Article Dans Une Revue IEEE Signal Processing Letters Année : 2020

Projected gradient descent for non-convex sparse spike estimation

Yann Traonmilin
Jean-François Aujol
Arthur Leclaire

Résumé

We propose a new algorithm for sparse spike estimation from Fourier measurements. Based on theoretical results on non-convex optimization techniques for off-the-grid sparse spike estimation, we present a projected gradient descent algorithm coupled with a spectral initialization procedure. Our algorithm permits to estimate the positions of large numbers of Diracs in 2d from random Fourier measurements. We present, along with the algorithm, theoretical qualitative insights explaining the success of our algorithm. This opens a new direction for practical off-the-grid spike estimation with theoretical guarantees in imaging applications.
Fichier principal
Vignette du fichier
non_convex_SR_hal4.pdf (411.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02311624 , version 1 (15-10-2019)
hal-02311624 , version 2 (24-02-2020)
hal-02311624 , version 3 (11-05-2020)
hal-02311624 , version 4 (13-12-2021)

Identifiants

Citer

Yann Traonmilin, Jean-François Aujol, Arthur Leclaire. Projected gradient descent for non-convex sparse spike estimation. IEEE Signal Processing Letters, 2020, 27, pp.1110 - 1114. ⟨10.1109/LSP.2020.3003241⟩. ⟨hal-02311624v4⟩

Collections

CNRS IMB INSMI
363 Consultations
614 Téléchargements

Altmetric

Partager

More