PERTURBATIVE CAUCHY THEORY FOR A FLUX-INCOMPRESSIBLE MAXWELL-STEFAN SYSTEM IN A NON-EQUIMOLAR REGIME - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

PERTURBATIVE CAUCHY THEORY FOR A FLUX-INCOMPRESSIBLE MAXWELL-STEFAN SYSTEM IN A NON-EQUIMOLAR REGIME

Andrea Bondesan
  • Fonction : Auteur
  • PersonId : 974939
Marc Briant
  • Fonction : Auteur
  • PersonId : 1048449

Résumé

We establish a quantitative Cauchy theory in Sobolev spaces for the Maxwell-Stefan equations with an incompressibility condition on the total flux. More precisely, we prove existence, uniqueness in a weak sense and exponential trend to equilibrium of solutions in a perturbative regime around any macroscopic equilibrium state of the mixture, not necessarily constant. In particular, an orthogonal viewpoint that we found specific to the incompressible setting, combined with the use of a suitable anisotropic norm, allows us to get rid of the usual closure assumption of equimolar diffusion.
Fichier principal
Vignette du fichier
Perturbed_IMS.pdf (496.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02307937 , version 1 (08-10-2019)
hal-02307937 , version 2 (09-10-2019)
hal-02307937 , version 3 (06-08-2020)

Identifiants

  • HAL Id : hal-02307937 , version 1

Citer

Andrea Bondesan, Marc Briant. PERTURBATIVE CAUCHY THEORY FOR A FLUX-INCOMPRESSIBLE MAXWELL-STEFAN SYSTEM IN A NON-EQUIMOLAR REGIME. 2019. ⟨hal-02307937v1⟩
83 Consultations
68 Téléchargements

Partager

More