem in G.

Recall from the beginning of Section 3.9 that there exists an uncompressed Laplacian Aj, =
d* od acting on the space Q2°(U, F) of all sections of F, even those that do not vanish on the well.
Adding a potential H to this Laplacian, we obtain the operator A, g = Aj, + H.

Suppose that we are given a section w € Q°(W, F) of F over the well and we want to solve the
Dirichlet problem with this boundary condition, that is, to find a section f € Q°(U,F) of F such
that

Afh Hf =0 on V,
(40) { f=w onW.

Assuming that H vanishes on the well as usual, the Laplacians Ay, g and A g agree everywhere
but on the rim and for every z € 9V, we have

Apufx)=Dpuf(x)— > h'f(@).

e=x,ecW
Thus, f solves the Dirichlet problem (40) if and only if it is satisfies
_J O ifxeV\oV,
(41) Annf(z) = { b ifxzedV,

where b is the section of F over 0V defined by

baz)= > h'w(e).

e=z,ecW

It appears that solving the Dirichlet problem for the uncompressed Laplacian in the graph with
a boundary condition on the well amounts to applying the inverse of the compressed Laplacian
to a certain section of F over the rim.

It is a classical fact that the solution of the Dirichlet problem in a domain with a certain
boundary condition is the average of the Gaussian free field on this domain conditioned to
satisfy this boundary condition. The relation (38) extends this result in the following sense:
provided one knows how to solve the Dirichlet problem associated with the Laplacian Ay, for a
certain boundary condition, this corollary gives an expression in terms of the Gaussian free field
of the solution of the Dirichlet problem with the same boundary condition but for any of the
generalised Laplacians Ay, p.

7. ISOMORPHISM THEOREMS OF LE JAN AND SZNITMAN

In this section, we continue our investigation of the way in which classical isomorphism theo-
rems can be extended to the covariant setting and we turn to Le Jan’s and Sznitman’s isomor-
phism theorems, which relate the magnitude of the Gaussian free field to local times of Poissonian
ensembles of loops and paths.

Just as our approach to the generalisation of the isomorphism theorems of Dynkin and Eisen-
baum was based on one main equality, namely (23), the results of this section will ultimately be
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based on (24). In particular, the measure p in its various forms (see Definition 2.8) will play a
prominent role in this study.

However, (24) turns out to be more difficult to use than (23) and we use instead the traced
version of (24), namely (25), which we recall here for the convenience of the reader:

det Ay,

42 Tr hol 1 — Trhol, (v ! °(v) = log ———
(12) L (o671 = Tehol(r™) () = o

(43)
dt det A
-1 -1 _ h

%K(G)X(O7+m) (Tl"Fx (hOIth(’y\[O,t])) — TI“Fx (h0|h(7|[0,t]))) ﬂ{%:z} d]P’x(’y)7 = log 7(216’6 Ah,H .

7.1. Overview of the approach. Let us explain, in the Fuclidean case, and with Le Jan’s
theorem in mind, how we are going to use (43). Firstly, we are going to exponentiate it and

recognise, in the right-hand side, the expectation E" [e_%(q)’H (D)QO] The problem is to interpret
the left-hand side

(44) exp /L(G) (Tr holp zr(v™1) — Tr holh(’y_l)) dp®(7y).

A probabilistic interpretation of this quantity relies on Campbell’s formula for Poisson point
processes, which goes as follows. Given a diffuse o-finite Borel measure m on a Polish space X,
let us denote by X the Poisson point process on X with intensity m. Then the Campbell formula
asserts that for every Borel function f on X such that f > 1,

Ei,, [H f(x)] :exp/X(f—l) dm.

zeX

In order to put (43) in the form of Cambpell’s formula, we will proceed as follows. Firstly, we
will use the fact that the measure p® is invariant under the the path reversal map v — v~ ! (see
Lemma 2.10) and the fact that the twisted holonomy is turned into its adjoint by composition
by the same map (see (12)), to say that the imaginary part of the integral in (43) vanishes and
that we can replace traces by their real parts.

The second step one would like to take is a simple algebraic manipulation leading to the form

RTr holy (v~ B . ~1y, 0
(45) exp /L(G) ( 1) d(RTr holp (v~ )u®).

RTr holp (y—1)

This form has two drawbacks. The first is that the quotient of real part of traces is difficult to
interpret. With Le Jan’s work [LJ11] in mind, we would like to understand it as the exponential
of some linear functional of H and the local time of . However, the non-commutativity of the
present setting makes it difficult to extract from this quotient the contribution of H. The second
drawback is the fact that we are now integrating with respect to a signed measure.

We will not offer any serious alternative to the problem of working with a signed measure: we
will simply write it as the difference of two positive measures, and use Campbell’s formula for
each of them. We will thus obtain a quotient of two instances of Campbell’s formula.

On the other hand, we offer a solution to the problem of the interpretation of the quotient of
real parts of traces of holonomies. It consists in lifting the integral from the space of loops to a
larger space, on which holonomies, or rather quotients of holonomies become scalar quantities.
This requires a detailed explanation, which will occupy us for the next few sections.



32 ADRIEN KASSEL AND THIERRY LEVY

7.2. Splitting of vector bundles. The main new piece of structure that we need in our study
of Le Jan’s and Sznitman’s isomorphisms is a decomposition of each fibre of the vector bundle F
as an orthogonal direct sum of linear subspaces.

Definition 7.1. Let G be a graph. Let F be a vector bundle over G. A splitting of F, or
colouring of F, is a collection I = {(Is, (F})ier,) : ® € V} in which, for each x € V, I, is a set
and {F% i € I;} is a family of pairwise orthogonal linear subspaces of Fy such that

1
(46) F. = EPF..

i€l
For each x €V and i € I;, we denote by 7. : F, — FL the orthogonal projection.

A special case of splitting is the trivial splitting, in which each fibre of F is simply written as
being equal to itself. As trivial as it is, this splitting will be useful for us, and we will denote it
by T = {({z},Fz) : z € V}.

Another special case is the case of complete splittings, in which each fibre is written as an
orthogonal direct sum of lines.

There is a natural partial ordering of the set of all splittings of a fibre bundle : we say that
the splitting I is finer than the splitting I’ if for each vertex x and each ¢ € I, there exists
i' € I/, such that Fi C Fg. The trivial splitting is the maximum of this order, and the complete
splittings are its minimal elements.

We say that a splitting I and a potential H on F are adapted to each other if for all x € V and
all i € I, the space F. is an eigenspace of H,. In this case, we will denote by H_ the unique
eigenvalue of the restriction of H, to F., so that for all € V, we have

H, =Y Hinl.
1€,

For example, to say that a potential is adapted to the trivial splitting means that it is scalar
on each fibre. This is a kind of potential that we already considered twice, in order to specialise
Theorems 6.1 and 6.2 respectively to the classical Dynkin and Eisenbaum isomorphisms.

To every potential H we can associate its eigensplitting, the splitting of F obtained by writing
each fibre F, as the direct sum of the eigenspaces of H,. This splitting is of course adapted to H
and it is, among all splittings adapted to H, the one that is maximal for the partial order that
we just described.

7.3. Splitting of the Gaussian free field. A splitting of F allows us, among other things, to
split the Gaussian free field on G.

Let h be a connection and H be a potential on our vector bundle F over G. Let ® be the
Gaussian free field on F associated to h and H. Let I be a splitting of F. For each vertex x and
each ¢ € I, we define

(47) P =71l (D).

xX
We meet here for the first time a new kind of field, namely (®%),cv jer,, indexed not only by the
vertices of G, but also, at each vertex x, by elements of I, which we will call colours. Without
giving too precise a meaning to this term, we will speak of a coloured field.
This coloured field (®%),ev icr, is a Gaussian random element of the direct sum @xev,ie I, Fi.
It is centred, and an application of (30) allows us to compute its covariance: for all z,y € V and
all v € I, j € I,

(48) ERH [ @ @] = 7% 0 (G 1)y © 7,
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FIGURE 7. A sample of a covariant Gaussian free field ® in a trivial real bundle of
rank 3 along with its components ®!, ®2 &3 (interpolated linearly). The connection was
chosen independently on each edge and uniformly from the orthogonal group O(3,R).
The underlying graph is a 20 x 20 square grid where the rim of the well is the external
boundary of the grid.

an equality to be read in Hom(F}, F?).

The case where I is a complete splitting is of particular interest. Let us consider this case,
and let us also assume that the set of colours I, is the same for each vertex x € V, namely I, =
{1,...,7}. Let us finally choose a unit vector u’, in each line Fi. Then, for each i € {1,...,7},
we can define a scalar random field ®* on V by setting, for all € V, and with a conflict of
notation that we do not deem too serious,

L = (ul, D),
Each of the r scalar fields ®*,i € {1, ...,r} is a centred Gaussian field and for all 7 € {1,...,7},
the covariance of the scalar field ®* is given, for all z,y € V, by

M@0 = (i, (G, )

Although this is clear from (48), we would like to stress that the fields ®, ..., ®" are correlated,
due to the presence of the connection h and the potential H (see Figure 7).

7.4. Coloured paths, coloured loops and coloured local time. We are now going to explain
how the choice of a splitting of the vector bundle allows us to define an enriched version of the
space of loops on the graph. From the point of view of paths that we will adopt now, we prefer
to think of each subspace of a fibre of F as a colour, and of the splitting itself as a colouring.

Let I be a colouring of F, that is, a splitting of F. We define the space P!(G) of I-coloured
paths on G as the set of all sequences

n= (($05 70, iO)a €1, (:Clv T1, Zil)a <5 En, (xna Tn,y Zn))
such that
Y= ((330, 7—0)7 €1, (1131, 7'1), <.y 6n, (ﬁna Tn))
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is an element of P(G) and, for each k € {0,...,n}, we have iy € I, .

The coloured path n will be said to have the colour i; when it visits the vertex xj. Note that
a coloured path can have different colours at successive visits of the same vertex.

A T-coloured path, where T is the trivial colouring, is nothing but a path which, at each vertex
that it visits, has the only existing colour at that vertex. Accordingly, we will identify freely the
spaces PT(G) and P(G).

We say that the coloured path 7 written above is a coloured loop if x,, = x¢ and i,, = 7g. We
denote by L'(G) the set of coloured loops on G.

By analogy with Definition 3.7, we define, for all x € V and all i € I, the occupation measure
and the local time of n with colour i at the vertex = € V by

1

n
PL0) = D buyBi i and E(n) = £ 05 (7):
k=0 v

In our naive quantum mechanical picture of paths on the graph, a coloured path describes not
only the motion of a particle, but the successive states in which this particle can be found at the
successive vertices that it visits. If the splitting that we are considering is the eigensplitting of a
potential H, then these states can be measured at each vertex x by the observable H,.

Let us conclude this section by saying something about the way in which the set of I-coloured
paths depends on the colouring I. Let us consider two colourings I and I’ of F such that I is
finer than I'. Extending the metaphor of colours, there is a bleaching map by j : PY(G) — PT(G)
which, at each vertex x visited by a path, changes the colour i € I, into the unique colour i’ € I,
such that Fi c F”. If I’ is a third colouring such that I' is finer than I”, then the relation
b]I”,]I’ o] b]l’,]l = b]l”,]l holds.

The special case where I is the trivial colouring will be of particular interest, and we will use
the simpler notation [n] = by j(n) for the element of P(G) obtained by forgetting altogether the

colours of an I-coloured path 7.

7.5. Amplitudes. We will now use the colourings of a path to decompose the trace of the
holonomy along that path, and ultimately to simplify the expression (45).

Let n = ((zo, 70,%0), €1, (1, T1,91), - -y €n, (Tn, Tn,in)) be an I-coloured path. Recall that we
chose a connection h and a potential H on the vector bundle F. We define the amplitude of h
along the I-coloured path n twisted by H as the operator

™ H,

" 0 he, 0...0ml oe e

I i —~ io o ,~7T0Hag . Fi i
ampy, () =7, oe 10 he, oy o€ M0 Lt FR— Fin

This definition is designed for the following equality to hold: for every (non-coloured) path =,
(49) > ampy, () =holyu(7).
nePH(G):[n]=~
More generally, if I is finer than I’, then for all n/ € P (G)
(50) > ampy, ;;(n) = ampj, (1) .
n€P(G):by y(m)=n’

Note that for every I-coloured path n, we have

*

(51) ampy, ;(n™") = ampy, ;7 (n)*,

the adjoint of amp]}L’H (n). In particular, if 7 is a coloured loop, then the traces T&"amp],ll’H(n) and
ﬁamp£7H(n_1) are conjugate complex numbers.
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One of the reasons to introduce amplitudes is the following: if H and I are adapted, then
(52) ampj, () = e~ Zeevacts e ampl (),

a formula analogous to (13), but which holds without the assumption that H be scalar in each
fibre. This indicates that, after lifting (45) from L(G) to LI(G), it will be much easier to deal with
the quotient of holonomies, which will become a quotient of amplitudes. Before we implement
this lifting procedure, we must say a word about the measures, indeed the signed measures that
we will use on L'(G) and PY(G).

7.6. Signed measures on the sets of coloured loops and paths. In this section, we will
define two families of measures on sets of coloured paths. Firstly, we will define a signed measure
ui’ﬂ on the set of I-coloured loops, which in a sense lifts a measure on the set of loops absolutely
continuous with respect p® (see Definition 2.8), with a density depending on the connection h.
Then, for every section f of F, we will define a signed measure l/}ll’ Fon the set of I-coloured paths,
which in a similar sense lifts and generalises the measures v, , (see Definition 2.7).

Definition 7.2. Let h be a connection on F. Let I be a colouring of F. The measure ;L(Z’H 18
defined on L'(G) by the fact that for all bounded non-negative measurable function F on L'(G),

/LH(G) ) i / Z ) RTx(ampl (7)) dyi (7).

T]EL]I

To make it clear that the integral above exists, we can rewrite it as

+oo
/ Z (n)?RTr(ampi(n’l)) dp®(v) + Z/O ZF((a:,t,i))etit,

r]EL]I

so that the measure :“7{ appears as the sum of an honest signed measure and a o-finite positive
measure.

In the particular case of the trivial splitting, the formula above defines a measure ,uZ’T on L(G),
which we will denote simply by u7 and which can be written as

dyi (v) = RTr(holn (v 1)) du().

The next proposition tells us how to lift to the space of coloured loops the integrals we are
interested in.

Proposition 7.3. Let F' be a bounded non-negative function on L(G). Then
® o,l
(54) F(y) dus(v) = F([n]) duy,(n).
L(G) LY(G)
Assume that F(vy) = F(y~1) for every loop . Then

(55) /F(v)ﬂ(holh,Hm—l))du@(w): F([n))e Zeeviern H0e) qyoli),
L(G) LY(G)

Proof. The first assertion is a direct consequence of the definition of ,u(;l’ﬂ and (49).

For the second assertion, we start from the right-hand side, apply the definition of ,uZ’H, use
(52) and then (49). This yields the real part of the left-hand side of the equality that we wish
to prove. To see that this left-hand side is indeed real, we use Lemma 2.10, which asserts that
the measure £° is invariant under the involution v ~ =1, and (51). O
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Note that we can use (50) to generalise (54): if I is finer than I'; then for every bounded
non-negative measurable function on LH/(G), we have

(56) / Fobyydu®! = / Fdpe”.
LI(G) LY (G)

In the statement of our main result, we will make use of the positive and negative parts of the
measure uzj, which we will denote respectively by ,uZ’H’JF and ,U,Z’H’_. Note that M‘Z’H’Jr contains the
second term of the right-hand side of (53), corresponding to constant coloured loops, and is thus
an infinite positive measure, whereas ,u(;L’H’_ is a finite positive measure supported by the set of
non-constant coloured loops.

Let us mention a delicate point which arises from the fact that we are using signed measures.
Although (56) expresses the compatibility of the family of measures ,u(;l’]l with the bleaching
maps by 1, it is not the case that the measures M%H’Jr, nor the measures ,LLZ’H’i satisfy the same
compatibility relations: in symbols, we have in general

o,I,+ —1 ol + o,I,— -1 o', —
Ky © b]y,]l # 1 and My~ © b]I/7]I # W )

but

( o,I,+ o'+

o,l,— —
I )Ob]I’jI: (w iz
This is because the amplitudes of all the I-colourings of a path compatible with a given I'-
colouring of the same path need not have traces of the same sign. See Figure 8 below for a
graphical explanation of this phenomenon in the case where I’ is the trivial colouring. We shall
come back to this point after the proof of Theorem 7.6 below.

@7][/’,).

M?L,]I,-‘r
P(G)
o,l,—
Hp
iwm

| A | P(©)

@® ®

ﬂh’Jr My

FIGURE 8. This schematical picture shows the supports of the positive and negative
parts of the measures that we introduced on P*(G) and P(G).

Let us turn to the definition of the second family of measures announced at the beginning of
this section. It is a family of measures on the set of coloured paths that are not necessarily loops.

Definition 7.4. Let h be a connection on F. Let I be a colouring of F. Let f € Q°(V,F) be a
section of F. The measure l/g’f is the measure on PY(G) such that for all non-negative measurable

function F on PY(G),

v = mp; (7~ ~ v(7vy)-
m>A@mmmmﬁ@w%WyMWWmJMnmmmww
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Since v, in contrast to u®, is a finite measure, 1/}11 ¥ is a genuine signed measure, with finite
positive and negative parts.
Applied to the trivial splitting, this definition yields a measure VE s on P(G) which we denote
simply by
dvn,1(7) = MR((Anf)(3), holn (v (AR ()., dv ().

Recall from Definition 2.7 that the definition of v involves the value of A at the final point of the
path, so that the equation above is more symmetric than it looks, and could be written as

dvpg () = Y Ay R{UARS) (), holn (v ™) (Anf) (1)), dvay(7)-

z,yeV

We have for the measures I/}Il 7 the following formulas, analogous to those of Proposition 7.3.

Proposition 7.5. Let F be a non-negative measurable function on P (G). Then

(58) /P o FO) ) = / F([n)) dvi_;(n)

PL(G)

and
(59)

MF{(ARH)(Q), hol (v (ARHA))., dv(y) = / F([n])e™ >=revaer HV2) quj o (n).
P(G) — 2 PL(G)

Proof. The proof uses almost exactly the same arguments as the proof of Proposition 7.3. The
only difference is the fact that the measure v is not invariant under the map v + y~1, but the

measure A\ydv(7), that is, the measure },  y AgAyVa,y, is invariant. O

In the next section, we will make use of the positive and negative parts of this measure, which
we will denote respectively by V,E;Z and ug} A simple yet useful observation is that if f is the
zero section, then these measures are the null measures.

The measures I/]}IL’ > where h and f are fixed and I varies in the set of splittings of the vector
bundle F, satisfy the exact same compatibility relations with respect to the bleaching maps as
the measures ,u(;’]l, and the same precautions are in order when one considers the behaviour of
the positive and negative parts of these measures with respect to the bleaching maps.

7.7. Le Jan and Sznitman’s isomorphisms. Let us introduce a last piece of notation. Let I
be a colouring of the fibre bundle F. Let P be a set of I-coloured paths. We denote by ¢1(P) the
collection

EH(P) = (EQ(P))IEV,ZEIW
where for all x € V and all ¢ € I,
G(P) =D _ Lo(n).
nepP
Let now f be a section of F. We denote by ||-||>!(f) the collection

140 = (I (N IDzevier,

In the informal terminology that we introduced in Section 7.3, both ¢1(P) and |-||>!(f) are scalar
coloured fields. The following theorem, which generalises the isomorphism theorems of Le Jan
and Sznitman, states the equality in distribution of random scalar coloured fields of this nature.
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Theorem 7.6. Let G be a weighted graph with a well. Let F be a vector bundle over G. Let h be
a connection on F. Let ® be the Gaussian free field on G associated with h. Let T be a colouring
of F. Let f € QO(V,F) be a section of F. Let Ly and L_ be Poissonian ensembles in L'(G) with

respective intensities guZ’H’JF and g,u(;;ﬂ’_. Let £, and E_ be Poissonian ensembles in P'(G) with

respective intensities gug; and gug} Assume that ®, L, L E,E_ are independent. Then

the following equality holds in distribution.:
(60) Fe.ue) D P @+ 1) + AL uE),
To be clear, the conclusion of the theorem is that the two random vectors
{(i(LyUEL) :xeV,icl,} and {;Hﬂi(@x + P +E(L_UE )z eV, ic Ix}
have the same distribution.

Proof. We start by proving the theorem in the case where f = 0. In this case, the ensembles £
and £_ are almost surely empty.

Let us choose a potential H adapted to I and such that H, is non-negative for all x € V.
We start from (25), which we multiply by g and of which we exponentiate both sides. On the
right-hand side we find

8

detAh 2 :]Eh [e_%(q’in))QO} ‘
det Ah,H

On the left-hand side, we find, thanks to (55) applied once to the zero potential and once to the

potential H,

p ~ S evier, Hi0L(n) ol
o [ (S 0 1)

Splitting the measure ,u(;L’H into its positive and negative parts and writing Campbell’s formula
for each part, we find that
(61) Ele™ erv,ielz AmH}czi(ﬁ”} = [Eh [e_%zmev,ielz AmHi””é(‘bx)Hi] E [6_ ZxEV,iEIm Ao Hy by (L)

i

where the first expectation (resp. the last) is taken with respect to the distribution of the Poisson

5 uot (vesp. 8 7). Since this equality holds for arbitrary non-

negative values of the numbers H?, it says exactly that the Laplace transforms of both sides of
(60) are equal.

We now turn to the proof of the general case. We proceed again to show the equality of the
Laplace transforms of both sides of (60). Combining the special case of the theorem that we
just proved, where f = 0, and Proposition 5.5, which was precisely designed to be used here, we
conclude that it suffices to prove the equality

point process with intensity

i i 1 -1 -1 i i
E [6_ erv,ielw )‘ZH;@(SH] — ei(Ahfv(Ah,H_Ah )Ahf)QoE [e— erv,ielw )‘IHQZCZ;(S*)} )

Following backwards the same arguments that we used in the first part of this proof, we see that
we must prove that

(62) /PH(G) (6* Yrevier, Heth(m) _ 1) dV}IL,f(n) _ (Ahf, (Aﬁq . Agl)Ahf)Qo-
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By (23) and Definition 2.7, the right-hand side is equal to

(63) D Ay /P(G) ((Anf)(@), (holm(v™1) = holn (v (Anf) (), dvay(y).
z,yeV
By (59), this is equal to the left-hand side of (62), as expected. O

Just as for the theorems of Dynkin and Eisenbaum, the classical theorems of Le Jan and
Sznitman correspond to the special case of our theorem where F = R¢ is the trivial real vector
bundle of rank 1 endowed with the trivial connection. In that case, all measures are positive,
and the ensembles £_ and £_ are almost surely empty. Let us write £L =L, and &€ = &,.

When f = 0, we recover Le Jan’s theorem, which asserts, in our notation, that ¢(£) has the
same distribution as ®2. When f is constant equal to a real v/2s, we have Af = v/2s%, and

2
s E KgkyVz y-

8,1 :
the measure Vbt becomes simply
z,yeV

Then we recover Sznitman’s theorem which asserts that £(£ U £) has the same distribution as
(@ 4+ V2s)%

It is tempting to compare the conclusions of Theorem 7.6 for two different colourings I and
I’ such that T is finer than I'. It seems that of the two statements associated with two such
colourings, no one is logically stronger than the other.

Let us discuss without proof the case where I is a complete splitting such that I, = {1,...,r}
for every vertex x, and I the trivial splitting. Let us also assume, for the sake of simplicity, that
f = 0. Then, using the equality ||®L||2 + ...+ [|®%]|2 = || @2 for every x, one can prove the
equality in distribution

{ie;(ﬁﬂ) F (L) :a€ v} @ {izg(cﬂ) F (L) a€ v} ,
=1

i=1
where the ensembles corresponding to I carry a superscript I, and the ensembles corresponding
to I carry no superscript. The common distribution of these random vectors can moreover be
described as the distribution of the local time of a Poissonian ensemble of non-coloured paths

with intensity equal to the image by the bleaching map 7 — [n] of the measure 11 MZ’H), where

C" = {n € L(G) : sen(RTr(amp, (™)) = sn(RTx(holy (] ™))}
In Figure 8, the set C! is the union of the top left and bottom right rectangles.

8. COVARIANT SYMANZIK IDENTITY

In this last section, we investigate Symanzik’s identity, which gives an expression of the mo-
ments of some non-Gaussian random sections of the vector bundle over our graph.

8.1. Non-Gaussian random sections. The random fields that one considers in Symanzik’s
identity are annealed versions of the Gaussian free field: they are Gaussian with respect to
a random potential. In our covariant situation, we let not only the potential, but also the
connection be random.

Let as usual G be a weighted graph with a well and F a vector bundle over G. Recall that
the set of connections on F is denoted by A(F). Let #(F) denote the set of potentials on F,
in the sense of Definition 3.4. The space A(F) is a compact topological space and H(F) is a
finite-dimensional vector space. We endow both of them with their Borel o-field.
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Definition 8.1. Let P be a Borel probability measure on A(F) x H(F). The measure PY is the
probability measure on Q°(V,F) such that for all bounded measurable function F on Q°(V,F),

1
[ rn@t =g [ F(f)eHU20xDa0 dLebgo (£)dP (g, K),
QO(V,F) ZF JQo(V,F)x A(F)xH(F)

where
Br|V]

_B
(64) VAN / det A, 2 dP(g, K).
A(F)xH(F)

If P is the Dirac mass at (h, H), then P’ = P In that case, we denote Z¥ simply by Z"#
instead of Z%.m) .
Let us emphasise that in general, P¥ is not equal to fA(F)X%(F) P9-K dP(g, K), but rather to

(65) PP Z9EpoE qp (g, K).

_ /
Z® JaFyxneF)
If one is given a reference connection h and a reference potential H, then the definition of the
measure PP can be rewritten as

Py L
/QO(V,IP’) P AP (F) = zp /QO(V,F) o)

so that this measure appears as a perturbation of the distribution P of the covariant Gaussian
free field. If one is interested in a particular perturbation, then one should look for a probability
measure P which makes the expression between the brackets equal to this perturbation. This
perturbative point of view was one of Symanzik’s original motivations to prove the identity that
bears his name.

Let us give another expression of the measure PP based on a computation of the partition
function ZF.

/ e_%(fv(Ag,K_Ah,H)f)QO dP(g,K) d]P)h,H(f)’
A(F)xH(F)

Lemma 8.2. Let L be a Poissonnian ensemble of loops with intensity g/ﬁ. For every connection

g and every potential K, the following equality holds:

det A7
det Ag,K

E[ ] tr(holyic(v™1)] =

B

2 ”
) — (n Ml det A)F 29K
yeEL

Proof. By Campbell formula, the leftmost quantity is equal to
B - .
exp s [ (Trtholgac(r™) —r) dii*(3).
L(G)

In order to apply (25), we need to understand the scalar r as the trace of the holonomy of a
connection along . Such a connection can be constructed by choosing a basis of each fibre of F
and letting, for every vertex x and every edge e issued from x, the holonomy h. , be the identity
in the chosen bases of F, and F.. For such a connection, the holonomy along every loop based
at a vertex z is the identity of F,. Moreover, the Laplacian associated to such a connection is
conjugated to the Laplacian of the trivial bundle of rank r endowed with the trivial connection.
This accounts for the first equality. The second follows from (64). O

It follows immediately from this result that for every connection g and every potential K,
g0 E[ILeptriholyrc(v1))]

2 ®E[H7€£ tr(h0|g/,K'(771))} |

(66)
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8.2. Symanzik’s identity. We can now state the covariant version of Symanzik’s identity.
Recall the definition of the measure v (Definition 2.7).

Theorem 8.3. Let G be a weighted graph with a well. Let F be a vector bundle over G. Let P
be a Borel probability measure on A(F) x H(F).
Assume that K = R. Let fi1,..., for be 2k sections of F. Then

2k

[T @)

i=1

(67) EP

k
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~yeL

where the sum is taken over all partitions m = {{i1,j1},..., {ix,Jx}} of {1,...,2k} by pairs.
Assume that K= C. Let fi,..., fi, f1,.--, [}, be 2k sections of F. Then

K k
(68) EF [H(fi,‘l))szo H(‘I’aff)m] =
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where the sum is over all permutations of {1,...,k}.

An illustration of Theorem 8.3 is given in Figure 9.

Y2 T2

n

FIGURE 9. According to Symanzik’s identity, illustrated here in the complex case, the
correlation of the random section of F at the points x1,zs, 3 and its conjugate at the
points y1, 42, ys can be computed in terms of the traces of the holonomies along loops of
a Poissonnian ensemble (here in gray) and the holonomies along paths connecting the x
points to the y points.
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Proof. The only difference between the real and complex cases is the form of Wick’s theorem,
which we stated in the present context as Proposition 5.4. Let us treat the complex case. Writing
the definition of PP and using precisely Proposition 5.4, we find that the left-hand side of (68)
is equal to

k
! / K/ —1y\ p/ __
el 79; My (fi(v)s holy 5 (v ) fon () dv(ma) - - - dv(yi) dP(g, K).
ZP; A(F)<H(F) P(G)’“ll]l 2l i) ol (V) foy (1) dv(m) - dv (i) dP (g, K)

by its value given by (66) to find the right-hand side of (68). O

79K

It suffices to replace <5

CONCLUDING REMARKS

We view our paper as setting a framework for further study in random spatial processes on
vector bundles over graphs. As a conclusion, we mention without much detail a number of
possible directions of future research.

We expect that, at least for smooth enough connections, our results should extend to the setup
of Brownian paths on manifolds, where the squares of the covariant continuum Gaussian free
field are replaced by appropriate Wick squares.

Our setup should also allow to study the random interlacement model [Sznl2al|, which can be
investigated on an infinite lattice by using an exhausting sequence of finite graphs. We expect
the analog of Theorem 7.6 to be true in that case too.

Loop percolation is the study of connectivity properties of the loop soup. On the hypercubic
lattices, its phase transition with respect to an intensity parameter is now well understood. In our
setup, there are many variants of loop percolation which could be defined and studied. In par-
ticular, since our parameter space is the space of connections, one can expect more complicated
phase diagrams.

Our definition of twisted holonomies provides a covariant analogue of local times. Cover times
also have strong relations to Gaussian free fields. Recently, Ding and Li [DL16] and Zhai [Zhal4]
used the refinement of Le Jan’s isomorphism theorem by Lupu [Lupl6] to prove results on cover
times. Can one extend these results to our setup? What is the covariant analog of the cover
time and its relation to the covariant Gaussian free field?
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