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PERTURBATIVE CAUCHY THEORY
FOR A FLUX-INCOMPRESSIBLE MAXWELL-STEFAN SYSTEM

IN A NON-EQUIMOLAR REGIME

ANDREA BONDESAN AND MARC BRIANT

Abstract. We establish a quantitative Cauchy theory in Sobolev spaces for the
Maxwell-Stefan equations with an incompressibility condition on the total flux.
More precisely, we prove existence, uniqueness in a weak sense and exponential
trend to equilibrium of solutions in a perturbative regime around any macroscopic
equilibrium state of the mixture, not necessarily constant. In particular, an or-
thogonal viewpoint that we found specific to the incompressible setting, combined
with the use of a suitable anisotropic norm, allows us to get rid of the usual closure
assumption of equimolar diffusion.

Keywords: Fluid mixtures, incompressible Maxwell-Stefan, perturbative Cauchy
theory.
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1. Introduction

We consider a chemically non-reacting ideal gaseous mixture composed of N > 2
different species, having atomic masses (mi)16i6N and evolving in the 3-dimensional
torus T3. We assume isothermal and isobaric conditions, in order to avoid any
convective effect and to focus our attention on a purely diffusive setting. For any
1 6 i 6 N , the balance of mass links the number of particles ci = ci(t, x) of the i-th
species to its flux Fi = Fi(t, x) via the continuity equation

(1.1) ∂tci +∇x · Fi = 0 on R+ × T3.

Let c =
∑

i ci denote the total number of particles in the mixture and set ni =
ci/c, the mole fraction of the i-th species. The Maxwell-Stefan equations then give

The authors would like to thank Laurent Boudin and Bérénice Grec for fruitful discussions on
the theory of gaseous and fluid mixtures.
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relations between the fluxes and the mole fractions and read, for any 1 6 i 6 N ,

(1.2) − c∇xni =
N∑
j=1

njFi − niFj
Dij

on R+ × T3,

where Dij = Dji > 0 are the effective diffusion coefficients between species i and j.
Independently introduced in the 19th century by Maxwell [20] for dilute gases and

Stefan [22] for fluids, equations (1.2) describe the cross-diffusive interactions inside
a mixture and therefore lie in the class of the so-called cross-diffusion models [21, 19,
18, 10, 15]. In particular, the system (1.2) gives a generalization [17] of Fick’s law of
mono-species diffusion [12], making it of core importance for applications in physics
and medicine, where it can be used for example to model the propagation of polluting
particles in the air or to characterize the gas exchanges in the lower generations of
the human lung [23, 7, 2]. Besides, the Maxwell-Stefan equations also raise a great
theoretical interest, as their mathematical analysis appears to be very challenging.
The difficulties come from the fact that summing over i the relations (1.2), we obtain
a linear dependence on the mole fractions’ gradients which imposes to introduce a
further condition in order to close the system and provide a satisfactory Cauchy
theory to (1.1)–(1.2). To our knowledge, the existing mathematical results that deal
with the problem of existence and uniqueness of solutions to the sole system (1.1)–
(1.2) are all tied up to the assumption that the mixture is subject to a transient
equimolar diffusion [17], namely the total diffusive flux satisfies

(1.3)
N∑
i=1

Fi(t, x) = 0, t > 0, x ∈ T3.

In [13] Giovangigli proved existence, uniqueness and trend to equilibrium for pertur-
bative solutions in Sobolev spaces on R3, when the initial datum is sufficiently close
to a constant stationary state of the mixture. Working in a bounded domain Ω,
Bothe exploited classical results from the theory of quasi-linear parabolic equations
in order to show [1] local-in-time existence and uniqueness for solutions in Lp(Ω),
starting from a general initial datum. Boudin et al. investigated in [4] the particular
case of a 3-species mixture, when two effective diffusion coefficients are equal: the
authors were able to establish global existence and uniqueness in L∞(Ω), as well as a
long-time convergence of solutions towards the corresponding constant equilibrium
state. By passing to entropy variables, Jüngel and Stelzer were then able to obtain
[16] global-in-time existence of weak solutions in H1(Ω) as well as an exponential
decay to the homogeneous steady state of the mixture, for arbitrary diffusion co-
efficients and for general initial data. These techniques have been later on applied
for extending the same kind of results to situations where convective effects are
considered [8] (the Maxwell-Stefan system is here coupled with the incompressible
Navier-Stokes equations, which prescribe the evolution of the incompressible molar
average mixture velocity) or chemical reactions are taken into account [9].

The present article aims at studying the problem of existence and uniqueness of
perturbative solutions to an incompressible variant of the Maxwell-Stefan system
(1.1)–(1.2)–(1.3), which is written for any 1 6 i 6 N on R+ × T3 in terms of the
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bulk velocities (ui)16i6N as

∂tci +∇x · (ciui) = 0,(1.4)

−∇xci =
N∑
j=1

cicj
ui − uj

∆ij

,(1.5)

∇x ·

(
N∑
i=1

ciui

)
= 0,(1.6)

where the closure relation (1.3) is replaced by the incompressibility-like condition
(1.6). Note in particular that the model (1.1)–(1.2) can be easily recovered a priori
from (1.4)–(1.5)–(1.6) by defining Fi = ciui for any 1 6 i 6 N and by supposing
that

∑
i c

in
i (x) = const. on T3. Indeed, thanks to this hypothesis, the total number

number of particles c remains constant over time on T3, since both ∂tc = 0 and
∇xc = 0 are obtained from (1.4)–(1.5)–(1.6). The quantities ∆ij are then linked to
the effective diffusion coefficients through the relations Dij = ∆ij/c.

The above Maxwell-Stefan-type system is of peculiar significance, as recent works
[5, 14, 3] managed to formally derive it starting from the kinetic equations. Pro-
viding a Cauchy theory for (1.4)–(1.5)–(1.6) thus becomes crucial if one wants to
deal with its rigorous hydrodynamical derivation and, by this, show the physical
coherence between the mesoscopic and the macroscopic descriptions. Moreover, we
underline that the condition (1.6), naturally appearing in these formal asymptotics
from the kinetic level, constitutes a generalization of the closure assumption (1.3),
so that our work allows to treat the Maxwell-Stefan equations in a non-equimolar
regime. In particular, we stress the fact that this kind of incompressibility condi-
tion distinguishes from the one considered in [8], since we here concentrate on a
purely diffusive setting where the convection effects are neglected (thus assuming
the absence of viscous flow).

As usually done in the literature [13, 1, 16], we begin by introducing the matrix

(1.7) A (c) =

(
cicj
∆ij

−

(
N∑
k=1

cick
∆ik

)
δij

)
16i,j6N

,

which depends on (ci)16i6N . In this way, the system of equations (1.4)–(1.5) can be
initially rewritten in a more convenient vectorial form as

∂tc +∇x · (cu) = 0,

∇xc = A(c)u,

where bold letters will denote N -vectors referring to the species of the mixture, so
that in this case c = (c1, . . . , cN) and u = (u1, . . . , uN), and the product cu has to
be understood componentwise. A natural idea for tackling our problem would then
be to invert the gradient relation in order to express u in terms of c and obtain an
evolution equation for the sole unknown c, by replacing u = A(c)−1∇xc into the
continuity equation. Unfortunately, it is possible to prove [13, 1, 16] that the ma-
trix A is only positive semi-definite, with KerA = Span(1). Therefore, any existing
Cauchy theory for the Maxwell-Stefan equations is based on the possibility of explic-

itly computing the pseudoinverse of A, which is defined on the space
(
Span(1)

)⊥
.
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This can be achieved for example [1, 16, 8, 9] using the Perron-Frobenius theory
for quasi-positive matrices. However, a major drawback of this strategy is that the
computations giving the explicit form of A−1 are extremely intricate and do not offer
a neat understanding of the action of A on the velocities u. As already pointed out,
since one cannot see the part of u that evolves in kerA, a closure assumption of type
(1.3) is needed in order to compensate this lack of information.

In this work we propose another approach which takes inspiration from the micro-
macro decomposition techniques commonly used in the kinetic theory of gases. More
precisely, by defining the orthogonal projection πA onto Span(1), associated to the
non-injective operator A, we split u = πA(u)+U into a part projected onto Span(1)

and an orthogonal part U which is projected onto
(
KerA

)⊥
. Thanks to the incom-

pressibility condition we are in particular able to get rid of the closure assumption
(1.3) and construct a new system of equations, equivalent to (1.4)–(1.6) for full
velocities u, in which the Maxwell-Stefan matrix only acts on U. In such a way,
we are able to deal with the pseudoinverse of A (which is always well-defined on
(kerA)⊥), without the need of computing its explicit structure. Moreover, our al-
ternative strategy provides an original point of view in which we exhibit a clear
separation between πA(u) and U, allowing to show explicitly the actual action of A
on the sole vector U. We shall then prove that the orthogonal reformulation of the
system (1.4)–(1.5)–(1.6) in terms of the couple (c,U) is fully closed and exhibits a
quasilinear parabolic structure. With the use of a suitable Sobolev anisotropic norm
we shall subsequently establish a negative feedback coming from the Maxwell-Stefan
operator (1.7). This fact will allow to derive the a priori energy estimates leading
to global-in-time existence and uniqueness (in a perturbative sense) for the couple
(c,U) with orthogonal velocities and, eventually, the same result will hold for the
couple (c,u) with full velocities, solution of the original system (1.4)–(1.5)–(1.6).
Note in particular that even if we do not recover a strong uniqueness property, we
shall still get the general, though not optimal, description of all the possible per-
turbative solutions (c,u) which are close enough to some macroscopic equilibrium
state (not necessarily constant, as opposed to [13]).

In the next section we present all the notations and we state our main theorem.
Section 3 is then dedicated to the investigation of the fundamental properties (spec-
tral gap and some Sobolev estimates) of the Maxwell-Stefan matrix A(c). At last,
in Section 4 we shall prove our main result.

2. Main result

2.1. Notations and conventions. Let us first introduce the main notations that
we use throughout the paper. Vectors and vector-valued operators in RN will be
denoted by a bold symbol, whereas their components will be denoted by the same
indexed symbol. For instance, w represents the vector or vector-valued operator
(w1, . . . , wN). In particular, we shall use the symbol 1 to name the specific vector
(1, . . . , 1). Henceforth, the multiplication of N -vectors has to be understood in a
component by component way, so that for any w,W ∈ RN and any q ∈ Q we have

wW = (wiWi)16i6N , wq = (wqi )16i6N .
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Moreover, we introduce the Euclidean scalar product in RN weighted by a vector
w ∈ (R∗+)N , which is defined as

〈c,d〉w =
N∑
i=1

cidiwi,

and induces the norm ‖c‖2w = 〈c, c〉w. When w = 1, the index 1 will be dropped in
both the notations for the scalar product and the norm.

The convention we choose for the functional spaces is to index the space by the
name of the concerned variable. For p in [1,+∞] we have

Lpt = Lp(0,+∞), Lpx = Lp
(
T3
)
, Lpt,x = Lp

(
R+ × T3

)
.

To any positive measurable function w : T3 −→
(
R∗+
)N

in the variable x, we asso-
ciate the weighted Hilbert space L2(T3,w), which is defined by the scalar product
and norm

〈c,d〉L2
x(w) =

N∑
i=1

〈ci, di〉L2
x(wi)

=
N∑
i=1

∫
T3

cidiw
2
i dx,

‖c‖2L2
x(w) =

N∑
i=1

‖ci‖2L2
x(wi)

=
N∑
i=1

∫
T3

c2iw
2
i dx.

Finally, in the same way we can introduce the corresponding weighted Sobolev
spaces. Consider a multi-index α ∈ N3 of length |α| =

∑3
k=1 αk. For any s ∈ N and

any vector-valued function c ∈ Hs(T3,w), we define the norm

‖c‖Hs
x(w) =

 N∑
i=1

∑
|α|6s

‖∂αx ci‖
2
L2
x(wi)

1/2

.

2.2. Main theorem. We build up a Cauchy theory for the incompressible Maxwell-
Stefan system (1.4)–(1.5)–(1.6) perturbed around any macroscopic equilibrium state

of the form (c,u), where c ∈
(
R∗+
)N

is a positive constant N -vector and u =
(u, . . . , u) is such that the velocity vector u : R+ × T3 → R3 is common to all
the species and satisfies ∇x · u = 0. We thus look at solutions of type (c,u) =
(c + εc̃,u + εũ), with ε ∈ (0, 1] being the small parameter of the perturbation. The
following theorem gathers the main properties that we are able to prove.

Theorem 2.1. Let s > 3 be an integer, u : R+ × T3 −→ R3 be in L∞
(
R+;Hs(T3)

)
with ∇x · u = 0, and consider c > 0. There exist δMS, CMS, C ′MS, λMS > 0 such that
for all ε ∈ (0, 1] and for any initial datum (c̃ in, ũ in) ∈ Hs(T3)×Hs−1(T3) satisfying,
for almost any x ∈ T3 and for any 1 6 i 6 N ,

(i) Mass compatibility:
N∑
i=1

c̃ ini (x) = 0 and

∫
T3

c̃ ini (x)dx = 0,

(ii) Mass positivity: ci + εc̃ ini (x) > 0,

(iii) Moment compatibility: ∇xc̃
in
i =

∑
j 6=i

c ini c
in
j

∆ij

(
ũ in
j − ũ in

i

)
,
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(iv) Smallness assumptions:
∥∥c̃ in

∥∥
Hs
x
6 δMS and ‖u‖L∞t Hs

x
6 δMS,

there exists a unique weak solution

(c,u) =
(
c + εc̃,u + εũ

)
in L∞

(
R+;Hs(T3)

)
×L∞

(
R+;Hs−1(T3)

)
to the incompressible Maxwell-Stefan sys-

tem (1.4)–(1.5)–(1.6), such that initially (c̃, ũ) t=0 =
(
c̃ in, ũ in

)
a.e. on T3.

Moreover, c is positive and the following equimolar diffusion-like relation holds
a.e. on R+ × T3:

(2.1) 〈c, ũ〉 =
N∑
i=1

ci(t, x)ũi(t, x) = 0.

Finally, for almost any time t > 0

‖c̃‖
Hs
x

(
c−

1
2

) 6 e−tλMS
∥∥c̃ in

∥∥
Hs
x

(
c−

1
2

) ,
‖ũ‖Hs−1

x
6 CMSe

−tλMS
∥∥c̃ in

∥∥
Hs
x

(
c−

1
2

) ,
∫ t

0

e2(t−τ)λMS ‖ũ(τ)‖2Hs
x

dτ 6 C ′MS

∥∥c̃ in
∥∥2
Hs
x

(
c−

1
2

) .
The constants δMS, λMS, CMS and C ′MS are constructive and only depend on s, the
number of species N , the diffusion coefficients (∆ij)16i,j6N and the constant vector c.
In particular, they are independent of the parameter ε.

Remark 2.2. Let us make a few comments about the above theorem.

(1) Our result establishes a Cauchy theory and trend to equilibrium around the
macroscopic state (c,u), which extends the previous works where either a
closure assumption was made or the equilibrium considered was (c,0). In
particular, we give here a complete description of all possible studies (at
order ε) around an equilibrium state that has a constant mass vector c.

(2) The “mass compatibility” and the “moment compatibility” assumptions are
not closure hypotheses, they actually exactly come from the system of equa-
tions (1.4)–(1.5) applied at time t = 0. We impose these conditions at the
beginning, so that our initial datum is compatible with the Maxwell-Stefan
system.

(3) We emphasize again that we do not prove strong uniqueness for the solutions.
Indeed, we can construct infinitely many solutions to the Maxwell-Stefan sys-
tem, by considering different constant masses c and incompressible momenta
u. However, these are all the possible solutions in a perturbative setting, and
the uniqueness property has to be understood in this perturbative sense: as
soon as a macroscopic equilibrium (c,u) is fixed, we recover strong unique-
ness around this specific state.

(4) The solution we construct has actually more regularity with respect to t, pro-
vided that s > 4 and u ∈ C0

(
R+;Hs(T3)

)
. Indeed, we point out that, in this

case, the couple (c,u) also belongs to C0
(
R+;Hs−1(T3)

)
×C0

(
R+;Hs−2(T3)

)
,

allowing in particular to properly define the initial value problem.
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(5) The constants δMS, λMS and CMS are not explicitly computed, but their values
can be determined respectively from formulae (4.22), (4.24) and (4.25).

3. Properties of the Maxwell-Stefan matrix

We prove some properties of the Maxwell-Stefan matrix A, as well as some estimates
on its derivatives. We conclude with properties and estimates on the pseudo-inverse
of A on its image.

Proposition 3.1. For any c > 0 the matrix A(c) is nonpositive, in the sense that
there exist two positive constants λA and µA such that, for any X ∈ RN ,

‖A(c)X‖ 6 µA〈c,1〉2 ‖X‖ ,

〈X, A(c)X〉 6 −λA
(

min
16i6N

ci

)2 [
‖X‖2 − 〈X,1〉2

]
6 0.

Proof of Proposition 3.1. Let us consider two N -vectors, c > 0 and X. The bound-
edness of A(c) can be showed in the supremum norm, since all norms are equivalent
in RN . It is straightforward that, for any 1 6 i 6 N,∣∣∣∣∣

N∑
j=1

cicj
∆ij

(Xj −Xi)

∣∣∣∣∣ 6 2 max
16i6N

ci

min
16i,j6N

∆ij

(
N∑
j=1

cj

)
max
16j6N

|Xj| ,

which raises the first inequality, since max
16i6N

ci 6
∑N

j=1 cj and we can thus choose

µA = 2/ min
16i,j6N

∆ij.

We then compute

〈X, A(c)X〉 = −
N∑
i=1

N∑
j=1

cicj
∆ij

(Xi −Xj)Xi = −
N∑
i=1

N∑
j=1

cicj
∆ij

(Xi −Xj)
2 6 0.

Note in particular that, since ci > 0 and ∆ij > 0 for any 1 6 i, j 6 N , the relation
A(c)X = 0 implies Xi = Xj for all i and j, and so kerA = Span (1). If we now set
λA = 2/ max

16i,j6N
∆ij, we can deduce the bound

〈X, A(c)X〉 6 −λA
2

(
min
16i6N

ci

)2 N∑
i=1

N∑
j=1

(Xi −Xj)
2,

and conclude the proof. �

As we shall need controls in Sobolev spaces, we then give below some estimates
on the x-derivatives of the Maxwell-Stefan matrix.
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Proposition 3.2. Consider a multi-index α ∈ N3 and let c, Ũ ∈ H |α|(T3), with
c > 0. Then, for any X ∈ RN ,

〈∂αx [A(c)U] ,X〉 6 〈A(c) (∂αxU) ,X〉+ 2N2µA 〈c,1〉 ‖X‖
∑

α1+α3=α
|α1|>1

‖∂α1
x c‖ ‖∂α3

x U‖

+N2µA ‖X‖
∑

α1+α2+α3=α
|α1|,|α2|>1

‖∂α1
x c‖ ‖∂α2

x c‖ ‖∂α3
x U‖ ,

where µA is defined in Proposition 3.1.

Proof of Proposition 3.2. Let X be in RN . We can explicitly compute

〈∂αx [A(c)U] ,X〉 =
N∑
i=1

∂αx

(
N∑
j=1

cicj
∆ij

(Uj − Ui)

)
Xi

=
∑

16i,j6N

Xi

∑
α1+α2+α3=α

∂α1
x ci∂

α2
x cj

∆ij

(∂α3
x Uj − ∂α3

x Ui)

= 〈A(c)∂αxU,X〉

+
∑

16i,j6N

Xi

∑
α1+α2+α3=α
|α1|,|α2|>1

∂α1
x ci∂

α2
x cj

∆ij

(∂α3
x Uj − ∂α3

x Ui)

+
∑

16i,j6N

Xi

∑
α2+α3=α
|α2|>1

ci∂
α2
x cj

∆ij

(∂α3
x Uj − ∂α3

x Ui)

+
∑

16i,j6N

Xi

∑
α1+α3=α
|α1|>1

cj∂
α1
x ci

∆ij

(∂α3
x Uj − ∂α3

x Ui) .

We then use Cauchy-Schwarz inequality and the fact that ∆ = mini,j ∆ij > 0,

together with 0 6 ci 6
∑N

j=1 cj and |ci| 6 ‖c‖, to finally get

〈∂αx [A(c)U] ,X〉 6 〈A(c)∂αxU,X〉+
4N2

∆


(

N∑
j=1

cj

) ∑
α1+α2=α
|α1|>1

‖∂α1
x c‖ ‖∂α2

x U‖

 ‖X‖

+
2N2

∆

 ∑
α1+α2+α3=α
|α1|,|α2|>1

‖∂α1
x c‖ ‖∂α2

x c‖ ‖∂α3
x U‖

 ‖X‖ ,
which is the expected result. �

We conclude the present section with a control on the pseudoinverse of A(c),

which is defined on
(
Span(1)

)⊥
.



PERTURBATIVE INCOMPRESSIBLE MAXWELL-STEFAN 9

Proposition 3.3. For any c ∈
(
R∗+
)N

and any U ∈
(
Span(1)

)⊥
, the following

estimates hold: ∥∥A(c)−1U
∥∥ 6 1

λA

(
min
16i6N

ci

)2 ‖U‖ ,

〈A(c)−1U,U〉 6 −
λA

(
min
16i6N

ci

)2

µ2
A〈c,1〉4

‖U‖2 ,

where λA and µA are defined in Proposition 3.1.

Proof of Proposition 3.3. The proof is a direct application of Proposition 3.1. In-

deed, Cauchy-Schwarz inequality yields, for any X ∈
(
Span(1)

)⊥
,

−‖X‖ ‖A(c)X‖ 6 −λA
(

min
16i6N

ci

)2

‖X‖2 ,

so that

‖X‖ 6 1

λA

(
min
16i6N

ci

)2 ‖A(c)X‖ ,

which proves the first estimate by simply taking X = A(c)−1U.

The spectral gap property comes from the boundedness of A(c), given by Propo-
sition 3.1 for X = A(c)−1U, which translates into a coercivity estimate

‖U‖2 6
(
µA〈c,1〉2

)2 ∥∥A(c)−1(U)
∥∥2 ,

that we plug into the spectral gap inequality satisfied by A(c). �

4. Perturbative Cauchy theory for the Maxwell-Stefan system

We recall the vectorial form of Maxwell-Stefan system (1.4)–(1.6):

∂tc +∇x · (cu) = 0,(4.1)

∇xc = A(c)u,(4.2)

∇x · 〈c,u〉 = 0.(4.3)

where

A (c) =

(
cicj
∆ij

−

(
N∑
k=1

cick
∆ik

)
δij

)
16i,j6N

.

The Cauchy theory we build offers an explicit description of all the solutions (c,u)
which are perturbed around a global macroscopic equilibrium state. We point out
in particular that, because of the incompressibility condition (4.3), any macroscopic
stationary state has the form (ci, u)16i6N , where each ci is a positive constant and
the velocity u : R+ × T3 → R3, common to all the species, satisfies ∇x · u(t, x) = 0
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for any t > 0 and x ∈ T3. For a sake of clarity, throughout the present section any
perturbative vector-valued function w = (w1, . . . , wN) shall be written under the
specific form w = w+ εw̃, where the component w with the overbar symbol always
refers to some (macroscopic) stationary state of the mixture and the component w̃
overlined by a tilde refers to the fluctuation around the corresponding equilibrium
state. Moreover, note that for simplicity the specific quantity u will always denote an
N -vector where all the components are given by a common incompressible velocity u.

The present section is divided into two parts. In the first one, we show how
to derive the new orthogonal system equivalent to (4.1)–(4.2)–(4.3), and state the
counterpart of Theorem 2.1 in terms of this new reformulation for the unknowns c
and U, the orthogonal part of u. In the second part we prove all the required prop-
erties (existence and uniqueness, positivity and exponential decay to equilibrium)
for the couple (c,U), properties that will be also satisfied by the original unknowns
(c,u).

4.1. An orthogonal incompressible Maxwell-Stefan system. Here we present
the equivalent orthogonal reformulation of (4.1)–(4.2)–(4.3), which allows to transfer
the study of existence and uniqueness for solutions (c,u) to the development of a
Cauchy theory for the new unknowns (c,U), where we denote with U = u− πA(u)
the part of u that is projected onto (kerA)⊥, πA being the orthogonal projection
onto kerA = Span(1).

Before stating our result, we introduce a useful notation that allows to preserve
the vectorial structure of the Maxwell-Stefan system. We suppose that, for some
V ∈ R3 and some N -vector w ∈ (R3)N whose components lie in R3, the standard
notation of the scalar product in R3 is extended to any multiplication of type V ·w
in the following sense

V ·w = (V · wi)16i6N .

Proposition 4.1. Let s ∈ N∗, C0 > 0, and consider two functions cin ∈ Hs(T3)
and uin ∈ Hs−1(T3) verifying, for almost any x ∈ T3,

cin(x) > 0 and
N∑
i=1

cini (x) = C0.

Then, (c,u) ∈ L∞
(
R+;Hs(T3)

)
× L∞

(
R+;Hs−1(T3

)
) is a solution to the incom-

pressible Maxwell-Stefan system (4.1)–(4.2)–(4.3), associated to the initial datum
(cin,uin), if and only if there exist two functions U : R+ × T3 → R3N and u :
R+ × T3 → R3 in L∞

(
R+;Hs−1(T3

)
) such that, for almost any (t, x) ∈ R+ × T3,

U(t, x) ∈ (kerA)⊥ and ∇x · u(t, x) = 0,(4.4)

U(t, x) + u(t, x)− 1

C0

〈c,U〉1 = u(t, x),(4.5)

 ∂tc +∇x ·
(
c
(
U− 〈c,U〉〈c,1〉 1

))
+ u · ∇xc = 0,

∇xc = A(c)U.

(4.6)
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Remark 4.2. The above result is not difficult to prove but we underline again that
it is of great importance, since it turns the incompressible Maxwell-Stefan system
(4.1)–(4.2)–(4.3) with full velocity vectors u into a sytem only depending on their
orthogonal component U ∈ (kerA)⊥, while the projection onto kerA raises a simple
transport term in the continuity equation (4.1). Notice in particular that we differ-
entiate between C0 =

〈
cin,1

〉
in (4.5) and 〈c,1〉 in (4.6). As we shall see, in both

equations it will turn out that these two quantities are equal, but keeping the notation
〈c,1〉 offers a fully closed system.

Moreover, note that Proposition 4.1 actually shows that all perturbative solutions
of the Maxwell-Stefan system (1.4)–(1.5)–(1.6) are of the form described by Theorem
2.1, that is c+ εc̃ and u+ εũ. Note however that Theorem 2.1 is not optimal, since
we require u to be more regular than the perturbation ũ.

Proof of Proposition 4.1. Let πA be the orthogonal projection operator onto kerA
and consider a solution (c,u) of the Maxwell-Stefan system (4.1)–(4.2)–(4.3). The
first implication directly follows from the decomposition

u = πA(u) +
(
u− πA(u)

)
=
〈u,1〉
‖1‖

1 + π⊥A(u),

where we recall that ‖·‖ defines the Euclidean norm induced by the scalar product
〈·, ·〉 in RN , weighted by the vector 1.

First of all, observe that summing over the continuity equations (4.1) and using
the incompressibility condition (4.3), it follows that ∂t〈c,1〉 = 0. Moreover, if we
sum the gradient relations (4.2), we also get

∇x

(
N∑
i=1

ci

)
=

∑
16i,j6N

cicj
∆ij

(uj − ui) = 0.

Therefore, the quantity 〈c,1〉 is independent of t and x, allowing to initially deduce
that

(4.7)
N∑
i=1

ci(t, x) =
N∑
i=1

c ini (x) = C0 a.e. on R+ × T3.

Now, defining U = π⊥A(u) and W = 〈u,1〉
‖1‖ , we easily recover (4.4)–(4.5). The trans-

port equation (4.2) can then be rewritten in terms of U and W as

(4.8) ∂tc +∇x · (cU) + c∇x ·W +W · ∇xc = 0.

In a similar way, the incompressibility condition (4.3) in these new unknowns reads

0 =
N∑
i=1

∇x · (ci (Ui +W )) =
N∑
i=1

∇x · (ciUi) +∇x

(
N∑
i=1

ci

)
·W + (∇x ·W )

N∑
i=1

ci

= ∇x · 〈c,U〉+ C0∇x ·W,

where we have used (4.7). We thus infer the existence of a divergence-free func-
tion u : R+ × T3 −→ R3 such that, for almost any (t, x) ∈ T3 × R3,{

∇x · u(t, x) = 0,

W (t, x) = − 1
C0
〈c,U〉(t, x) + u(t, x).
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Plugging the above relation into (4.8) and replacing C0 by its value 〈c,1〉, we recover
the first equation of (4.6). Finally, the decomposition (4.1) also yields the second
relation of (4.6), since πA(u) ∈ kerA and thus

A(c)u = A(c)U,

proving that (c,U, u) is a solution of the orthogonal reformulation (4.4)–(4.5)–(4.6).

Consider now a triple (c,U, u) satisfying conditions (4.4)–(4.5)–(4.6). The reverse
implication then follows by defining

(4.9) u = U +

(
− 1

C0

〈c,U〉+ u

)
1.

Indeed, summing over 1 6 i 6 N the gradient relations of (4.6), we get

∇x

(
N∑
i=1

ci

)
= 0,

which is used when one also sums over 1 6 i 6 N the transport equations of (4.6),
to deduce

0 = ∂t

(
N∑
i=1

ci

)
+∇x

(
N∑
i=1

ciUi

)
−∇x ·

〈c,U〉
(

N∑
i=1

ci

)
〈c,1〉

 = ∂t

(
N∑
i=1

ci

)
,

since 〈c,1〉 =
∑N

i=1 ci by definition. Thus, the quantity 〈c,1〉 is independent of
(t, x), allowing to infer that

N∑
i=1

ci(t, x) =
〈
cin,1

〉
= C0, a.e. on R+ × T3.

This recovery of (4.7) not only implies the incompressibility condition (4.3) but also,
with the divergence free property of u, that

∇x · (cu) = ∇x ·
(
c

(
U− 〈c,U〉

C0

1

))
+ u · ∇xc

= ∇x ·
(
c

(
U− 〈c,U〉

〈c,1〉
1

))
+ u · ∇xc.

Therefore, the first equation of (4.6) rewrites

∂tc +∇x · (cu) = 0,

and, thanks again to the fact that kerA = Span(1), one finally sees that

∇xc = A(c)U = A(c)u.

This ensures that (c,u), with u defined by (4.9), solves the Maxwell-Stefan system
(4.1)–(4.2)–(4.3), thus concluding the proof.

�

By means of this orthogonal reformulation, we can now prove our main result.
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4.2. Proof of Theorem 2.1. This last part is devoted to showing the validity of
Theorem 2.1. We shall divide the proof into several steps which help in enlightening
the basic ideas behind our strategy. We first restate our result about solutions (c,u)
in terms of the orthogonal reformulation (4.4)–(4.5)–(4.6), about solutions (c,U, u).
Thanks to preliminary lemmata describing the main properties of the matrix A and
of its pseudoinverse obtained in Section 3, we then derive uniform (in ε) a priori
energy estimates for the solution (c,U), which provide the exponential relaxation
towards the global equilibrium (c,u). Starting from this we are thus able to recover
the positivity of c, and to prove global existence and uniqueness for solutions to (4.6)

having the specific perturbative forms c = c + εc̃ and U = εŨ. The combination
of these results will eventually allow to deduce global existence, uniqueness and
exponential decay for the couple (c,u), using the reconstruction condition (4.5).

Step 1 – Reformulation in terms of orthogonal velocities. Let us begin with
a simple lemma needed in order to understand the shape of the velocities U and u,
when they are associated to a constant state c.

Lemma 4.3. Let s ∈ N∗ and let c be a positive constant N-vector. For any func-

tions U, u in L∞
(
R+;Hs−1(T3)

)
such that U ∈

(
Span(1)

)⊥
and ∇x · u = 0, a triple

(c,U, u) is solution to the system of equations (4.4)–(4.5)–(4.6) if and only if

U(t, x) = 0 a.e. on R+ × T3.

Proof of Lemma 4.3. The proof is very simple. Because c is constant, the gradient
equation of (4.6) reads A(c)U = 0. But U belongs to (kerA)⊥, which means that
the pseudoinverse A−1 remains well-defined. Consequently, for almost any (t, x) ∈
R+ × T3, U(t, x) = 0.

The reverse implication is direct. �

We are now interested in building a Cauchy theory for the orthogonal form of the
Maxwell-Stefan system, around the stationary solutions given by Proposition 4.3.
More precisely, we want to prove existence and uniqueness for perturbative solutions
to (4.4)–(4.5)–(4.6) of the form{

c(t, x) = c + εc̃,

U = εŨ.

In terms of these particular solutions, the system (4.4)–(4.5)–(4.6) translates into

∂tc̃ + c∇x ·VŨ + u · ∇xc̃ + ε∇x ·
(
c̃VŨ

)
= 0,(4.10)

∇xc̃ = A(c + εc̃)Ũ,(4.11)

with the notation VŨ = Ũ− 〈c,Ũ〉〈c,1〉 1. The orthogonal reformulation of Theorem 2.1

then writes in the following way.

Theorem 4.4. Let s > 3 be an integer, u : R+ × T3 −→ R3 be in L∞
(
R+;Hs(T3)

)
with ∇x · u = 0 and consider a constant N-vector c > 0. There exist δs, Cs, λs > 0

such that for all ε ∈ (0, 1] and for any
(
c̃ in, Ũ in

)
∈ Hs(T3) ×Hs−1(T3) satisfying,

for almost any x ∈ T3 and for any 1 6 i 6 N ,
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(i) Mass compatibility:
N∑
i=1

c̃ ini (x) = 0 and

∫
T3

c̃ ini (x)dx = 0,

(ii) Mass positivity: ci + εc̃ ini (x) > 0,

(iii) Moment compatibility: Ũ in(x) = A
(
c + εc̃ in(x)

)−1∇xc̃
in(x),

(iv) Smallness assumptions:
∥∥c̃ in

∥∥
Hs
x
6 δs and ‖u‖L∞t Hs

x
6 δs,

there exists a unique weak solution
(
c̃, Ũ

)
∈ L∞

(
R+;Hs(T3)

)
×L∞

(
R+;Hs−1(T3)

)
to the system of equations (4.10)–(4.11), having

(
c̃ in, Ũ in

)
as initial datum. In

particular, for almost any (t, x) ∈ R+ × T3, the vector c(t, x) = c + εc̃(t, x) is

positive and Ũ(t, x) belongs to (kerA)⊥.
Moreover, the following estimates hold for almost any t > 0

‖c̃‖
Hs
x

(
c−

1
2

) 6 e−λst
∥∥c̃ in

∥∥
Hs
x

(
c−

1
2

) ,
∥∥∥Ũ∥∥∥

Hs−1
x

6 Cse
−λst

∥∥c̃ in
∥∥
Hs
x

(
c−

1
2

) ,
∫ t

0

e2λs(t−τ)
∥∥∥Ũ(τ)

∥∥∥2
Hs
x

dτ 6 C ′s
∥∥c̃ in

∥∥2
Hs
x

(
c−

1
2

) .
The constants δs, λs and Cs are constructive and are given respectively by (4.22),
(4.24) and (4.25).

Remark 4.5. We underline that the reconstruction condition (4.5) does not involve
the vector c, but only the velocity vector. This means in particular that the solution
c provided by the above theorem coincides exactly with the one given by Theorem 2.1.
However, there is a real difference when one reformulates Theorem 2.1 in terms of
the orthogonal velocities. Indeed, it is important to notice that the velocity vectors

ũ and Ũ ard not the same, since (4.5) tells us that actually ũ = VŨ , from which
we only deduce the relation 〈c, ũ〉 = 0, and no more the orthogonality 〈ũ,1〉 = 0,

satisfied instead by the vector Ũ.

Step 2 – A priori energy estimates and positivity. The two a priori re-
sults (exponential decay and positivity of c) that we now derive are of crucial im-
portance, as they will allow us to exhibit existence and uniqueness for the couple

(c̃, Ũ) in the next section.
Before we start, we present a simple result which establishes two relevant proper-

ties satisfied by the solution of (4.10)–(4.11). We show in particular that c̃ has zero
mean on the torus, a feature that will let us exploit Poincaré inequality in the proof
of the a priori estimates.

Lemma 4.6. Let c, C0 > 0 be such that 〈c,1〉 = C0, and consider a triple (c̃ in, Ũ in, u)

satisfying the hypotheses of Theorem 4.4. If (c̃, Ũ) is a weak solution of (4.10)–

(4.11) with initial datum (c̃ in, Ũ in), then, for almost any (t, x) ∈ R+ × T3 and for
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any 1 6 i 6 N ,

N∑
i=1

c̃i(t, x) = 0 and

∫
T3

c̃i(t, x)dx = 0.(4.12)

In particular, the conservation of the total mass 〈c,1〉 = C0 holds almost everywhere
on R+ × T3.

Proof of Lemma 4.6. We have already showed how to recover the preservation of the
total mass inside the proof of Proposition 4.1.

The second property follows directly from the fact that c is a constant N -vector
and u is divergence-free. Indeed, using these two assumptions the mass equation
(4.10) can be written under a divergent form as

∂tc̃ +∇x ·
(
cVŨ + c̃u

)
= 0.

Integrating over the torus we thus obtain

d

dt

∫
T3

c̃(t, x)dx = 0 for a.e. t > 0,

which gives the expected result since c̃ in has zero mean on the torus. �

The result providing the a priori energy estimates is then the following.

Proposition 4.7. Let s > 3 be an integer. There exist δs, λs, Cs, C
′
s > 0 such that,

under the assumptions of Theorem 4.4, if (c̃, Ũ, u) is a solution of the perturbed
orthogonal system (4.10)–(4.11) satisfying the initial controls∥∥c̃ in

∥∥
Hs
x
6 δs and ‖u‖L∞t Hs

x
6 δs,

then, for almost any t > 0,

‖c̃‖
Hs
x

(
c−

1
2

) 6 e−λst
∥∥c̃ in

∥∥
Hs
x

(
c−

1
2

) ,
∥∥∥Ũ∥∥∥

Hs−1
x

6 Cse
−λst

∥∥c̃ in
∥∥
Hs
x

(
c−

1
2

) ,
∫ t

0

e2λs(t−τ)
∥∥∥Ũ(τ)

∥∥∥2
Hs
x

dτ 6 C ′s
∥∥c̃ in

∥∥2
Hs
x

(
c−

1
2

) .
The constants δs, λs, Cs and C ′s are explicit and only depend on s, the number
of species N , the diffusion coefficients (∆ij)16i,j6N and the constant vector c. In
particular, they are independent of the parameter ε.

Proof of Proposition 4.7. We fix a multi-index α ∈ N3 such that |α| 6 s. Recall
that we have defined

VŨ = Ũ− 〈c, Ũ〉
〈c,1〉

1.
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We successively apply the α-derivative to the transport equation (4.10), take the

scalar product with the vector

(
1

ci
∂αx c̃i

)
16i6N

, and integrate over T3. This yields,

after integrating by parts,

1

2

d

dt
‖∂αx c̃‖

2

L2
x

(
c−

1
2

) =

∫
T3

〈∇x∂
α
x c̃, ∂

α
xVŨ〉dx+

∫
T3

〈∇x∂
α
x c̃, ∂

α
x (c̃u)〉c−1dx

+ ε

∫
T3

〈∇x∂
α
x c̃, ∂

α
x

(
c̃VŨ

)
〉c−1dx.

(4.13)

We estimate these three terms separately. We first notice that summing over i the
gradient equations (4.11) we obtain

N∑
i=1

∇xc̃i(t, x) = 0 a.e. on R+ × T3,

which means that ∇xc̃ belongs to
(
Span(1)

)⊥
. Applying the α-derivative to both

sides of this relation then gives

N∑
i=1

∇x∂
α
x c̃i(t, x) = 0 a.e. on R+ × T3,

from which we deduce that also

(4.14) ∇x∂
α
x c̃ ∈

(
Span(1)

)⊥
a.e. on R+ × T3.

Thanks to the orthogonality (4.14) of the higher derivatives and using the gradient
relation (4.11), the first term on the right-hand side of (4.13) becomes

∫
T3

〈∇x∂
α
x c̃, ∂

α
xVŨ〉dx =

∫
T3

〈∂αx∇xc̃, ∂
α
x Ũ〉dx−

1

C0

∂αx 〈c, Ũ〉
∫
T3

〈∇x∂
α
x c̃,1〉dx

=

∫
T3

〈∂αx [A(c)Ũ], ∂αx Ũ〉dx.

We can now apply Proposition 3.2 with X = ∂αx Ũ and use the mass conservation
given in Lemma 4.6, in combination with the spectral gap of A(c) from Proposition
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3.1, to recover the initial bound

∫
T3

〈∇x∂
α
x c̃, ∂

α
xVŨ〉dx 6

∫
T3

〈A(c)∂αx Ũ, ∂
α
x Ũ〉dx

+ 2N2µAC0

∫
T3

∥∥∥∂αx Ũ∥∥∥ ∑
α1+α3=α
|α1|>1

‖∂α1
x c‖

∥∥∥∂α3
x Ũ

∥∥∥ dx

+NµA

∫
T3

∥∥∥∂αx Ũ∥∥∥ ∑
α1+α2+α3=α

α1,α2>1

‖∂α1
x c‖ ‖∂α2

x c‖
∥∥∥∂α3

x Ũ
∥∥∥ dx

6 −λA
(

min
16i6N

ci

)2 ∥∥∥∂αx Ũ∥∥∥2
L2
x

+ 2εN2µAC0

∥∥∥Ũ∥∥∥
Hs
x

∫
T3

 ∑
α1+α3=α
|α1|>1

‖∂α1
x c̃‖

∥∥∥∂α3
x Ũ

∥∥∥


2

dx


1
2

+ ε2N2µA

∥∥∥Ũ∥∥∥
Hs
x

∫
T3

 ∑
α1+α2+α3=α
|α1|,|α2|>1

‖∂α1
x c̃‖ ‖∂α2

x c̃‖
∥∥∥∂α3

x Ũ
∥∥∥


2

dx


1
2

,

where we have also used the Cauchy-Schwarz inequality and the fact that the L2
x

norm of ∂αx Ũ is controlled by the Hs
x norm of Ũ.

Recalling our choice s > 3, in order to control the bi and tri-norm terms inside the

integrals we use the continuous embedding of H
s/2
x in L∞x , which holds as soon as

s/2 > 3/2. We detail our procedure for the tri-norm term, the bi-norm term being
treated in the same way. Since α1 + α2 + α3 = α, at most one of the |αi| can be
strictly larger than |α| /2. Hence, at least two |αi| are lower or equal to |α| /2 6 s/2.
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We therefore split the tri-norm term into three sums as

∫
T3

 ∑
α1+α2+α3=α
|α1|,|α2|>1

‖∂α1
x c̃‖ ‖∂α2

x c̃‖
∥∥∥∂α3

x Ũ
∥∥∥


2

dx

6
∑

α1+α2+α3=α
|α1|,|α2|>1

|α1|,|α2|6
s
2

∫
T3

‖∂α1
x c̃‖2 ‖∂α2

x c̃‖2
∥∥∥∂α3

x Ũ
∥∥∥2 dx

+
∑

α1+α2+α3=α
|α1|,|α2|>1

|α1|,|α3|6
s
2

∫
T3

‖∂α1
x c̃‖2 ‖∂α2

x c̃‖2
∥∥∥∂α3

x Ũ
∥∥∥2 dx

+
∑

α1+α2+α3=α
|α1|,|α2|>1

|α2|,|α3|6
s
2

∫
T3

‖∂α1
x c̃‖2 ‖∂α2

x c̃‖2
∥∥∥∂α3

x Ũ
∥∥∥2 dx

For any αk-derivative such that |αk| 6 s/2, we bound the corresponding factor by

its L∞x norm and we then exploit the mentioned embedding of H
s/2
x in L∞x in order

to recover the correct Sobolev norm. In the sequel Csob will refer to any positive
constant that appears when using the Sobolev embeddings. The first sum produces∑

α1+α2+α3=α
|α1|,|α2|>1

|α1|,|α2|6
s
2

∫
T3

‖∂α1
x c̃‖2 ‖∂α2

x c̃‖2
∥∥∥∂α3

x Ũ
∥∥∥2 dx

6
∑

α1+α2+α3=α
|α1|,|α2|>1

|α1|,|α2|6
s
2

‖∂α1
x c̃‖2L∞x ‖∂

α2
x c̃‖2L∞x

∥∥∥∂α3
x Ũ

∥∥∥2
L2
x

6 Csob

∑
α1+α2+α3=α
|α1|,|α2|>1

|α1|,|α2|6
s
2

‖∂α1
x c̃‖2

H
s/2
x
‖∂α2

x c̃‖2
H
s/2
x

∥∥∥∂α3
x Ũ

∥∥∥2
L2
x

6 s3Csob ‖c̃‖4Hs
x

∥∥∥Ũ∥∥∥2
Hs
x

,

and the two others are dealt with in the same way. Consequently, the tri-norm term
can be estimated as

(4.15)

∫
T3

 ∑
α1+α2+α3=α
|α1|,|α2|>1

‖∂α1
x c̃‖ ‖∂α2

x c̃‖
∥∥∥∂α3

x Ũ
∥∥∥


2

dx 6 3s3Csob ‖c̃‖4Hs
x

∥∥∥Ũ∥∥∥2
Hs
x

.

Moreover, the previous Sobolev embedding also yields, for any 1 6 i 6 N ,

(4.16) ci(t, x) > ci − ε ‖c̃‖L∞x > min
16i6N

ci − εCsob ‖c̃‖Hs
x

a.e. on R+ × T3.
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We thus infer the first upper bound

∫
T3

〈∇x∂
α
x c̃, ∂

α
xVŨ〉dx 6 −λA

(
min
16i6N

ci − εCsob ‖c̃‖Hs
x

)2 ∥∥∥∂αx Ũ∥∥∥2
L2
x

+ εs2N2µA

(
4C0 + 6ε ‖c̃‖Hs

x

)
‖c̃‖Hs

x

∥∥∥Ũ∥∥∥2
Hs
x

.

(4.17)

The second and third term on the right-hand side of (4.13) are handled more
easily. As we did for establishing (4.15), we apply the Leibniz derivation rule and
the Cauchy-Schwarz inequality, together with the Sobolev embedding that allows to
distribute the Hs

x norm to each factor of the products. In this way we obtain the
estimates∫

T3

〈∇x∂
α
x c̃, ∂

α
x (c̃u)〉c−1dx 6

Csob

min
16i6N

ci
‖∇x∂

α
x c̃‖L2

x
‖c̃‖Hs

x
‖u‖Hs

x
,

∫
T3

〈∇x∂
α
x c̃, ∂

α
x

(
c̃VŨ

)
〉c−1dx 6

Csob

min
16i6N

ci
‖∇x∂

α
x c̃‖L2

x
‖c̃‖Hs

x

(
1 +

1

C0

‖c‖Hs
x

)∥∥∥Ũ∥∥∥
Hs
x

,

where we have used that 1
ci
6 1

mini ci
for any 1 6 i 6 N . In order to control the L2

x

norm of ∇x∂
α
x c̃, we exploit the gradient relation (4.11). By similar computations

to the ones providing the estimate of Proposition 3.2, and thanks to the continuous

Sobolev embedding H
s/2
x ↪→ L∞x , one infers

‖∇x∂
α
x c̃‖L2

x
6 ‖∇xc̃‖Hs

x
=

∥∥∥A(c)Ũ
∥∥∥
Hs
x

6 Csob(s2 + C0s) ‖c‖2Hs
x

∥∥∥Ũ∥∥∥
Hs
x

6 2Csob(s2 + C0s)
(
C2

0

∣∣T3
∣∣+ ε2 ‖c̃‖2Hs

x

)∥∥∥Ũ∥∥∥
Hs
x

6 Cs

(
1 + ε2 ‖c̃‖2Hs

x

)∥∥∥Ũ∥∥∥
Hs
x

,(4.18)

where we have also used that

∫
T3

(ci + εc̃i)
2 dx 6 2

(∫
T3

c 2i dx+ ε2
∫
T3

c̃ 2i dx

)
,

0 6 ci 6
N∑
j=1

cj = C0.
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Since ε 6 1 and ‖u‖Hs
x
6
√
N ‖u‖Hs

x
, we finally deduce the upper bounds∫

T3

〈∇x∂
α
x c̃, ∂

α
x (c̃u)〉c−1dx 6

√
NCs

min
16i6N

ci
‖c̃‖Hs

x

(
1 + ‖c̃‖Hs

x

)2
‖u‖Hs

x

∥∥∥Ũ∥∥∥
Hs
x

,(4.19)

∫
T3

〈∇x∂
α
x c̃, ∂

α
x

(
c̃VŨ

)
〉c−1dx 6

Cs
min
16i6N

ci
‖c̃‖Hs

x

(
1 + ‖c̃‖Hs

x

)3 ∥∥∥Ũ∥∥∥2
Hs
x

,(4.20)

by accordingly increasing the value of the constant Cs.

To conclude, we gather (4.13) with the estimates (4.17), (4.19) and (4.20), and
we sum over all |α| 6 s. In this way, we obtain

1

2

d

dt
‖c̃‖2

Hs
x

(
c−

1
2

) 6 − λA( min
16i6N

ci

)2 ∥∥∥Ũ∥∥∥2
Hs
x

+
s3
√
NCs

min
16i6N

ci
‖c̃‖Hs

x
‖u‖Hs

x

(
1 + ‖c̃‖Hs

x

)2 ∥∥∥Ũ∥∥∥
Hs
x

+ ε

(
2λACsob min

16i6N
ci + ελAC

2
sob +

s3Cs
min
16i6N

ci

+ s5CsobN
2µA(4C0 + 6ε)

)
‖c̃‖Hs

x

(
1 + ‖c̃‖Hs

x

)3 ∥∥∥Ũ∥∥∥2
Hs
x

.

In order to close the estimate above, since c is constant we first easily check that

‖c̃‖Hs
x
6 max

16i6N
ci ‖c̃‖

Hs
x

(
c−

1
2

) 6 C0 ‖c̃‖
Hs
x

(
c−

1
2

) .
Moreover, recalling Lemma 4.6, we can apply the Poincaré inequality to c̃, which
has zero mean on the torus. Denoting CT3 > 0 the Poincaré constant, we can thus
compute

(4.21) ‖c̃‖Hs
x
6 CT3 ‖∇xc̃‖Hs

x
6 CT3Cs

(
1 + ε2 ‖c̃‖2Hs

x

)∥∥∥Ũ∥∥∥
Hs
x

,

where we have also used (4.18).

We denote by Cs any positive constant that only depends on s, N , λA, µA, c,
Csob, C0 and CT3 . Thanks to the above estimates, we can consequently infer the
validity of the bound

1

2

d

dt
‖c̃‖2

Hs
x

(
c−

1
2

) 6 −[λA( min
16i6N

ci

)2

− Cs ‖u‖Hs
x

(
1 + ‖c̃‖

Hs
x

(
c−

1
2

))4

− Cs ‖c̃‖
Hs
x

(
c−

1
2

) (1 + ‖c̃‖
Hs
x

(
c−

1
2

))3
]∥∥∥Ũ∥∥∥2

Hs
x

.
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Therefore, if
∥∥c̃ in

∥∥
Hs
x
6 δs and ‖u‖Hs

x
6 δs for almost any t > 0, where δs > 0 is

chosen such that

(4.22) Csδs

(
(1 + δs)

4 + (1 + δs)
3
)
6
λA

(
min
16i6N

ci

)2

2
,

we ensure that the Hs
x

(
c−

1
2

)
norm of c̃ keeps diminishing and satisfies

(4.23)
d

dt
‖c̃‖2

Hs
x

(
c−

1
2

) 6 −λA
(

min
16i6N

ci

)2

2

∥∥∥Ũ∥∥∥2
Hs
x

for a.e. t > 0.

Moreover, since the Poincaré inequality (4.21) tells us that the norm of Ũ controls
the one of c̃, we recover the estimate

d

dt
‖c̃‖2

Hs
x

(
c−

1
2

) 6 − λA

(
min
16i6N

ci

)2

2C2
T3C2

s (1 + δ2s)
2
‖c̃‖2Hs

x
6 −

λA

(
min
16i6N

ci

)3

2C2
T3C2

s (1 + δ2s)
2
‖c̃‖2

Hs
x

(
c−

1
2

) .
Setting

(4.24) λs =

λA

(
min
16i6N

ci

)3

4C2
T3C2

s (1 + δ2s)
2
,

Grönwall’s lemma finally tells us that for a.e. t > 0

‖c̃‖
Hs
x

(
c−

1
2

) 6 e−λst
∥∥c̃ in

∥∥
Hs
x

(
c−

1
2

) ,
and we also recover
(4.25)∥∥∥Ũ∥∥∥

Hs−1
x

=
∥∥A(c)−1∇xc̃

∥∥
Hs−1
x
6 C̃s ‖∇xc̃‖Hs−1

x
6 C̃s ‖c̃‖Hs

x
6 Cs ‖c̃‖

Hs
x

(
c−

1
2

) ,
by simply adjusting the value of Cs. The constant Cs = Cs(C0, λA, µA, s, δs, c) > 0
is obtained by inverting A(c) and repeating the previous computations, via the
continuous Sobolev embedding already mentioned. In particular, note that for our
choice of δs one sees from (4.16) that c does not vanish anywhere and there is
therefore no singularity in A(c)−1.

The last estimate on the integral of
∥∥∥Ũ∥∥∥2

Hs
x

is a direct application of Grönwall’s

lemma from (4.23). This concludes the proof. �

Before going into details in the proofs of existence and uniqueness, we present here
another result which establishes that the positivity of c is obtained a priori. This
will help the reader in clarifying the last statement we gave in the previous proof,
about the invertibility of A(c). Moreover, note that ensuring the positivity of c a
priori is crucial, since it will leave us free on the choice of the iterative scheme to be
used in the next section, when constructing the solution of the system (4.10)–(4.11).

Lemma 4.8. Consider an initial datum (c̃ in, Ũ in) satisfying the assumptions of

Theorem 4.4. If (c̃, Ũ) is a solution of (4.10)–(4.11) with initial datum (c̃ in, Ũ in),
then, for almost any (t, x) ∈ R+ × T3 the vector c + εc̃(t, x) is positive.
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Proof of Lemma 4.8. The proof is rather simple. Since we start from a positive
initial datum c + εc̃ in, by inverting the gradient relation (4.11) as

Ũ =
1

ε
A(c)−1∇xc,

and plugging this identity into (4.10), we recover an elliptic equation for c = c+ εc̃.
Standard elliptic weak minimum principles then apply to c, ensuring its nonnegativ-
ity at least until a maximal finite time which we call T0. But the previous a priori
estimate obtained on c̃ tells us that in fact the positivity of c is satisfied as long as
δs is also chosen in (4.16) to be strictly smaller than min

16i6N
ci. This guarantees that

T0 = +∞ and thus c(t, x) is positive a.e. on R+ × T3. �

Step 3 – Existence and uniqueness of the couple (c̃, Ũ). We now have all the

tools needed in order to construct our Cauchy theory for the couple (c̃, Ũ). We shall
first present the existence result and then prove the uniqueness of the constructed
solution.

Proposition 4.9. Let s > 3 be an integer and consider a triple (c̃ in, Ũ in, u) satisfy-
ing the assumptions of Theorem 4.4. There exists δs > 0 such that, for all ε ∈ (0, 1],

there exists a global weak solution (c̃, Ũ) ∈ L∞
(
R+;Hs(T3)

)
× L∞

(
R+;Hs−1(T3)

)
of the system (4.10)–(4.11), with initial datum (c̃ in, Ũ in).

Proof of Proposition 4.9. The proof is standard and is based on an iterative scheme,
where we first construct a solution on a well-chosen time interval [0, T0], and we
then show that this interval can be extended to [0,+∞). Note however that one
has to be careful with the estimates, since the conservation of the exact exponential
decay rate is crucial. The underlying mechanism lies on the fact that our problem
is actually quasilinear parabolic for small initial data. Indeed, noticing that

Ũ = A(c)−1∇xc̃,

we solely have to solve

∂tc̃+c∇x ·
(
A(c)−1∇xc̃−

〈c, A(c)−1∇xc̃〉
〈c,1〉

1

)
+ u · ∇xc̃

+ ε∇x ·
(
c̃

(
A(c)−1∇xc̃−

〈c, A(c)−1∇xc̃〉
〈c,1〉

1

))
= 0.

From Proposition 3.3 we see that the higher order term is of order 2, symmetric and
negative for c > 0, which makes this equation quasilinear parabolic.

We initially set

(4.26) c̃(0) = c̃ in, T0 = 3
CT3 min

16i6N
ci

4C0Cs(1 + 4δ2s)δs
,

where δs, Cs and CT3 respectively come from (4.22), (4.25) and (4.21).
Suppose that an N -vector function c̃(n) ∈ L∞

(
0, T0;H

s(T3)
)

is given, satisfying

(4.27)
∥∥c̃(n)∥∥

Hs
x

(
c−

1
2

) 6 2δse
−λst,

N∑
i=1

c̃
(n)
i (t, x) = 0 a.e. on (0, T0)× T3.
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For s > 3, the Sobolev embedding Hs
x ↪→ L∞x makes applicable standard parabolic

methods on the torus (see for instance [11, Section 7.1]) which raise the existence of
a solution c̃(n+1) ∈ L2

(
0, T0;H

1(T3)
)

to the following linear equation

(4.28) ∂tc̃
(n+1) + u · ∇xc̃

(n)

+∇x ·
(
c(n)

(
A(c(n))−1∇xc̃

(n+1) − 〈c
(n), A(c(n))−1∇xc̃

(n+1)〉
〈c(n),1〉

1

))
= 0,

with initial datum c̃ in. Note that summing (4.28) over 1 6 i 6 N yields

N∑
i=1

c̃
(n+1)
i (t, x) =

N∑
i=1

c̃
(n+1)
i (0, x) = 0 a.e. on (0, T0)× T3,

which shows, thanks to Proposition 3.3, that
(
Span(1)

)⊥
is stable for (4.28), imply-

ing that A(c(n))−1∇xc̃
(n+1) is well-defined at almost every time t ∈ (0, T0).

The same computations carried out to derive the a priori estimates in Proposition
4.7 give (see in particular (4.19) for the term containing u)

d

dt

∥∥c̃(n+1)
∥∥2
Hs
x

(
c−

1
2

)
6 −

(
CT3 min

16i6N
ci

)(
2λA

C2
T3C2

s (1 + δ2s)
2

+ Cs(1 + 4ε2δ2s) ‖u‖Hs
x

)∥∥∇xc̃
(n+1)

∥∥2
Hs
x

+ Cs(1 + 4ε2δ2s)
∥∥∇xc̃

(n+1)
∥∥
Hs
x
‖u‖Hs

x

∥∥c̃(n)∥∥
Hs
x

(
c−

1
2

) ,
where we used that

∥∥c̃(n)∥∥
Hs
x
6 2δs. Note that Cs(1+ε2δ2s) ‖u‖Hs

x
inside the negative

term comes from the absence of ∇x · (c̃(n+1)u) in (4.28), whereas the multiplicative
constant in front of it originates from the definition of λs. We now use Young’s
inequality to get

d

dt

∥∥c̃(n+1)
∥∥2
Hs
x

(
c−

1
2

)

6 −
(
CT3 min

16i6N
ci

) 2λs(
min
16i6N

ci

)3 + Cs(1 + 4ε2δ2s) ‖u‖Hs
x
− η

CT3 min
16i6N

ci


×
∥∥∇xc̃

(n+1)
∥∥2
Hs
x

+
C2
s (1 + 4ε2δ2s)

2 ‖u‖2Hs
x

η

∥∥c̃(n)∥∥2
Hs
x
,

for any η > 0. Therefore, if we choose

η = Cs(1 + 4ε2δ2s) ‖u‖Hs
x
CT3 min

16i6N
ci,
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thanks to Poincaré inequality (4.21) and to the assumption ‖u‖Hs
x
6 δs, we obtain

d

dt

∥∥c̃(n+1)
∥∥2
Hs
x

(
c−

1
2

) 6 −2λs
∥∥c̃(n+1)

∥∥2
Hs
x

(
c−

1
2

) +
C0Cs(1 + 4δ2s)δs
CT3 min

16i6N
ci

∥∥c̃(n)∥∥2
Hs
x

(
c−

1
2

) .
Eventually, we apply Grönwall’s lemma using the exponential decay of

∥∥c̃(n)∥∥2
Hs
x

(
c−

1
2

)
given by the iterative assumption (4.27), and we successively get, for almost every
time t ∈ (0, T0),∥∥c̃(n+1)

∥∥2
Hs
x

(
c−

1
2

) 6
∥∥c̃in∥∥2

Hs
x

(
c−

1
2

) + 4δ2s
C0Cs(1 + 4δ2s)δs
CT3 min

16i6N
ci

t

 e−2λst

6 δ2s

1 + 4
C0Cs(1 + 4δ2s)δs
CT3 min

16i6N
ci

T0

 e−2λst

6 4δ2se
−2λst,

thanks to the definition of T0 given in (4.26). This proves that c̃(n+1) belongs to
L∞
(
0, T0;H

s(T3)
)

and satisfies the iterative assumptions (4.27).

By induction, we thus construct a sequence
(
c̃(n)
)
n∈N defined a.e. on (0, T0)× T3,

belonging to
(
Span(1)

)⊥
, and bounded by 2δs in L∞

(
0, T0;H

s(T3)
)
. Moreover,

the iterative equation (4.28) gives an explicit formula for ∂tc̃
(n+1) in terms of c̃(n),

c̃(n+1) and u. Again, the continuous Sobolev embedding Hs
x ↪→ L∞x for s > 3/2

and Proposition 3.3 raise the existence of a polynomial P in two variables, with
coefficients only depending on s, c, ‖u‖Hs

x
, λA and µA, such that∥∥∂tc̃(n+1)

∥∥
L2
x
6 P

(∥∥c̃(n)∥∥
Hs
x
,
∥∥c̃(n+1)

∥∥
Hs
x

)
6 P (2δs, 2δs) for a.e. t > 0.

This shows that
(
∂tc̃

(n)
)
n∈N is bounded in L∞

(
0, T0;L

2(T3)
)
, uniformly with respect

to n ∈ N.
Therefore, choosing 0 < s′ < s − 2, by Sobolev embeddings, there exists an

N -vector function c̃∞ ∈ L∞
(
0, T0;H

s(T3)
)

such that, up to a subsequence,

(1)
(
c̃(n)
)
n∈N converges, weakly-* in L∞(0, T0) and weakly in Hs

x, to c̃∞,

(2)
(
c̃(n)
)
n∈N,

(
∇xc̃

(n)
)
n∈N and

(
∇x∇xc̃

(n)
)
n∈N converge weakly-* in L∞(0, T0)

and strongly in Hs′
x ,

(3)
(
∂tc̃

(n)
)
n∈N converges weakly-* in L∞(0, T0) and weakly in L2

x.

Integrating our scheme (4.28) against test functions, we can then pass to the limit
as n goes to +∞ (the nonlinear terms being bounded and dealt with thanks to the
strong convergences in Hs′

x ), and we see that c̃∞ is a weak solution to

∂tc̃
∞+c∇x ·

(
A(c∞)−1∇xc̃

∞ − 〈c
∞, A(c∞)−1∇xc̃

∞)〉
〈c∞,1〉

1

)
+ u · ∇xc̃

∞

+ ε∇x ·
(
c̃∞
(
A(c∞)−1∇xc̃

∞ − 〈c
∞, A(c∞)−1∇xc̃

∞)〉
〈c∞,1〉

1

))
= 0.
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Denoting Ũ∞ = A(c∞)−1∇xc̃
∞, this proves that (c̃∞, Ũ∞) is a weak solution to

the system (4.10)–(4.11), belonging to L∞
(
0, T0;H

s(T3)
)
×L∞

(
0, T0;H

s−1(T3)
)
. In

particular, looking at equations (4.10)–(4.11), by means of the continuous embedding

of H
s/2
x in L∞x one easily checks that (∂tc̃

∞, ∂tŨ
∞) belongs to L∞

(
0, T0;L

2(T3)
)
×

L∞
(
0, T0;L

2(T3)
)

as soon as s > 4. Applying the Aubin-Lions-Simon theorem (see

for example [6, Theorem II.5.16]), we thus also ensure that (c̃∞, Ũ∞) belongs to
C0
(
[0, T0];H

s−1(T3)
)
× C0

(
[0, T0];H

s−2(T3)
)

for any s > 4.

Therefore, using the continuity of c̃∞, we can finally conclude thanks to the a
priori estimates established in Proposition 4.7, which state that ‖c̃∞(T0)‖Hs

x
6 δs.

Indeed, we can restart our scheme at T0 from this initial condition and we can
obtain a solution on the time interval [T0, 2T0]. Again, using the continuity of c̃∞

with respect to t ∈ [T0, 2T0] and Proposition 4.7, the corresponding sequence will
be bounded by δs at 2T0, and by induction we can construct a weak solution of
(4.10)–(4.11) on [0,+∞). �

In the next result we conclude by recovering the uniqueness of the solution to the
orthogonal system (4.10)−(4.11). We remind the reader that this property has to be
understood in a perturbative sense, since we are only able to prove the uniqueness

of the fluctuations (c̃, Ũ) around the macroscopic equilibrium state (c,0).

Proposition 4.10. Let s > 3 be an integer, and consider a couple (c̃ in, Ũ in) satis-

fying the assumptions of Theorem 4.4. There exists δs > 0 such that, if (c̃, Ũ) and

(d̃,W̃) are two solutions of (4.10)–(4.11) having the same initial datum (c̃ in, Ũ in),

then c̃ = d̃ and Ũ = W̃.

Proof of Proposition 4.10. Substracting the two sets of equations satisfied by (c̃, Ũ)

and (d̃,W̃), and denoting h̃ = c̃ − d̃ and R̃ = Ũ − W̃, we initially establish the
relations

∂th̃ + c∇x ·VR̃ + u · ∇xh̃ + ε∇x ·
(
h̃VŨ

)
+ ε∇x ·

(
d̃VR̃

)
= 0,(4.29)

∇xh̃ = A(c)R̃ + [A(c)− A(d)]W̃,(4.30)

with an obvious meaning for the shorthand VR̃.
We shall give similar computations to the ones derived for the a priori estimates,

except that we here restrict our investigation to the sole L2
x setting, since it will

prove itself to be sufficient in order to deduce uniqueness. However, we still need
the solutions to be in Hs

x for some s > 3, in order to again take advantage of the

Sobolev embedding H
s/2
x ↪→ L∞x . We compute the scalar product between c−1h̃ and

the equation (4.29), and we integrate over the torus. As in the proof of Proposition
4.7, we use the gradient equation (4.30) and its orthogonal properties to recover

1

2

d

dt

∥∥∥h̃∥∥∥2
L2
x

(
c−

1
2

) 6 ∫
T3

〈A(c)R̃, R̃〉dx+

∫
T3

〈[A(c)− A(d)]W̃, R̃〉c−1dx

+

∫
T3

〈∇xh̃, h̃
(
u + εVR̃

)
〉c−1dx+ ε

∫
T3

〈∇xh̃, d̃VR̃〉c−1dx.

We use the spectral gap of A(c) for the first term on the right-hand side, while
the remaining terms are dealt with thanks to the a priori estimates derived in
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Proposition 4.7 and the usual Sobolev embedding, in the following way:

|c̃(t, x)| 6 ‖c‖Hs
x
6 δs, |u(t, x)| 6 δs,

∣∣∣d̃(t, x)
∣∣∣ 6 δs, a.e. on R+ × T3.

This initially gives

1

2

d

dt

∥∥∥h̃∥∥∥2
L2
x

(
c−

1
2

) 6− λA
2

∥∥∥R̃∥∥∥2
L2
x

+

∑
16i,j6N

∫
T3

∣∣∣R̃i

∣∣∣ |cicj − didj| ∣∣∣W̃j − W̃i

∣∣∣ dx

min
16i6N

ci min
16i,j6N

∆ij

+

[
δs + εδs

(
1 +

Nδ2s
C0

)]∥∥∥h̃∥∥∥
L2
x

∥∥∥∇xh̃
∥∥∥
L2
x

+ εδs

∥∥∥∇xh̃
∥∥∥
L2
x

∥∥∥R̃∥∥∥
L2
x

.

(4.31)

Then, the algebraic manipulation

|cicj − didj| =
∣∣∣∣12 (ci − di) (cj + dj) +

1

2
(ci + di) (cj − dj)

∣∣∣∣ 6 ε
δs
2

(|hi|+ |hj|)

and the Cauchy-Schwarz inequality yield the control

(4.32)
∑

16i,j6N

∫
T3

∣∣∣R̃i

∣∣∣ |cicj − didj| ∣∣∣W̃j − W̃i

∣∣∣ dx 6 2εδ2s

∥∥∥R̃∥∥∥
L2
x

∥∥∥h̃∥∥∥
L2
x

.

From the gradient relation (4.30) and from the Poincaré inequality (4.21), we also
deduce the existence of a constant Cs > 0 such that

(4.33)
∥∥∥R̃∥∥∥

L2
x

> Cs

∥∥∥∇xh̃
∥∥∥− εδ2s ∥∥∥h̃∥∥∥

L2
x

>
(
Cs − εδ2s

) ∥∥∥h̃∥∥∥
L2
x

.

We now use (4.32), (4.33) and the fact that 0 < ε 6 1 inside (4.31) to finally infer
the upper bound

1

2

d

dt

∥∥∥h̃∥∥∥2
L2
x

(
c−

1
2

) 6 (−λA
2

+ δsK(δs)

)∥∥∥R̃∥∥∥2
L2
x

where K(δs) > 0 is a polynomial in δs whose coefficients only depend on c and on
the number of species N . By choosing δs small enough so that both Proposition 4.7

holds and the inequality −λA
2

+δsK(δs) 6 0 is satisfied, we conclude that ‖h̃‖
L2
x

(
c−

1
2

)
decreases over time. Therefore, since initially h̃ in = 0, we deduce that h̃ = 0 at any
time t > 0.

This implies that c̃ = d̃, from which we also deduce that the gradient relation
(4.30) becomes

A(c)R̃ = 0.

We thus infer that R̃ = 0, since R̃ ∈ (kerA)⊥. Consequently, Ũ = Ṽ and the
uniqueness is established. �

Step 5 – Conclusion. We are finally able to end our study of the incompress-
ible Maxwell-Stefan system (4.1)–(4.2)–(4.3). Theorem 4.4 is a direct gathering of
Proposition 4.7, Lemmata 4.6 and 4.8, and Propositions 4.9–4.10.

Our main Theorem 2.1 then directly follows from Theorem 4.4 with the unique
orthogonal writing (4.5) established in Proposition 4.1. In fact, as soon as the unique

solution (c + εc̃,u + εŨ) of the orthogonal system (4.10)–(4.11) is established, the
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corresponding unique perturbative solution of the Maxwell-Stefan system (4.1)–(4.2)
with incompressibility condition (4.3) is given by (c + εc̃,u + εũ), where

ũ = Ũ− 1

C0

〈c, Ũ〉1

satisfies 〈c, ũ〉 = 0. In particular, the exponential decay of ũ directly follows from

the exponential decays of c̃ and Ũ.
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