Heteroepitaxial growth of silicon on GaAs via low-temperature plasma-enhanced chemical vapor deposition
Résumé
We present an innovative approach for the growth of crystalline silicon on GaAs using plasma-enhanced chemical vapor deposition (PECVD). In this process the substrate is kept at low temperature (175 °C) and epitaxial growth is obtained via the impact of charged silicon clusters which are accelerated towards the substrate by the plasma-potential and melt upon impact. Therefore, this is a nanometer size epitaxial process where the local temperature (nm scale) rises above the melting temperature of silicon for extremely short times (in the range from ps to ns). This allows obtaining epitaxial growth even on relatively rough GaAs films, which have been cleaned in-situ using a SiF4 plasma etching. We present in-plane X-Ray Diffraction (XRD) measurements which are consistent with the hypothesis that the epitaxial growth happens at a local high temperature. Indeed, the tetragonal structure observed and the low in-plane lattice parameter determined from XRD can only be explained by the thermal mismatch induced by a high growth temperature. The effect of the plasma on the underlying GaAs properties, in particular the formation of hydrogen complexes with GaAs dopants (C, Si, Te) is studied in view of the integration of the c-Si epi-layers into devices
Fichier principal
109261C Heteroepitaxial growth of Si on GaAs via PECVD.pdf (1.44 Mo)
Télécharger le fichier
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...