PERTURBATIVE CAUCHY THEORY FOR A FLUX-INCOMPRESSIBLE MAXWELL-STEFAN SYSTEM - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

PERTURBATIVE CAUCHY THEORY FOR A FLUX-INCOMPRESSIBLE MAXWELL-STEFAN SYSTEM

Andrea Bondesan
  • Fonction : Auteur
  • PersonId : 974939
Marc Briant
  • Fonction : Auteur
  • PersonId : 1048449

Résumé

We establish a quantitative Cauchy theory in Sobolev spaces for the Maxwell-Stefan equations with an incompressibility-like condition on the total flux. More precisely, we prove global existence and uniqueness of strong solutions, and their exponential trend to equilibrium in a perturbative regime around any macroscopic equilibrium state of the mixture, not necessarily constant. In particular, an orthogonal viewpoint that we found specific to the incompressible setting, combined with the use of a suitable anisotropic norm, allows us to get rid of the usual closure assumption of equimolar diffusion which is here recovered as an intrinsic feature of the model.
Fichier principal
Vignette du fichier
Perturbed_IMS.pdf (494.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02307937 , version 1 (08-10-2019)
hal-02307937 , version 2 (09-10-2019)
hal-02307937 , version 3 (06-08-2020)

Identifiants

  • HAL Id : hal-02307937 , version 2

Citer

Andrea Bondesan, Marc Briant. PERTURBATIVE CAUCHY THEORY FOR A FLUX-INCOMPRESSIBLE MAXWELL-STEFAN SYSTEM. 2019. ⟨hal-02307937v2⟩

Collections

USPC
84 Consultations
74 Téléchargements

Partager

More