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We propose a new algorithm for sparse spike estimation from Fourier measurements. Based on theoretical results on non-convex optimization techniques for off-the-grid sparse spike estimation, we present a projected gradient descent algorithm coupled with a back-projection initialization procedure. Our algorithm permits to estimate the positions of large numbers of Diracs in 2d from random Fourier measurements. We present, along with the algorithm, theoretical qualitative insights explaining the success of our algorithm. This opens a new direction for practical off-the-grid spike estimation with theoretical guarantees in imaging applications.

I. INTRODUCTION

In the space M = M(R d ) (respectively M = M(T d )) of finite signed measures over R d (respectively the d-dimensional torus T d ), we aim at recovering a superposition of impulsive sources x 0 = k i=1 a i δ ti ∈ M from the measurements

y = Ax 0 + e, (1) 
where δ ti is the Dirac measure at position t i , the operator A is a linear observation operator from M to C m , y ∈ C m are the m noisy measurements and e is a finite energy observation noise. This inverse problem (called spike super-resolution [START_REF] Candès | Towards a mathematical theory of super-resolution[END_REF], [START_REF] Bhaskar | Atomic norm denoising with applications to line spectral estimation[END_REF], [START_REF] Tang | Compressed sensing off the grid[END_REF], [START_REF] Castro | Exact solutions to super resolution on semi-algebraic domains in higher dimensions[END_REF], [START_REF] Duval | Exact support recovery for sparse spikes deconvolution[END_REF]) models many imaging problems found in geophysics, microscopy, astronomy or even (compressive) machine learning [START_REF] Keriven | Compressive k-means[END_REF]. Under a separation assumption on the positions of the Diracs, i.e when x 0 is in a set Σ k,ǫ of sums of k ǫ-separated Diracs with bounded support, it has been shown that x 0 can be estimated by solving a non-convex problem as long as A is an appropriately designed measurement process. This ideal non-convex minimization is:

x * ∈ argmin x∈Σ k,ǫ Ax -y 2 2 . (2) 
Recovery guarantees for this problem are of the form

x * -x 0 K ≤ C e 2 , (3) 
where • K is a kernel norm on M that measures distances in M at a given high resolution described by the kernel (in most of the literature K is either a Fejér [START_REF] Candès | Towards a mathematical theory of super-resolution[END_REF] or Gaussian kernel and i a i δ ti 2 K = i,j a i a j K(t i -t j ) [START_REF] Keriven | Sketching for largescale learning of mixture models[END_REF], [START_REF] Gribonval | Compressive Statistical Learning with Random Feature Moments[END_REF]) . Mathematically, (3) is guaranteed if the measurement operator A has a restricted isometry property on Σ k,ǫ -Σ k,ǫ (the set of differences of elements of Σ k,ǫ ) [START_REF] Gribonval | Compressive Statistical Learning with Random Feature Moments[END_REF]. This property is typically obtained when the number of measurements is sufficient. For example, recovery guarantees are obtained when m ≥ O(1 ǫ d ) for regular low frequency Fourier measurements on the torus [START_REF] Candès | Towards a mathematical theory of super-resolution[END_REF] and when m ≥ O(k2 d(log(k)) 2 log(kd/ǫ)) for random Fourier measurements on R d [START_REF] Gribonval | Compressive Statistical Learning with Random Feature Moments[END_REF].

Recent advances in this field proposed a convex relaxation of the problem in the space of measures [START_REF] Candès | Towards a mathematical theory of super-resolution[END_REF], [START_REF] Castro | Exact solutions to super resolution on semi-algebraic domains in higher dimensions[END_REF]. While giving theoretical recovery guarantees, these methods are not convex with respect to the parameters due to a polynomial root finding step. Moreover, they rely on a SDP relaxation of a dual formulation, thus squaring the size of the problem. Sliding Frank-Wolfe/conditional gradient methods were also proposed but suffer from increased complexity when the number of spikes increases [START_REF] Bredies | Inverse problems in spaces of measures[END_REF], [START_REF] Denoyelle | The sliding frankwolfe algorithm and its application to super-resolution microscopy[END_REF]. Methods based on structured low rank Toeplitz approximation are also difficult to extend to higher dimensions [START_REF] Condat | Cadzow denoising upgraded: A new projection method for the recovery of dirac pulses from noisy linear measurements[END_REF]. Other methods based on greedy heuristics (CL-OMP for compressive k-means [START_REF] Keriven | Compressive k-means[END_REF]) have been proposed (very close in practice to the sliding Frank-Wolfe method) but they still lack theoretical justifications in this context even if some first theoretical results are emerging for some particular measurement methods [START_REF] Elvira | Omp and continuous dictionaries: Is k-step recovery possible?[END_REF].

In this paper, we propose a practical method to solve the non-convex minimization problem (2) for a large number of Diracs in imaging problems. Of course, at first sight, it is not possible to solve this problem efficiently. However, we justify qualitatively why our method succeeds. This justification relies on the separation assumption on x 0 and the assumption that there are enough measurements of x 0 . We also give numerical experiments validating the method. One of the main practical advantages of our method is its ability to perform off-the-grid spike estimation from random Fourier measurements with a good scaling with respect to the number of spikes. With this proof of concept, we can estimate many spikes in two dimensions from compressive measurements, yielding potential applications in fields such as astronomy or microscopy where the sum of spikes model is relevant.

Our method, following insights from the literature on nonconvex optimization for low-dimensional models [START_REF] Waldspurger | Phase retrieval with random gaussian sensing vectors by alternating projections[END_REF], [START_REF] Ling | Regularized gradient descent: a non-convex recipe for fast joint blind deconvolution and demixing[END_REF], [START_REF] Cambareri | Through the haze: a non-convex approach to blind gain calibration for linear random sensing models[END_REF], [START_REF] Chi | Nonconvex optimization meets lowrank matrix factorization: An overview[END_REF], [START_REF] Chizat | Sparse optimization on measures with over-parameterized gradient descent[END_REF], relies on two steps:

• Overparametrized initialization by hard-thresholded backprojection: we propose an initialization step that permits a good first estimation of the positions of the Diracs. • Projected gradient descent algorithm in the parameter space: the idea of projected gradient descent for low-dimensional model recovery has shown its benefits in the finite dimensional case [START_REF] Blumensath | Sampling and reconstructing signals from a union of linear subspaces[END_REF], [START_REF] Golbabaee | Inexact gradient projection and fast data driven compressed sensing[END_REF]. We adapt this idea to sparse spike recovery. From [START_REF] Traonmilin | The basins of attraction of the global minimizers of the non-convex sparse spikes estimation problem[END_REF], the global minimizer of (2) can be recovered by unconstrained gradient descent as long as the initialization lies in an explicit basin of attraction of the global minimizer. It was also shown that projecting on the separation constraint improves the control on the Hessian of the function we minimize. However, no practical way to perform a projection and no implementation were proposed.

Contributions. After recalling the context of non-convex sparse spike estimation, we propose a new practical projected gradient descent algorithm for sparse spike estimation. The simple gradient descent is already used as a refinement step in greedy algorithms. We show experimentally and justify qualitatively that adding a projection step and using an appropriate initialization leads to a global convergence.

• In Section II, we describe our practical projected gradient descent algorithm and its implementation details; • In Section III, we give a grid based initialization using hardthresholded back-projection. A qualitative analysis shows that when the number of measurements is large enough, our initialization approximates well the Diracs positions; • In Section IV, we show the practical benefit of the projection in the descent algorithm and its application to the estimation of large number of Diracs in 2 dimensions.

II. THEORETICAL BACKGROUND AND ALGORITHM DESCRIPTION

A. Measurements and parameter space

The operator A is a linear operator modeling m measurements in C m ( ImA ⊂ C m ) on the space of measures on a domain E (either

E = R d or E = T d ) defined by: ∀l = 1, . . . , m, (Ax) l = E α l (t) dx(t), (4) 
where (α l ) m l=1 is a collection of (weighted) Fourier measurements: α l (t) = c l e -j ω l ,t for some chosen frequencies ω l ∈ R d and frequency dependent weights c l ∈ R (the c l are mostly of theoretical interest for the study of recovery guarantees [START_REF] Gribonval | Compressive Statistical Learning with Random Feature Moments[END_REF] but can be set to 1 in practice). The model set of ǫ-separated Diracs with ǫ > 0 is:

Σ k,ǫ := k r=1 a r δ tr : a ∈ R k , t r ∈ B 2 (R), ∀r = l, t r -t l 2 ≥ ǫ} , (5) 
where

B 2 (R) = {t ∈ R d : t 2 ≤ R} is the ℓ 2 ball of radius R centered in 0 in R d . We consider the following parametrization of Σ k,ǫ : for any θ = (a 1 , .., a k , t 1 , .., t k ) ∈ R k(d+1) , we define φ(θ) = k i=1 a i δ ti , and we set Θ k,ǫ := φ -1 (Σ k,ǫ ), (6) 
the reciprocal image of Σ k,ǫ by φ. Note that any parametrization of elements of Σ k,ǫ is invariant by permutation of the positions. This is not a problem in practice for the convergence of descent algorithms. We define the parametrized functional

g(θ) := Aφ(θ) -y 2 2 (7)
and consider the problem

θ * ∈ arg min θ∈Θ k,ǫ g(θ). (8) 
Since the α l are smooth, g is a smooth function. Note that performing the minimization (8) allows to recover the minima of the ideal minimization (2), yielding stable recovery guarantees under a restricted isometry assumption on A which is verified when m ≥ O(k 2 d(log(k)) 2 log(kd/ǫ)) for adequately chosen Gaussian random Fourier measurements (on R d ) and m ≥ O( 1 ǫ d ) for regular Fourier measurements on T d . In [START_REF] Traonmilin | The basins of attraction of the global minimizers of the non-convex sparse spikes estimation problem[END_REF], it has been shown that the simple gradient descent converges (without projection) to the global minimum of g as long as the initialization falls into an explicit basin of attraction of this global minimum. It was also shown that the projection on the separation constraint improves the control on the Hessian on g and subsequently the convergence of the descent algorithm.

B. Projected gradient descent in the parameter space

For a user-defined initial number of Diracs k in , we consider the following iterations:

θ n+1 = P Θ k in ,ǫ (θ n -τ n ∇g(θ n )) (9) 
where P Θ k in ,ǫ is a projection on the separation constraint, (notice that there may be several solutions in Θ kin,ǫ ) and τ n is the step size at iteration n. The projection P Θ k in ,ǫ (θ) could be defined naturally as a solution of the minimization problem inf θ∈Θ k in ,ǫ φ( θ)-φ(θ) K . Unfortunately this optimization is not convex. We propose instead a heuristic (see Algorithm 1) for P Θ k in ,ǫ that consists in merging Diracs that are not ǫseparated.

Input: List Θ = (a i , t i ) i of amplitudes and positions ordered by decreasing absolute amplitudes for i ≥ 1 do for j > i do if t i -t j < ǫ then a i = a i + a j ;

t i = |ai|ti+|aj |tj |ai|+|aj |
Remove (a j , t j ) from Θ end end end Output: List Θ = (a i , t i ) i of amplitudes and positions of projected spikes Algorithm 1: Heuristic for the projection P Θ k in ,ǫ

Since we take the barycenter of the positions, if a set of Diracs that are at a distance at most ǫ of a true position in x 0 is merged, the merged result will be within this distance. We use the ordering by decreasing amplitude to avoid that a low amplitude spike pulls a meaningful high-amplitude spike away from a true position. After this projection step, we pursue the descent with the remaining number of Diracs. Note that we overparametrize with k in the number of Diracs in the descent to ensure the recovery of all positions in x 0 (see also the next section). In practice, we implement the projected gradient descent as follows.

• As suggested in [START_REF] Traonmilin | The basins of attraction of the global minimizers of the non-convex sparse spikes estimation problem[END_REF], to avoid balancing problems between amplitudes and positions, we alternate descent steps between amplitudes and positions.

• To find the step size τ n , we perform a line search to minimize the value of the function g. • We start to project after a few iterations (20 iterations in our experiments) of the gradient descent so that spikes have already started clustering together towards the solution.

From [START_REF] Traonmilin | The basins of attraction of the global minimizers of the non-convex sparse spikes estimation problem[END_REF], this algorithm will converge as soon as the initialization falls into a basin of attraction of global minimum of g. The basins of attraction get larger as the number of measurements increases (up to a fundamental limit depending on the separation ǫ and the amplitudes in x 0 ).

III. OVERPARAMETRIZED INITIALIZATION BY HARD-THRESHOLDED BACK-PROJECTION

The idea of using back-projection of measurements was used for non-convex optimization in the context of phase recovery [START_REF] Waldspurger | Phase retrieval with random gaussian sensing vectors by alternating projections[END_REF] and blind deconvolution [START_REF] Cambareri | Through the haze: a non-convex approach to blind gain calibration for linear random sensing models[END_REF] with so-called spectral initialization techniques, where a leading eigenvector of a matrix constructed with back-projections is used as initialization. As we measure the signal x 0 at some frequencies ω l , a way to recover an estimation of the signal is to backproject the whole irregular spectrum on a grid Γ that samples B 2 (R) at a given precision ǫ g (to be chosen later). For Fourier measurements y at frequencies (ω l ) l=1,m , we calculate z Γ = B Γ y where B Γ is the linear operator back-projecting the Fourier measurements on a grid in the spatial domain R d :

z Γ = B Γ y := si∈Γ z Γ,i δ si (10) 
where the s i ∈ Γ are the grid positions and

z Γ,i = l y l d l e j ω l ,si (11) 
for some appropriate weights d l to be chosen in the next section. We can show in the noiseless case with Lemmas III.1 and III.2 that when the number of measurements increases and the grid for initialization gets finer, the original positions of Diracs get better approximated. All "on-the-grid" methods such as least-squares estimation or the LASSO are ways to back-project measurements. As we aim at a fast algorithm, and since the energy of Diracs is well localized by the initialization we then perform overparametrized hard thresholding of the back-projection. We propose the initialization θ init defined by

φ(θ init ) := x init = H kin (B Γ y) (12) 
where for |z

Γ,j1 | ≥ |z Γ,j2 | ≥ ....|z Γ,jn |, we have H kin (z Γ ) = kin i=1 z Γ,ji δ sj i .
Ideal back-projection and sampling: In the context of Diracs recovery our initialization by hard-thresholded back-projection is a sampling of an ideal back-projection. Let B the operator from C m to M defined for z = By by

z(t) = m l=1 d l y l e j ω l ,t (13) 
We call z an ideal back-projection because z Γ = S Γ z where S Γ is the sampling on the grid Γ: for a measure x with a continuous density χ (i.e. dx(t) = χ(t) dt), we define the sampling operation S Γ (x) = ti∈Γ χ(t i )δ ti . Also, the measure z = By has a smooth density as it is a finite sum of complex exponentials. We first show (proofs are in the supplementary material) that for the right choice of weights d l , the energy of z = BAx (where x = k i=1 a i δ ti ) is localized around the positions t i in both the regular Fourier sampling on the torus case, and the random Fourier sampling on R d case. We show the following results for the Fejér and Gaussian kernels as they are typically used in the literature for deterministic [START_REF] Candès | Towards a mathematical theory of super-resolution[END_REF] and random [START_REF] Gribonval | Compressive Statistical Learning with Random Feature Moments[END_REF] Fourier sampling. Lemma III.1. On M(T d ), we choose A such that (ω l ) l=1,m is a regular sampling of [-ω max , ω max ] d with ω l ∈ 2π.Z d . In [START_REF] Elvira | Omp and continuous dictionaries: Is k-step recovery possible?[END_REF], take d l = Kf (ω l )/((2π) d c l ) where Kf is the Fourier transform of the Fejér kernel K f on the torus whose Fourier spectrum support is (ω l ) l=1,m , then

z(t) = k i=1 a i K f (t -t i ). (14) 
This immediate lemma states that on the torus, measuring low frequencies is equivalent to measuring a low-pass filtered signal in the time domain. For example, the low-pass Fejér filter is shown Figure 1. Also, this result holds for any kernel with spectrum supported on the ω l . Sampling frequencies regularly with maximum frequency ω max ≥ O( 1 ǫ d ) guarantees recovery with convex relaxation methods. For random Fourier sampling, we look at the expected value of z and control its variance with respect to the distribution of the ω l .

Lemma III.2. On M(R d ), we choose A such that the ω l are m i.i.d random variables with a Gaussian distribution with density

G(ω r ) = σ d ( √ 2π) d e -σ 2 2 ωr 2 2 . Let K g (t) = e -t 2 2 2σ 2 . In (13), take d l = 1/(mc l ) then E(z(t)) = k i=1 a i K g (t -t i ) (15) 
E(|z(t) -E(z(t))| 2 ) = - 1 m |E(z(t))| 2 + 1 m x 0 2 Kg ( 16 
)
where x 0 2

Kg is the norm associated with the kernel K g . Similarly to the regular sampling, the energy of the expected value of z is concentrated around the positions t i (see Figure 1). In [START_REF] Gribonval | Compressive Statistical Learning with Random Feature Moments[END_REF] the frequency distribution scales as the inverse of the kernel precision, i.e. the kernel parameter σ of the kernel h(t) = e -t 2 2 /(2σ 2 ) is chosen as O(1/ǫ). The control of the variance shows that when the number of measurements increases, the back-projection of these measurements to the space of measures are closer to the ideal initialization which is the expected value of z. In practice we set the number of measurements using a rule m = µkd with a user defined multiplicative parameter µ that does not depend on the dimension of the problem. The quality of the initialization is thus directly linked to µ. Finally the following lemma makes sure that as the grid gets finer we recover all the energy of the ideal backprojection that lies within the domain sampled by the grid.

Lemma III.3. Let z d = (z Γ,i ) ti∈Γ where Γ is a grid with step size ǫ g . Then

ǫ d g z d 2 2 → ǫg→0 z 2 L 2 (B2(R))
. We considered the noiseless case. The noisy case just adds a noise term with energy controlled by the noise energy level e 2 because B Γ is a Fourier back-projection.

IV. NUMERICAL EXPERIMENTS

We first run the algorithm on few Diracs in 2d to illustrate the added benefit of the projection. We then show results with many Diracs in 2d to show the computational feasibility of projected gradient descent for imaging applications. We perform the experiments in the noiseless case with a stopping criterion based on the value of function g and leave the study of the impact of the noise for future work. The Matlab code used to generate these experiments is available at [START_REF]Matlab code for "projected gradient descent for non-convex sparse spike estimation[END_REF].

Illustration with few Diracs: As a first proof of concept we run the algorithm with the recovery of 5 Diracs in 2 dimensions from m = 120 Gaussian random measurements. The trajectories of 500 iterations of the gradient descent and projected gradient descent are represented in Figure 2. We observe that while the gradient descent with overparametrized initialization might converge with a large number of iterations, the projection step greatly accelerates the convergence.

Estimation of 100 Diracs in 2d: We recover 100 Diracs, with a separation 0.01 on the square [0, 1] × [0, 1] from m = 2000 compressive Gaussian measurements (we would need ≈ 10000 regular measurements to obtain a separation 0.01). In practice, the grid Γ must be fine enough to overparametrize the number of Diracs with a good sampling of the ideal back-projection. If ǫ g is too small, the number of initial Diracs needed to sample the energy gets larger, leading to an increased cost in the first iterations of the gradient descent. In this example we use ǫ g = ǫ and use k in = 4k. We observe in Figure 3 that with these parameters all the Diracs positions are well estimated after 184 iterations (convergence criterion met) of our algorithm. Similarly to our first example, we observe that spikes that are not separated in the back-projection on the grid are well estimated by our algorithm. 

A. Complexity

The cost of our algorithm is the sum of the cost of the initialization and the cost of the projected gradient descent. The back-projection on the grid scales as O((1/ǫ g ) d ) (irregular Fourier transform on a grid), but it is done only once and fast transform techniques could be investigated. With our strategy, this cost seems unavoidable as we want to localize Diracs off-the-grid with a separation ǫ (doing the same on the grid would have this exponential scaling with respect to the dimension and the separation). Our algorithm stays tractable when the dimension d of the domain of the positions of the Diracs is not too large, which is the case in 2d or 3d imaging applications. This cost O((1/ǫ g ) d ) would also be impossible to avoid in an eventual vizualisation of the full recovered image over a precise grid on R d . Note also that in practice our proposed initialization could be replaced by any statisfying overparametrized initialization, i.e. any stateof-the-art on-the-grid estimation technique could benefit from an added projected gradient descent.

The cost of the projected gradient descent is O(n it C ∇ ) where C ∇ is the cost the calculation of the gradient. This cost is of the order of the calculation of the m Fourier measurements for the current number of Diracs in the descent (close to k after a few iterations). For the experiment with 100 spikes, ouralgorithm successfully completed the estimation of the spikes in 5.9 minutes (Matlab implementation) while the CL-OMP algorithm proposed by [START_REF] Keriven | Sketching for Large-Scale Learning of Mixture Models[END_REF] (their Matlab implemenation) took 30.5 minutes to complete the successfull estimation of all the spikes on a laptop for office purpose.

V. CONCLUSION We gave a practical algorithm to perform off-the-grid sparse spike estimation. This proof-of-concept shows that it is possible to estimate efficiently a large number of Diracs in imaging applications with some strong theoretical insights of success guarantees. Future research directions are:

• Full theoretical convergence proof of the algorithm with sufficient conditions on the number of measurements. The main question is to know if it is possible to have a convergence guarantee without the computational cost O((1/ǫ g ) d ) • Investigate other methods for reducing the number of parameters after the back-projection on a grid and accelarate the descent (quasi-Newton schemes ).

• Study the algorithm stability to noise and modeling error with respect to the number of measurements.
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 1 Fig. 1. Kernels used for a separation ǫ = 0.1. Left: On the torus the Fejér kernel of maximum frequency 2 ǫ . Right: on R, the Gaussian kernel of parameter σ = 1 500ǫ
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 2 Fig. 2. Result for a few spikes in 2d. Left: back-projection of measurements on a grid. Right: Initialization, gradient descent and projected gradient descent trajectories.

Fig. 3 .

 3 Fig. 3. Result for 100 spikes in 2d. Left: back-projection of measurements on a grid. Right: Initialization, and projected gradient descent trajectories.
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