Heteroepitaxial growth of silicon on GaAs via low-temperature plasma-enhanced chemical vapor deposition - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2019

Heteroepitaxial growth of silicon on GaAs via low-temperature plasma-enhanced chemical vapor deposition

Ludovic Largeau

Résumé

We present an innovative approach for the growth of crystalline silicon on GaAs using plasma-enhanced chemical vapor deposition (PECVD). In this process the substrate is kept at low temperature (175 °C) and epitaxial growth is obtained via the impact of charged silicon clusters which are accelerated towards the substrate by the plasma-potential and melt upon impact. Therefore, this is a nanometer size epitaxial process where the local temperature (nm scale) rises above the melting temperature of silicon for extremely short times (in the range from ps to ns). This allows obtaining epitaxial growth even on relatively rough GaAs films, which have been cleaned in-situ using a SiF4 plasma etching. We present in-plane X-Ray Diffraction (XRD) measurements which are consistent with the hypothesis that the epitaxial growth happens at a local high temperature. Indeed, the tetragonal structure observed and the low in-plane lattice parameter determined from XRD can only be explained by the thermal mismatch induced by a high growth temperature. The effect of the plasma on the underlying GaAs properties, in particular the formation of hydrogen complexes with GaAs dopants (C, Si, Te) is studied in view of the integration of the c-Si epi-layers into devices
Fichier principal
Vignette du fichier
109261C Heteroepitaxial growth of Si on GaAs via PECVD.pdf (1.44 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02331842 , version 1 (30-03-2020)

Identifiants

Citer

Gwenaëlle Hamon, Nicolas Vaissière, Clément Lausecker, Romain Cariou, Wanghua Chen, et al.. Heteroepitaxial growth of silicon on GaAs via low-temperature plasma-enhanced chemical vapor deposition. SPIE OPTO : Quantum Sensing and Nano Electronics and Photonics XVI, SPIE PHOTONIC WEST, Feb 2019, San Francisco, United States. ⟨10.1117/12.2511174⟩. ⟨hal-02331842⟩
110 Consultations
116 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More