Calcul exact de faible complexité des décompositions conjonctive et disjonctive pour la fusion d'information. - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Calcul exact de faible complexité des décompositions conjonctive et disjonctive pour la fusion d'information.

Résumé

Dempster-Shafer Theory (DST) generalizes Bayesian probability theory, offering useful additional information, but suffers from a high computational burden. A lot of work has been done to reduce the complexity of computations used in information fusion with Dempster’s rule. Yet, few research had been conducted to reduce the complexity of computations for the conjunctive and disjunctive decompositions of evidence, which are at the core of other important methods of information fusion. In this paper, we propose a method designed to exploit the actual evidence (information) contained in these decompositions in order to compute them. It is based on a new notion that we call focal point, derived from the notion of focal set. With it, we are able to reduce these computations up to a linear complexity in the number of focal sets in some cases. In a broader perspective, our formulae have the potential to be tractable when the size of the frame of discernment exceeds a dozen possible states, contrary to the existing litterature. In addition, we have developed a complete open-source C++ framework containing an implementation of this method.
Fichier principal
Vignette du fichier
Gretsi2019_Chaveroche419.pdf (176.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02322022 , version 1 (21-10-2019)

Identifiants

  • HAL Id : hal-02322022 , version 1

Citer

Maxime Chaveroche, Franck Davoine, Véronique Cherfaoui. Calcul exact de faible complexité des décompositions conjonctive et disjonctive pour la fusion d'information.. XXVIIème Colloque francophonede traitement du signal et des images (GRETSI 2019), Aug 2019, Lille, France. ⟨hal-02322022⟩
117 Consultations
99 Téléchargements

Partager

More