Boundary singularities of semilinear elliptic equations with Leray-Hardy potential - Archive ouverte HAL
Article Dans Une Revue Communications in Contemporary Mathematics Année : 2022

Boundary singularities of semilinear elliptic equations with Leray-Hardy potential

Huyuan Chen
  • Fonction : Auteur
  • PersonId : 1055191

Résumé

We study existence and uniqueness of solutions of (E 1) −∆u + µ |x| ^{-2} u + g(u) = ν in Ω, u = λ on ∂Ω, where Ω ⊂ R N + is a bounded smooth domain such that 0 ∈ ∂Ω, µ ≥ − N 2 4 is a constant, g a continuous nondecreasing function satisfying some integral growth condition and ν and λ two Radon measures respectively in Ω and on ∂Ω. We show that the situation differs considerably according the measure is concentrated at 0 or not. When g is a power we introduce a capacity framework which provides necessary and sufficient conditions for the solvability of problem (E 1).
Fichier principal
Vignette du fichier
NLNbdry-Hardy13.pdf (302.89 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02301908 , version 1 (30-09-2019)
hal-02301908 , version 2 (28-07-2021)

Identifiants

Citer

Huyuan Chen, Laurent Veron. Boundary singularities of semilinear elliptic equations with Leray-Hardy potential. Communications in Contemporary Mathematics, 2022, 24 (7), ⟨10.1142/S0219199721500516⟩. ⟨hal-02301908v2⟩
119 Consultations
72 Téléchargements

Altmetric

Partager

More