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We study existence and uniqueness of solutions of (E 1 ) -∆u

4 is a constant, g a continuous nondecreasing function satisfying some integral growth condition and ν and λ two Radon measures respectively in Ω and on ∂Ω. We show that the situation differs considerably according the measure is concentrated at 0 or not. When g is a power we introduce a capacity framework which provides necessary and sufficient conditions for the solvability of problem (E 1 ).

L µ u := -∆u + µ |x| 2 u, (1.1) 
plays a fundamental role in analysis, because of Hardy's inequality, and in theoretical physics in connexion with uncertainty principle (see e.g. [START_REF] Folland | The uncertainty principle: A mathematical survey[END_REF], [START_REF] Frank | Sobolev inequalities and uncertainty principles in mathematical physics[END_REF]). When the singular point 0 belongs to Ω, there exists a critical value

µ 0 = - N -2 2 2 . (1.2) 
It is wellknown that when µ ≥ µ 0 the operator L µ is positive because of Hardy's inequality

Ω |∇φ| 2 dx + µ 0 Ω φ 2 |x| 2 dx ≥ 0 for all φ ∈ C ∞ 0 (Ω). (1.3) 
Under the condition µ ≥ µ 0 , the study of semilinear problems associated to the operator u → L µ u + g(u) has been initiated in [START_REF] Guerch | Local properties of stationary solutions of some nonlinear singular Schrödinger equations[END_REF]. When g(r) ∼ |r| p-1 r (p > 1) the authors provided therein necessary and sufficient conditions on p in order the no solution of equation L µ u + g(u) = 0 (1.4) in R N \ {0} could have a singularity at x = 0. When this condition is not satisfied they obtained a description of the possible behaviour of singular solutions of (1.4) in the neighborhood of 0. When g is merely a continuous nondecreasing function they found a necessary and sufficient condition on g expressed under an integral formulation ensuring the existence of a positive solution u(x) of (1.4) satisfying

u(x) ∼ a|x| -( N-2 2 +
√ µ-µ 0 ) when x → 0, a > 0.

(1.5)

Note that x → |x| -( N-2 2 +
√ µ+µ 0 ) is the solution of L µ u = 0 in R N \ {0} with the strongest singularity. Thanks to a notion of weak solutions of L µ u = 0 combined with a dual formulation of the equation introduced in [START_REF] Chen | On nonhomogeneous elliptic equations with the Hardy-Leray potentials[END_REF], we studied in [START_REF] Chen | Weak solutions of semilinear elliptic equations with Leray-Hardy potential and measure data[END_REF] the equation

L µ u + g(u) = ν in Ω u = 0 on ∂Ω, (1.6) 
in a bounded smooth domain Ω, where g is a continuous nondecreasing function and ν a Radon measure which support may contain 0. In this framework, weak solutions to (1.6) with measures defined in a class of weighted measures are obtained provided that g satisfies some integrability condition. When this integrability condition is not satisfied by g, i.e. in the supercritical case, not all measures in the above class are suitable for solving (1.6). In the particular case where g(r) = |r| p-1 r (p > 1), we proved that a weighted measure is suitable for solving (1.6) if it is absolutely continuous with respect to some specific Bessel capacity depending on µ, N and p.

In this article we are interested in similar problems but in the configuration where the singular point 0 of the Leray-Hardy potential lies on the boundary of the domain Ω. Our aim is to extend the approach developed in [START_REF] Guerch | Local properties of stationary solutions of some nonlinear singular Schrödinger equations[END_REF] and [START_REF] Chen | Weak solutions of semilinear elliptic equations with Leray-Hardy potential and measure data[END_REF] for the problem with an internal singularity to the study the following equation

L µ u + g(u) = ν in Ω u = λ on ∂Ω, (1.7) 
where ν and λ are bounded Radon measures respectively on Ω and ∂Ω. When µ = 0 the first study is due to Gmira and Véron [START_REF] Gmira | Boundary singularities of solutions of nonlinear elliptic equations[END_REF] who proved the existence and uniqueness of a very weak solution, a denomination due to Brezis in an unpublished note. Such a solution u is a function belonging to L 1 (Ω) such that ρg(u) ∈ L 1 (Ω), where ρ(x) = dist (x, ∂Ω), satisfying

Ω (-u∆ζ + g(u)ζ) dx = - ∂Ω ∂ζ ∂n dν (1.8) 
for all ζ ∈ C 1 c (Ω) such that ∆ζ ∈ L ∞ (Ω) (in the sense of distributions in Ω). A sufficient condition for the existence and uniqueness of a solution to (1.7) with ν = 0 is

∞ 1 (g(s) -g(-s)) s -2N N-1 ds < ∞. (1.9) When µ = 0, a model domain is Ω = R N + := {x = (x ′ , x N ) = (x 1 , ..., x N ) = x N > 0}. The operator L µ is positive if µ ≥ µ 1 := - N 2 4 , (1.10) 
and µ 1 is the best constant of the Hardy inequality in R N + since there holds

R N + |∇φ| 2 dx + µ 1 R N + φ 2 |x| 2 dx ≥ 0 for all φ ∈ C ∞ 0 (R N + ). (1.11) If R N + is replaced by a bounded domain Ω satisfying the condition (C 1 ) 0 ∈ ∂Ω , Ω ⊂ R N + and x, n = O(|x| 2 ) for all x ∈ ∂Ω,
where n = n x is the outward normal vector at x, this inequality is never achieved and there exists a remainder [START_REF] Cazacu | On Hardy inequalities with singularities on the boundary[END_REF]: if we set R Ω = max z∈Ω |z|, there holds

Ω |∇φ| 2 dx + µ 1 Ω φ 2 |x| 2 dx ≥ 1 4 Ω φ 2 |x| 2 ln 2 (|x|R -1 Ω ) dx for all φ ∈ C ∞ 0 (Ω).
(1.12)

Note that the last condition in (C 1 ) holds if Ω is a C 2 domain. We put

α + := α + (µ) = 1 - N 2 + µ + N 2 4 and α -:= α -(µ) = 1 - N 2 -µ + N 2 4 . (1.13) 
If Ω satisfies (C 1 ) we define ℓ Ω µ by

ℓ Ω µ := min Ω |∇v| 2 + µ |x| 2 v 2 dx : v ∈ C 1 c (Ω), Ω v 2 dx = 1 . (1.14) Then ℓ Ω µ > 0. If µ ≥ µ 1 this first eigenvalue of L µ is achieved in the closure H µ (Ω) of C 1 c (Ω) for the norm v → v Hµ(Ω) := Ω |∇v| 2 + µ |x| 2 v 2 dx. (1.15) Note that H µ (Ω) = H 1 0 (Ω) if µ > µ 1 , H 1 0 (Ω) H µ 1 (Ω) and the imbedding of H µ 1 (Ω) in L 2 (Ω) is compact. We proved in [16] that the positive eigenfunction γ Ω µ ∈ H µ (Ω) of L µ associated to the first eigenvalue ℓ Ω µ satisfies L µ γ Ω µ = ℓ Ω µ γ Ω µ in Ω γ Ω µ = 0 on ∂Ω \ {0}, (1.16) 
and there exist c 1 > c 2 > 0 and c > 0 such that for all x ∈ Ω \ {0}

(i) c 2 |x| α + -1 ρ(x) ≤ γ Ω µ (x) ≤ c 1 |x| α + -1 ρ(x), (ii) |∇γ Ω µ (x)| ≤ c γ Ω µ (x) ρ(x) .
(1.17

)
As it is shown in [START_REF] Chen | Schrödinger operators with Leray-Hardy potential singular on the boundary[END_REF], the function γ Ω µ plays the role of a weight function for expressing the notion of weak solutions as it is also classical in problems with boundary singularities [START_REF] Marcus | Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains: the subcritical case[END_REF][START_REF] Marcus | Boundary trace of positive solutions of supercritical elliptic equations in dihedral domains[END_REF]. Inequality (1.12) implies the existence of the Green kernel G Ω µ with corresponding Green operator [START_REF] Chen | Schrödinger operators with Leray-Hardy potential singular on the boundary[END_REF], by a simple truncation as in [START_REF] Véron | Boundary value problems with measures for elliptic equations with singular potentials[END_REF] if µ ≥ 0, and by a more elaborate approximation in the general case. When µ > 0 the Poisson kernel has the property that

G Ω µ . The Poisson kernel K Ω µ of L µ in Ω × ∂Ω is constructed in
K Ω µ (x, 0) = 0 for all x ∈ Ω \ {0}, (1.18) 
by [START_REF] Véron | Boundary value problems with measures for elliptic equations with singular potentials[END_REF]Theorem A.1]. The singular kernel φ Ω µ (see [START_REF] Chen | Schrödinger operators with Leray-Hardy potential singular on the boundary[END_REF]Section 4] for the construction) is the analogue in a bounded domain of the explicit singular solution

x → φ µ (x) =| x | α --1 x N defined in R N + .
The main property of this singular kernel is that it satisfies for all x ∈ Ω \ {0},

c 3 |x| α --1 ρ(x) ≤ φ Ω µ (x) ≤ c 4 |x| α --1 ρ(x) if µ > µ 1 , (1.19) 
and

c 5 |x| -N 2 (| ln |x|| + 1)ρ(x) ≤ φ Ω µ 1 (x) ≤ c 6 |x| -N 2 (| ln |x|| + 1)ρ(x). (1.20)
We assume in the sequel that Ω is a bounded smooth domain such that 0 ∈ ∂Ω and that the normal vector to ∂Ω at origin is e N = (0, • • • , 0, 1). We define the γ Ω µ -dual operator L * µ of L µ by

L * µ ζ = -∆ζ - 2 γ Ω µ ∇γ Ω µ , ∇ζ + ℓ Ω µ ζ for all ζ ∈ C 1,1 (Ω). (1.21)
It satisfies the following commutating property

L µ (γ Ω µ ζ) = γ Ω µ L * µ ζ. (1.22)
We denote by M(Ω; γ Ω µ ) the set of Radon measures ν in Ω such that sup

Ω ζd|ν| : ζ ∈ C c (Ω), 0 ≤ ζ ≤ γ Ω µ := Ω γ Ω µ d|ν| < ∞. (1.23)
Thus, if ν ∈ M + (Ω; γ Ω µ ) the measure γ Ω µ ν is a bounded measure in Ω. We also set

β Ω µ (x) = - ∂γ Ω µ ∂n ∂Ω . (1.24) 
The space of Radon measures λ on ∂Ω \ {0} such that sup

∂Ω\{0} ζd|λ| : ζ ∈ C c (∂Ω \ {0}), 0 ≤ ζ ≤ β Ω µ := ∂Ω\{0} β Ω µ d|λ| < ∞, (1.25) 
is denoted by M(∂Ω; β Ω µ ). The extension of λ ∈ M + (∂Ω; β Ω µ ) as a measure β Ω µ λ in ∂Ω is given by

∂Ω ζd(β Ω µ λ) = sup ∂Ω υβ Ω µ dλ : υ ∈ C c (∂Ω \ {0}), 0 ≤ υ ≤ ζ for all ζ ∈ C(∂Ω) , ζ ≥ 0, (1.26) and by β Ω µ λ = β Ω µ λ + -β Ω µ λ -if λ is a signed measure in M(∂Ω; β Ω µ )
, and we use the same notation M(∂Ω; β Ω µ ) for the set of all such extensions. The Dirac mass at 0 does not belong to M(∂Ω; β Ω µ ), but it is the limit of sequences of measures in this space. We proved in [START_REF] Chen | Schrödinger operators with Leray-Hardy potential singular on the boundary[END_REF] 

that if ν ∈ M + (Ω; γ Ω µ ), λ ∈ M(∂Ω; β Ω µ ) and k ∈ R, the function u = G Ω µ [ν] + K Ω µ [λ] + kφ Ω µ := H Ω µ [(ν, λ + kδ 0 )], (1.27) 
is the unique function belonging to

L 1 (Ω, ρ -1 dγ Ω µ ) satisfying Ω uL * µ ζdγ Ω µ = Ω ζd(γ Ω µ ν) + ∂Ω ζd(β Ω µ λ) + kc µ ζ(0), (1.28) for all ζ ∈ X µ (Ω) = ζ ∈ C(Ω) s.t. γ Ω µ ζ ∈ H µ (Ω) and ρL * µ ζ ∈ L ∞ (Ω)
, where

c µ =        2 √ µ -µ 1 S N-1 + φ 2 1 dS if µ > µ 1 , N 2 -1 S N-1 + φ 2 1 dS if µ = µ 1 ,
and where φ 1 is the positive eigenfunction of ∆ S N-1 (normalized by sup

φ 1 = 0) in H 1 0 (S N -1 + ) where S N -1 + := {(x ′ , x N ) ∈ R N : |x| = 1, x N > 0}.
Let g : R → R be a continuous nondecreasing function satisfying rg(r) ≥ 0. Thanks to this result we can construct weak solutions to the problem

L µ u + g(u) = ν in Ω u = λ + kδ 0 on ∂Ω. (1.29) Definition 1.1 Let (ν, λ) ∈ M(Ω; γ Ω µ ) × M(∂Ω; β Ω µ ) and k ∈ R. A function u ∈ L 1 (Ω, ρ -1 dγ Ω µ ) is a weak solution of (1.29) if g(u) ∈ L 1 (Ω, dγ Ω µ )
and

Ω uL * µ ζ + g(u)ζ dγ µ = Ω ζd(γ µ ν) + ∂Ω ζd(β Ω µ λ) + kc µ ζ(0) for any ζ ∈ X µ (Ω). (1.30)
We introduce two new specific exponents,

p * µ = 1 - 2 α - = N + 2 + 2 √ µ -µ 1 N -2 + 2 √ µ -µ 1 and p * * µ = 1 - 2 α + = N + 2 -2 √ µ -µ 1 N -2 -2 √ µ -µ 1 . (1.31) 
Note that p * * µ is defined only if N ≥ 3 and

-N 2 4 ≤ µ < 1 -N . Furthermore p * 0 = N +1 N -1 and p * µ 1 = N +2 N -2 .
In the present article our first result deals with the existence of a solution with an isolated singularity on boundary:

Theorem A Assume N ≥ 3 and µ ≥ µ 1 , or N = 2 and µ > µ 1 , and let g : R → R be a continuous nondecreasing function such that rg(r) ≥ 0. If there holds

∞ 1 (g(s) -g(-s)) s -1-p * µ ds < ∞ if µ > µ 1 , (1.32) or ∞ 1 (g(s ln s) -g(-s ln |s|)) s -1-p * µ 1 ds < ∞ if µ = µ 1 , (1.33) 
then for any k ∈ R there exists a unique weak solution u kδ 0 to

L µ u + g(u) = 0 in Ω u = kδ 0 on ∂Ω. (1.34) Furthermore, lim x→0 u kδ 0 (x) φ Ω µ (x) = k c µ . (1.35)
When the measures do not charge the point 0, we have a result which is similar as the one proved in [START_REF] Gmira | Boundary singularities of solutions of nonlinear elliptic equations[END_REF].

Theorem B Assume N ≥ 3 and µ ≥ µ 1 , or N = 2 and µ > µ 1 , and let g : R → R be a continuous nondecreasing function such that rg(r) ≥ 0 satisfying ∞ 1 (g(s)g(-s)) s -1-p * 0 ds < ∞.

(1.36)

Then for any (ν, λ) ∈ M(Ω; γ Ω µ ) × M(∂Ω; β Ω µ ) there exists a unique weak solution u to

L µ u + g(u) = ν in Ω u = λ on ∂Ω. (1.37)
Finally we construct a solution to (1.29) without restriction on the measures by gluing solutions corresponding to Theorems A and B provided g satisfies the weak ∆ 2 -condition, a condition already introduced in [START_REF] Chen | Weak solutions of semilinear elliptic equations with Leray-Hardy potential and measure data[END_REF]:

There exists a continuous nondecreasing positive function

K : R + → R + such that |g(s + r)| ≤ K(|r|) (|g(s)| + |g(r)|) for all (s, r) ∈ R × R s.t. sr ≥ 0.
(1.38)

Theorem C Assume N ≥ 3 and µ ≥ µ 1 , or N = 2 and µ > µ 1 , and let g : R → R be a continuous nondecreasing function such that rg(r) ≥ 0 satisfying the weak ∆ 2 -condition and

∞ 1 (g(s) -g(-s)) s -1-min{p * µ ,p * 0 } ds < +∞. (1.39)
Then for any (ν, λ) ∈ M(Ω; γ Ω µ ) × M(∂Ω; β Ω µ ) and k ∈ R there exists a solution u to the problem (1.29).

A nonlinearity g for which problem (1.29) admits a solution is called subcritical. A couple of measures (ν, λ) for which problem (1.29) admits a solution is called g-good (see [START_REF] Brezis | Nonlinear elliptic equations with measures revisited[END_REF] in the case µ = 0). In the supercritical case all the measures are not g-good. Besides the problem at 0 where (1.32)-(1.33) may or may not be satisfied, the admissibility of a measure depends on its concentration expressed in terms of Bessel capacities (see Adams-Hedberg book [START_REF] Adams | Function Spaces and Potential Theory, Theory[END_REF] for a treatment of these notions). We denote these capacities by Cap R d α,q where d = N or N -1. In this framework we consider only the case where g(r) = g p (r) := |r| p-1 r with p > 1. The following theorem is proved.

Theorem D Assume µ ≥ µ 1 and p > 1. 1-A measure ν ∈ M(Ω; γ Ω µ ) is g p -good if and only if it is absolutely continuous with respect to the Cap R N 2,p ′ -capacity. 2-A measure λ ∈ M(∂Ω; β Ω µ ) is g p -good if and only if it is absolutely continuous with respect to the Cap R N-1 2 p ,p ′ -capacity.
Similarly we have a characterization of removable singularities.

Theorem E Assume µ ≥ µ 1 , p > 1 and K ⊂ Ω is compact. Then any weak solution of

L µ u + g p (u) = 0 in Ω ∩ K c u = 0 on ∂Ω ∩ K c , (1.40) 
can be extended as a solution of the same equation in Ω vanishing on ∂Ω if and only if

(i) Cap R N 2,p ′ (K) = 0 if K ⊂ Ω. (ii) Cap R N-1 2 p ,p ′ (K) = 0 if K ⊂ ∂Ω \ {0}. (iii) Cap R N 2,p ′ (K) = 0 and Cap R N-1 2 p ,p ′ (K ∩ ∂Ω) if K ⊂ Ω \ {0}. (iv) Cap R N-1 2 p ,p ′ (K) = 0 and p ≥ p * µ if 0 ∈ K ⊂ ∂Ω and K \ {0} = {∅}. (v) Cap R N 2,p ′ (K ∩ Ω) = 0, Cap R N-1 2 p ,p ′ (K ∩ ∂Ω) = 0 and p ≥ p * µ if 0 ∈ K ⊂ Ω and K ∩ Ω = {∅}.
At end we characterize the behaviour of solutions of

L µ u + g p (u) = 0 in Ω u = h on ∂Ω \ {0}, (1.41) 
where h ∈ C 3 (∂Ω). When p ≥ p * µ we prove that u is indeed the very weak solution of

L µ u + g p (u) = 0 in Ω u = h on ∂Ω. (1.42)
The techniques we use are generalization of the ones developed for description of internal singularities in [START_REF] Guerch | Local properties of stationary solutions of some nonlinear singular Schrödinger equations[END_REF], and for boundary singularities with µ = 0 in [START_REF] Gmira | Boundary singularities of solutions of nonlinear elliptic equations[END_REF]. For this task, we associate a problem on S N -1

+ : -∆ ′ ω + (Λ p,N + µ) ω + g p (ω) = 0 in S N -1 + ω = 0 on ∂S N -1 + , (1.43) 
where

Λ p,N = 2 p -1 N - 2p p -1 . (1.44)
Let S µ,p (resp. S + µ,p ) denote the set of solutions (resp. positive solutions) of (1.43). We set

p * µ = 1 + 2 a - := N + 2 + 2 √ µ -µ 2 N -2 + 2 √ µ -µ 2 and p * * µ = 1 + 2 a + := N + 2 -2 √ µ -µ 2 N -2 -2 √ µ -µ 2 , (1.45) 
where

µ 2 = -N +2 2 2 . Note that p * * µ is defined only if N ≥ 9 and -N 2 4 ≤ µ < -2N .
The role of the numbers a + and a -, will be explained in the proof of the theorem. Then we have 

Theorem F Assume µ ≥ µ 1 and p > 1. 1-S µ,p is not reduced to {0} if and only if Λ p,N + µ + N -1 < 0, that is (i) either 1 < p < p * µ , (ii) or N ≥ 3, µ 1 ≤ µ < 1 -N and p > p * * µ . 2-If S + µ,p is non-empty, it is reduced to one element ω µ . 3-All the elements of S µ,p have constant sign if Λ p,N + µ + N -1 < Λ p,N + µ + 2N ≤ 0, that is: (i) when µ ≥ 1 -N and p * µ ≤ p < p * µ , (ii) when N ≥ 3, -2N ≤ µ < 1 -N
(x)| ≤ c 7 ρ(x)|x| -p+1 p-1 for all x ∈ Ω ∩ B r 0 , (1.46) 
for some r 0 > 0 and c 7 > 0 depending on N, p and Ω, using a diffeomorphism, we flatten the boundary as in [START_REF] Gmira | Boundary singularities of solutions of nonlinear elliptic equations[END_REF], define the new function ũ(y) by this change of variable. We set v(t, σ) = r 2 p-1 ũ(r, σ) with t = ln r and study the limit set E v of the new equation satisfied by v(t, .) when t → -∞. This limit set is a connected compact subset of

E µ . If u ≥ 0, E v ⊂ E +
µ . Thus we prove the following.

Theorem G Assume µ ≥ µ 1 , h ∈ C 3 (∂Ω) and u ∈ C 2 (Ω) ∩ C(Ω \ {0}) is a nonnegative solution of (1.41). If 1 < p < p * µ then (i) either lim Ω ∋ x → 0 x |x| → σ ∈ S N -1 + |x| 2 p-1 u(x) = ω µ (σ), (1.47) 
(ii) or there exists ℓ > 0 such that

u(x) = ℓK Ω µ (x, 0)(1 + o(1)) as x ∈ Ω, x → 0, (1.48)
and u is the weak solution of

L µ u + g p (u) = 0 in Ω u = h + cℓδ 0 on ∂Ω. (1.49)
When u is a signed solution, the situation is more delicate and we obtain only partial results.

Theorem H Assume µ ≥ µ 1 , h ∈ C 3 (∂Ω) and u ∈ C 2 (Ω) ∩ C(Ω \ {0}) is a solution of (1.41). If p * µ ≤ p < p * µ , then (a) either lim Ω ∋ x → 0 x |x| → σ ∈ S N -1 + |x| 2 p-1 u(x) = ±ω µ (σ), (1.50) (b) or lim Ω ∋ x → 0 x |x| → σ ∈ S N -1 + |x| 2 p-1 u(x) = 0. (1.51)
If we assume furthermore that p * µ < p and (1.51) is verified, then there exists ℓ ∈ R such that (1.48) and (1.49) hold.

In two cases the limit set is reduced to a single element of E µ , whatever is the structure of this set.

Theorem I Assume µ ≥ µ 1 , h ∈ C 3 (∂Ω) and u ∈ C 2 (Ω) ∩ C(Ω \ {0}) is a solution of (1.41)). 1-If N + 2
√ µµ 1 < 4 and p = 3, then there exists ω ∈ S µ,p such that

lim Ω ∋ x → 0 x |x| → σ ∈ S N -1 + |x| 2 p-1 u(x) = ω(σ). (1.52) 2-If N = 2 and 1 < p < 1 + 2 √ µ+1 , then lim Ω ∋ x → 0 x |x| → σ ∈ S 1 + |x| 2 p-1 u(x) = ω(σ), (1.53)
where ω is a solution of

-ω ′′ + µ - 2 p -1 2 ω + g p (ω) = 0 on (0, π) ω(0) = ω(π) = 0. (1.54)
Furthermore, if ∂Ω is locally a straigh line near 0 and the limit in (1.54) is zero, there exists ℓ ∈ R such that (1.48) holds.

We end this article with a removability result.

Theorem J Assume µ ≥ µ 1 , p ≥ p * µ , h ∈ C 3 (∂Ω) and u ∈ C 2 (Ω) ∩ C(Ω \ {0}
) is a solution of (1.41). Then u is actually the weak solution of (1.42).

The rest of this paper is organized as follows. In section 2, we recall Kato's inequality and prove the existence and uniqueness of solutions of semilinear elliptic equation with measures sources when the nonlinearity is subcritical. Section 3 is devoted to the supercritical case by connecting the measures to Bessel capacities. In section 4 we give an abridged proof of the behaviour of solutions near the singular point 0.

The subcritical case 2.1 Kato inequality

Proposition 2.1 Let N ≥ 2, µ ≥ µ 1 and g : Ω × R → R be a continuous function satisfying g(s 1 , x) ≥ g(s 2 , x) if x ∈ R N + and s 1 ≥ s 2 . If u and v belong to C 1,1 (Ω) ∩ C(Ω \ {0}) satisfy L µ u + g(x, u) ≥ L µ v + g(x, v) in Ω u ≥ v on ∂Ω \ {0}, (2.1) 
and

lim inf r→0 sup x ∋ Ω |x| = r v(x) -u(x) φ Ω µ (x) ≤ 0, (2.2 
)

then v ≤ u in Ω. Proof. Set w = v -u, then L µ w + h(x)w = 0 where h(x) =    g(x, v) -g(x, u) w if w = 0 0 if w = 0.
Hence h ≥ 0. For ǫ > 0, we set

W ǫ = v -u -ǫφ Ω µ . Then W ǫ ∈ C 0,1 c (Ω \ {0}).
There exists a sequence {r n } tending to 0 such that

W ǫ (x) < 0 for |x| = r n ,
and there holds

-∆W ǫ + µ |x| 2 W ǫ + hW ǫ ≤ 0.
Multiplying by (W ǫ ) + := max{0, W ǫ } and integrating yields, since

(W ǫ ) + ∈ C 1,1 c (Ω \ {0}) Ω\Br n | ∇(W ǫ ) + | 2 + µ 1 |x| 2 (W ǫ ) 2 + dx ≤ 0.
Hence (W ǫ ) + = 0 in Ω \ B rn , we get the result by letting r n → 0 first and then ǫ → 0.

The following form of Kato's inequality for Schrödinger operators with Hardy-Leray potential with boundary singularity singularity is important in our approach of the concept of weak solutions to (1.29).

Proposition 2.2 [16, Lemma 3.1] Assume N ≥ 3 and µ ≥ µ 1 , or N = 2 and µ > µ 1 . Then for any (f, h) ∈ L 1 (Ω, dγ Ω µ ) × L 1 (∂Ω, dβ Ω µ ) there exists a unique function u ∈ L 1 (Ω, |x| -1 dγ Ω µ ) satisfying Ω uL * µ ζ dγ Ω µ = Ω ζf dγ Ω µ + ∂Ω h dβ Ω µ for all ζ ∈ X µ (Ω). (2.3) Furthermore, for any ζ ∈ X + µ (Ω) = {ζ ∈ X µ (Ω) : ζ ≥ 0}, there holds Ω |u|L * µ ζdγ Ω µ (x) ≤ Ω ζf sgn(u)dγ Ω µ (x) + ∂Ω |h|ζdβ Ω µ (x ′ ) (2.4)
and

Ω u + L * µ ζdγ Ω µ (x) ≤ Ω ζf sgn + (u)dγ Ω µ (x) + ∂R N + h + ζdβ Ω µ (x ′ ). (2.5) 
Let σ Ω µ ∈ H µ (Ω) be the unique variational solution of

L µ σ Ω µ = γ Ω µ min{l Ω µ , ρ} in Ω and σ Ω µ = 0 on ∂Ω, (2.6) 
then σ Ω µ belongs to C 2 (Ω \ {0}) and satisfies (see [START_REF] Chen | Schrödinger operators with Leray-Hardy potential singular on the boundary[END_REF]Appendix])

(i) γ Ω µ ≤ σ Ω µ ≤ c 7 γ Ω µ in Ω, (ii) ∇σ Ω µ (x) ∼ ∇γ Ω µ (x) as x → 0. (2.7) Furthermore ∂σ Ω µ ∂n < 0 on ∂Ω \ {0}. The function η = σ Ω µ γ Ω µ which verifies L * µ η = 1 min{l Ω µ , ρ} in Ω, (2.8) 
plays an important role as a test function because of the following estimates that it satisfies

1 ≤ η ≤ c 7 and |∇η| ≤ c 7 ρ -1 in Ω.
(2.9)

Proof of Theorem A

Assume Ω ⊂ B 1 and let k > 0. If µ > µ 1 , we have by (1.17) and (1. [START_REF] Frank | Sobolev inequalities and uncertainty principles in mathematical physics[END_REF])

Ω g(kφ µ )dγ µ ≤ c 9 B R g(c 8 |x| α -)|x| α + dx ≤ c 10 R 0 g(c 8 r α -)r α + +N -1 dr ≤ c 11 ∞ R 1/α - g(s)s -1+ α + +N α -ds = c 11 ∞ R 1/α - g(s)s -1-p * µ < ∞, (2.10) 
where

φ µ (x) = |x| α --1 x N ≥ φ Ω µ (x)
in Ω, and p * µ is defined in (1.31). If µ = µ 1 we obtain similarly

Ω g(kφ µ 1 )dγ Ω µ 1 ≤ c 11 ∞ R 1/α - g(s ln s)s -2N N-2 ds < ∞. For r > 0 small enough set Ω r = Ω \ B r , ∂Ω r = Γ 1,r ∪ Γ 2,r where Γ 1,r = B c r ∩ ∂Ω and Γ 2,r = ∂B r ∩ Ω. We consider the problem L µ v + g(v) = 0 in Ω r v = kφ Ω µ on ∂Ω r .
(2.11)

The associated functional where G(r) = r 0 g(s)ds is expressed by

J r µ (v) = Ωr 1 2 |∇v| 2 + µ 2|x| 2 v 2 + G(v) dx,
and is defined over

H r = {v ∈ H 1 (Ω ǫ ) : v = kφ Ω µ on ∂Ω r }. Any v ∈ H r can be written as v = kφ Ω µ + w where w ∈ H 1 0 (Ω r ), then J r µ (v) = J r µ (kφ Ω µ + w) = Jr µ (w), where Jr µ (w) = Ωr 1 2 |∇w| 2 + µ 2|x| 2 w 2 + G(w + kφ Ω µ ) dx + k 2 2 Ωr |∇φ Ω µ | 2 + µ |x| 2 (φ Ω µ ) 2 dx + Ωr ∇φ Ω µ , ∇w + µ |x| 2 φ Ω µ w dx = Ωr 1 2 |∇w| 2 + µ 2|x| 2 w 2 + G(w + kφ Ω µ ) dx + k 2 2 Ωr |∇φ Ω µ | 2 + µ |x| 2 (φ Ω µ ) 2 dx + Ωr ηL µ φ Ω µ dx + ∂Ωr ∂φ Ω µ ∂n wdS ≥ 1 4 Ωr w 2 |x| 2 ln 2 (|x|) dx + k 2 2 Ωr |∇φ Ω µ | 2 + µ |x| 2 (φ Ω µ ) 2 dx, since w ∈ H 1 0 (Ω r ), (1.12 
) holds and G ≥ 0. Hence Jr µ and therefore J r µ is coercive and since it is convex, it admits a unique minimum u r , which is the unique classical solution of (2.11) by standard regularity and by Proposition 2.1 such that 0

< u r ≤ φ Ω µ in Ω r . By monotonicity 0 < u r ≤ u r ′ in Ω r ′ if r ∈ (0, r ′ ). Let u k = lim r→0 u r . Because of (2.10), g(u r ) → g(u 0 ) in L 1 (Ω; dγ Ω µ )
. Let γ r := γ Ωr µ be the first eigenfuntion of the operator

ω → -∆ω + µ |x| 2 ω in H 1 0 (Ω r )
with corresponding eigenvalue ℓ r := ℓ Ωr µ . We normalize γ r by γ r (x 0 ) = 1 for some fixed x 0 in Ω 1

4

. Then ℓ r > ℓ Ω µ and ℓ r → ℓ Ω µ when r → 0. Furthermore γ r → γ Ω µ uniformly on Ω r for any δ > 0, where γ

Ω µ (x 0 ) = 1. If ζ ∈ X µ (Ω), we have 0 = Ωr ζγ r (L µ u r + g(u r )) dx = Ωr (-γ r ∆ζ -2 ∇γ r , ∇ζ + ℓ r ζγ r ) u r + ζγ r g(u r ) dx -k Γ 2,r ζ ∂γ r ∂n φ Ω µ dS.
(2.12)

Since -

Γ 2,r ∂γ r ∂n φ Ω µ dS = Ωǫ φ Ω µ ∆γ r dS - Ωr γ r ∆φ Ω µ dS = -ℓ ǫ Ωr γ r φ Ω µ dx,
then we obtain the following, by letting r → 0,

lim r→0 Γ 2,r ∂γ r ∂n φ Ω µ dS = ℓ Ω µ Ω γ Ω µ φ Ω µ dx.
Noting from (2.12) that lim r→0 Ωr

(-γ r ∆ζ -2 ∇γ r , ∇ζ + ℓ r ζγ r ) u r + ζγ r g(u r ) dx = Ω u k L * µ ζ + ζg(u k ) dγ Ω µ , we infer Ω u k L * µ ζ + ζg(u k ) dγ Ω µ = c N,µ,Ω kζ(0), (2.13) 
with c N,µ,Ω = ℓ Ω µ Ω γ Ω µ φ µ dx. (2.14)
Since x → kφ Ω µ (x) satisfies (2.11) with g = 0, it satisfies also (2.13), always with g = 0. Combining this result with the uniqueness and the estimates given in [16, Proposition 2.1], we can compute the explicit value of c N,µ,Ω = c µ .

Proof of Theorem B

We first assume that (ν, λ) ∈ M + (Ω; γ Ω µ ) × M + (∂Ω; β Ω µ ). Since g satisfies (1.9) and L µ is uniformly elliptic in Ω r , it follows from [33, Section 3] that the problem

L µ u + g(u) = ν ǫ in Ω r u = λ ǫ on Γ 1,r := ∂Ω ∩ B c r u = 0 on Γ 2,r := Ω ∩ ∂B r , (2.15) 
admits a unique weak solution u ǫ,r , where ν ǫ = ν ǫ χ B c ǫ , λ ǫ = λ ǫ χ B c ǫ and 0 < r < ǫ/2. By the comparison principle, for 0 < ǫ ′ < ǫ and 0 < r ′ < r there holds

(i) 0 < u ǫ,r < u ǫ ′ ,r ′ and (ii) u ǫ,r ≤ G Ωr µ [ν ǫ ] + K Ωr µ [λ ǫ ] ≤ G Ω µ [ν] + K Ω µ [λ] in Ω r , (2.16) 
where G Ωr µ and K Ωr µ denote respectively the Green and the Poisson potentials of the operator L µ in Ω r . The mappings r → u ǫ,r , r → G Ωr µ and r → K Ωr µ are decreasing. We set

u ǫ = lim r→0 u ǫ,r , then 0 ≤ u ǫ ≤ G Ω µ [ν ǫ ] + K Ω µ [λ ǫ ] ≤ G Ω µ [ν] + K Ω µ [λ].
(2.17)

If ζ ∈ X µ (Ω) vanishes in some neighbourhood of 0, there holds for r > 0 small enough,

Ωr u ǫ,r L * µ ζ + g(u ǫ,r )ζ dγ Ω µ = Ωr ζd(γ Ω µ ν ǫ ) + Γ 1,δ ζd(β Ω µ λ ǫ ). ( 2 

.18)

Letting r → 0, we obtain the identity

Ω u ǫ L * µ ζ + g(u ǫ )ζ dγ Ω µ = Ω ζd(γ Ω µ ν ǫ ) + ∂Ω ζd(β Ω µ λ ǫ ). (2.19) Because u ǫ is L µ -harmonic in Ω ∩ B ǫ and vanishes on ∂Ω ∩ B ǫ , it satisfies u ǫ (x) ≤ c 12 γ Ω µ (x) if x ∈ Ω ∩ B ǫ
2 for some c 12 > 0 depending also on ǫ, and (γ Ω µ (x)) -1 u ǫ (x) → c 13 ≥ 0 when x → 0 by [START_REF] Chen | Schrödinger operators with Leray-Hardy potential singular on the boundary[END_REF]Section 3]. Let ζ ∈ X µ (Ω) and

ℓ n (x) =        0 if |x| < 1 n 1 2 -1 2 cos nπ |x| -1 n if 1 n ≤ |x| ≤ 2 n 1 if |x| > 2 n .
(2.20)

We set

ζ n = ℓ n ζ. Then Ω u ǫ L * µ ζ n + g(u ǫ )ζ n dγ Ω µ = Ω ζ n d(γ Ω µ ν ǫ ) + ∂Ω ζ n d(β Ω µ λ ǫ ). (2.21)
Firstly we observe that

Ω ζ n d(γ Ω µ ν ǫ ) + ∂Ω ζ n d(β Ω µ λ ǫ ) → Ω ζd(γ Ω µ ν ǫ ) + ∂Ω ζd(β Ω µ λ ǫ ) as n → ∞.
Then, for n large enough,

Ω g(u ǫ )ζ n dγ Ω µ = Ω r 2 g(u ǫ )ζ n dγ Ω µ + Ω∩B r 2 g(u ǫ )ζ n dγ Ω µ =: A n + B n .
Because G Ω µ and K Ω µ are respectively equivalent to G Ω 0 and K Ω 0 in Ω r 2 , the condition (1.36), jointly with (2.17), implies that A n is bounded independently of n and converges to

Ω r 2 g(u ǫ )ζdγ Ω µ . If µ ≥ 1 -N , α + is nonnegative thus g(u ǫ )ζ n γ Ω µ is bounded in B r 2 . If µ 1 ≤ µ < 1 -N , then α + < 0 and we have |B n | ≤ Ω∩B r 2 g(c 12 )ζ n dγ Ω µ ≤ r 0 g(c 12 r α + )r α + +N -1 dr ≤ 1 α + ∞ r 1 α + g(c 12 s)s N α + ds < ∞ since N α + ≤ -1 -N +2 N -2 < -1 -N +1
N -1 and (1.36) holds. Therefore,

lim n→∞ Ω g(u ǫ )ζ n dγ Ω µ = Ω g(u ǫ )ζdγ Ω µ .
Finally, we estimate the term

Ω u ǫ L * µ ζ n dγ Ω µ = C n + D n + E n , with C n = Ω ℓ n u ǫ L * µ ζdγ Ω µ , D n = Ω ζu ǫ L * µ ℓ n dγ Ω µ , E n = -2 Ω u ǫ ∇ζ, ∇ℓ n dγ Ω µ .
Since u ǫ satisfies (2.17) it follows from [16, Theorem D] that it is bounded in

L 1 (Ω, ρ -1 dγ Ω µ ) independently of ǫ. Hence lim n→∞ C n = Ω u ǫ L * µ ζdγ Ω µ .
Using the fact that

u ǫ (x) ∼ c 13 γ Ω µ (x) and ζ(x) = ζ(0)(1 + o(1)) when x → 0 we obtain Ω ζu ǫ L * µ ℓ n dγ Ω µ = c 13 ζ(0) Ω∩ B 2 n \B 1 n -(γ Ω µ ) 2 ∆ℓ n -2γ Ω µ ∇ℓ n , ∇γ Ω µ dx + o(1) = o(1), since ℓ ′ n ( 1 n ) = ℓ ′ n ( 2 n ) = 0 and γ Ω µ vanishes on ∂Ω. Similarly lim n→∞ E n = 0.
These facts imply that

Ω u ǫ L * µ ζ + g(u ǫ )ζ dγ Ω µ = Ω ζd(γ Ω µ ν ǫ ) + ∂Ω ζd(β Ω µ λ ǫ ) for any ζ ∈ X µ (Ω). (2.22)
Notice that from the above derivation, (2.22) holds true for ζ = η, where η is defined in (2.22). Hence u ǫ is the weak solution of

L µ u + g(u) = ν ǫ in Ω u = λ ǫ on ∂Ω. (2.23)
Because of uniqueness, ǫ → u ǫ is increasing and u := lim

ǫ→0 u ǫ satisfies 0 ≤ u ≤ G Ω µ [ν] + K Ω µ [λ] in Ω. (2.24)
If we take ζ = η defined by (2.8) we deduce from (2. 22)

Ω u ǫ ρ + g(u ǫ )η dγ Ω µ = Ω ηd(γ Ω µ ν ǫ ) + ∂Ω ηd(β Ω µ λ ǫ ). (2.25)
The right-hand side of the above identity converges to

Ω ηd(γ Ω µ ν) + ∂Ω ηd(β Ω µ λ).
Then by monotone convergence

Ω u ρ + g(u)η dγ Ω µ = Ω ηd(γ Ω µ ν) + ∂Ω ηd(β Ω µ λ).
This implies that u ǫ → u in L 1 (Ω, ρ -1 dγ Ω µ ) and g(u ǫ ) → g(u) in L 1 (Ω, dγ Ω µ ) as ǫ → 0 + . Therefore, since any ζ ∈ X µ (Ω), satisfies |ζ| ≤ cη for some c > 0, we infer

Ω uL * µ ζ + g(u)ζ dγ Ω µ = Ω ζd(γ Ω µ ν) + ∂Ω ζd(β Ω µ λ), (2.26) 
which completes the proof when the two measures are nonnegative.

In the general case we use the Jordan decomposition ν = ν +ν -, λ = λ +λ -where ν + , ν -, λ + and λ -are nonnegative. Let ν ± ǫ and λ ± ǫ be ν ± χ Ωǫ and λ ± χ ∂Ω∩B c ǫ respectively. We denote by u + ǫ,r the solution of (2.15) corresponding to the couple (ν + ǫ , λ + ǫ ) and by u - ǫ,r the solution of

Lu -g(u) = ν - ǫ in Ω r u = λ - ǫ on Γ 1,r u = 0 on Γ 2,r .
(2.27)

Then -u - ǫ,r ≤ min{0, u ǫ,r } ≤ max{0, u ǫ,r } ≤ u + ǫ,r . The mapping r → u + ǫ,r (resp. r → u - ǫ,r
) is monotone increasing and we set u

+ ǫ = lim r→0 u + ǫ,r (resp. u - ǫ = lim r→0 u - ǫ,r
). The mapping r → u ǫ,r has no reason to be monotone, but by standard regularity theory there exists {r j } converging to 0 and u ǫ ∈ L q loc (1 < q < N N -1 ) such that u ǫ,r j → u ǫ in L q loc (Ω) and a.e. in Ω. Hence u ǫ satisfies (2.19). Since (2.21) holds we derive that u ǫ satisfies (2.23). We end the proof as in the first case, using dominated convergence theorem.

Using the mononoticity of r → u ǫ,k,r and the dominated convergence theorem we get

Ω u ǫ,k L * µ ζ + g(u ǫ,k )ζ dγ Ω µ = Ω ζd(γ Ω µ ν ǫ ) + ∂Ω ζd(β Ω µ λ ǫ ). (2.34)
As we can notice it, the singular measure kδ 0 cannot appear in this formulation.

If ζ ∈ X µ (Ω) we set ζ n = ℓ n ζ where ℓ n is defined in (2.20). Then Ω u ǫ,k L * µ ζ + g(u ǫ,k )ζ ℓ n dγ Ω µ - Ω∩ B 2 n \B 1 n A n u ǫ,k dγ Ω µ = Ω ζℓ n d(γ Ω µ ν ǫ ) + ∂Ω ζℓ n d(β Ω µ λ ǫ ), (2.35) where A n = ζ∆ℓ n + 2 ∇ℓ n , ∇ζ + 2α + ζ ∇ℓ n , x |x| 2 .
Clearly we have that

lim n→∞ Ω u ǫ,k L * µ ζ + g(u ǫ,k )ζ ℓ n dγ Ω µ = Ω u ǫ,k L * µ ζ + g(u ǫ,k )ζ dγ Ω µ ,
and

lim n→∞ Ω ζℓ n d(γ Ω µ ν ǫ ) + ∂Ω ζℓ n d(β Ω µ λ ǫ ) = Ω ζd(γ Ω µ ν ǫ ) + ∂Ω ζd(β Ω µ λ ǫ ).
Next

A n = n 2 π 2 2 cos nπ |x| - 1 n + nπ(N -1 + 2α + ) 2|x| sin nπ |x| - 1 n (ζ(0) + o(1)) + O(n).
Using (2.29) with δ = 0 and the fact that u ǫ = o(K Ω µ [δ 0 ]) near 0, we obtain after a technical but straightforward computation

lim n→∞ Ω∩ B 2 n \B 1 n A n u ǫ,k dγ Ω µ = kc µ ζ(0). (2.36) 
By the normalization chosen it follows that u ǫ,k satisfies

Ω u ǫ,k L * µ ζ + g(u ǫ,k )ζ dγ Ω µ = Ω ζd(γ Ω µ ν ǫ ) + ∂Ω ζd(β Ω µ λ ǫ ) + kc µ ζ(0). (2.37) 
Hence u ǫ,k is the weak solution of

L µ u + g(u) = ν ǫ in Ω u = λ ǫ + kδ 0 on ∂Ω. (2.38)
The end of the proof in the nonnegative case is standard: we observe that the mapping ǫ → u ǫ,k is nondecreasing. We denote by u k its limit when ǫ → 0. If ζ ∈ X µ (Ω), the right-hand side of (2.37) converges to

Ω ζd(γ Ω µ ν) + ∂Ω ζd(β Ω µ λ) + kc µ ζ(0) as ǫ → 0.
where u + ǫ,r and u + ǫ are the solutions of (2.23) with r > 0 and r = 0 respectively with ν ǫ and λ ǫ replaced by ν + ǫ and λ + ǫ . Thanks to estimate (2.44) we infer as in the case where ν ǫ and λ ǫ are nonnegative that u ǫ,k satisfies (2.37). We also have

-u - ǫ ≤ min{0, u ǫ,k } ≤ max{0, u ǫ,k } ≤ u + ǫ,k , and g(-u - ǫ ) ≤ min{0, g(u ǫ,k )} ≤ max{0, g(u ǫ,k )} ≤ g(u + ǫ,k ). Then there exist a function u k ∈ L q loc (Ω) (1 < q < N N -1
) and a sequence {ǫ j } converging to 0 such that u ǫ j ,k → u k L q loc (Ω) and a.e. in Ω. Since g(u + ǫ,k ) and g(-

u - ǫ ) converge in L 1 (Ω, dγ Ω µ ) and u + ǫ,k and u - ǫ in L 1 (Ω, ρ -1 dγ Ω µ )
, it follows that g(u ǫ,k ) and u ǫ,k endow the same properties. This is sufficient to see that (2.37) implies (2.40), which ends the proof.

3 The supercritical case

Reduced measures

We present here the notion of reduced measure which has been introduced by Brezis, Marcus and Ponce [START_REF] Brezis | Nonlinear elliptic equations with measures revisited[END_REF] when µ = 0. This notion turned out to be a very useful tool for analyzing supercritical problems. Since part of the results are simple adaptations to our framework of similar ones used in [START_REF] Chen | Weak solutions of semilinear elliptic equations with Leray-Hardy potential and measure data[END_REF], we will state them without detailled proofs, although the transcription to the types of measures used therein needs some precaution. We assume here that g is a continuous nondecreasing function vanishing at 0. For ℓ > 0 we set

g ℓ (r) = min{g(r), g(ℓ)} if r ≥ 0 max{g(-ℓ), g(r)} if r < 0. (3.1) If k ∈ R + , and (ν, λ) ∈ M + (Ω; γ Ω µ ) × M + (∂Ω; β Ω µ )
we denote by u ℓ the solution of

L µ u + g ℓ (u) = ν in Ω u = λ + kδ 0 on ∂Ω. (3.2) 
Existence of u ℓ comes from Theorem C.

Proposition 3.1 Let k ∈ R + , and (ν, λ) ∈ M + (Ω; γ Ω µ )× M + (∂Ω; β Ω µ )
, then ℓ → u ℓ is monotone decreasing and converges to some function u * when ℓ → ∞ and there exists a real number

k * ∈ [0, k] and two measures (ν * , λ * ) ∈ M + (Ω; γ Ω µ ) × M + (∂Ω; β Ω µ ) satisfying 0 ≤ ν * ≤ ν and 0 ≤ λ * ≤ λ such that u * is a weak solution of L µ u + g ℓ (u) = ν * in Ω u = λ * + k * δ 0 on ∂Ω. (3.3) Furthermore the correspondence (ν, λ, k) → (ν * , λ * , k * ) is nondecreasing.
Let v be the solution of

L µ v + g(v) = ν * in Ω v = λ * on ∂Ω. (3.5) 
Existence is standard since u * exists. Furthermore v is a subsolution of problem (1.29) hence it is smaller than u * . Therefore w = u *v is nonnegative and it satisfies

L µ w + g(u * ) -g(v) = 0 in Ω w = 0 on ∂Ω \ {0}. (3.6) 
Let ψ ∈ H µ be the solution of

L µ ψ = g(u * ) -g(v) in Ω ψ = 0 on ∂Ω, (3.7) 
then w + ψ is a nonnegative L µ -harmonic function vanishing on ∂Ω \ {0}. By [16, Theorem A] there exists k * ≥ 0 such that

lim x→0 (w + ψ)(x) γ Ω µ (x) = k * ,
and

Ω (w + ψ)L * µ ζdγ Ω µ = k * c µ ζ(0) for all ζ ∈ X µ (Ω).
It follows from (3.7) that this implies

lim x→0 w(x) φ Ω µ (x) = k * ,
and

Ω wL * µ ζ + ζ(g(u * ) -g(v)) dγ Ω µ = k * c µ ζ(0) for all ζ ∈ X µ (Ω).
Proof of Theorem D. Since g p satisfies the uniform ∆ 2 -condition, i.e. K(|r|) is constant in inequality (1.38), if (ν, 0, 0), (0, λ, 0) and (0, 0, kδ 0 ) are g p -good, then (ν, λ, kδ 0 ) is also g p -good, and conversely. Assume now that (ν, λ, 0) is g p -good, or, equivalently, for any ǫ > 0, (ν ǫ , λ ǫ , 0), is g p -good. Let u ǫ be the solution of (3.9) with k ′ = 0. Let Ωǫ be a smooth domain such that Ω ǫ ⊂ Ωǫ ⊂ Ω ǫ 2 . Then ũǫ := u ǫ ⌊ Ωǫ satisfies

L µ ũǫ + g p (ũ ǫ ) = ν ǫ in Ωǫ ũǫ = λ ǫ on ∂Ω ∩ ∂ Ωǫ ũǫ = u ǫ on ∂ Ωǫ ∩ Ω.
(3.12)

Furthermore µ |x| 2 is bounded in Ωǫ . Hence the Green operator G -∆+µ|.| -2 relative to Ωǫ is equivalent of the one relative to -∆ and ν ǫ ∈ M + (Ω; ρ). Let Ωǫ,t = {x ∈ Ωǫ : ρ(x) > t} and ν ǫ,t = χ Ωǫ,t ν ǫ . The bounded measure ν ǫ,t is g p -good in Ωǫ . From [START_REF] Baras | Singularités éliminables pour des équation semilinéaires[END_REF], this holds if and only if for

any Borel set K ⊂ Ωǫ , Cap R N 2,p ′ (K) = 0 =⇒ ν ǫ,t (K) = 0. Assume now E ⊂ Ω is a compact set such that Cap R N 2,p ′ (E) = 0. Then Cap R N 2,p ′ (E ∩ Ωǫ,t ) = 0 and thus ν ǫ,t (E ∩ Ωǫ,t ) = 0. By the monotone convergence theorem, it implies lim ǫ→0 lim t→0 ν ǫ,t (E ∩ Ωǫ,t ) = lim ǫ→0 ν ǫ (E ∩ Ωǫ ) = ν(E) = 0.
Similarly, using Marcus-Véron results on the boundary trace (see e.g. [START_REF] Marcus | Nonlinear Second Order Elliptic Equations Involving Measures[END_REF]) λ is g p -good if and only if λ ǫ vanishes on compact sets E ⊂ ∂ Ωǫ such that Cap R N- 

Isolated boundary singularities

The study of boundary isolated singularities is based upon a technical framework which has been introduced by [START_REF] Gmira | Boundary singularities of solutions of nonlinear elliptic equations[END_REF] in the case µ = 0. For the sake of completeness we recall this formalism, adapting it to our framework. Up to a rotation we assume that the inward normal direction to ∂Ω at 0 is e N = (0 ′ , 1) ∈ R N -1 × R and that the tangent hyperplane to ∂Ω at 0 is

∂R N + = R N -1 . For R > 0 set B ′ R = {x ′ ∈ R N -1 : |x ′ | < R} and D R = B ′ R × (-R, R). Then there exist R > 0 and a C 2 function θ : B ′ R → R such that ∂Ω ∩ D R = {x = (x ′ , x N ) : x N = θ(x ′ ) for x ′ ∈ B ′ R } and Ω ∩ D R = {x = (x ′ , x N ) : θ(x ′ ) < x N < R}. Furthermore ∇θ(0) = 0. Define the function Θ = (Θ 1 , ..., Θ N ) on D R by y j = Θ j (x) = x j if 1 ≤ j ≤ N -1 and y N = Θ N (x) = x N -θ(x ′ ). Since DΘ(0) = Id we can assume that Θ is a diffeomorphism from D R onto Θ(D R ). Let z be the harmonic extension of h in B R ∩ Ω vanishing on Ω ∩ ∂B R and set u(x) -z(x) = ũ(y), z(x) = z(y) for all x ∈ D + R = B ′ R × [0, R). (4.1) 
Denote by (r, σ) ∈ (0, r) × S N -1 the spherical coordinates in R N and set

ũ(y) = ũ(r, σ) = r -a v(t, σ) , z(y) = z(r, σ) = r -a Z(t, σ) , t = ln r , a = 2 p -1 . (4.2) 
Then v is bounded and satisfies the following asymptotically autonomous equation in (-∞, r 0 ]× S N -1

+ (1 + ǫ 1 (t, •))v tt + (N -2 -2a + ǫ 2 (t, •)) v t + (a(a + 2 -N ) -µ + ǫ 3 (t, •)) v + ∆ ′ v + ∇ ′ v, ǫ 4 (t, •) + ∇ ′ v t , ǫ 5 (t, •) + ∇ ′ ( ∇ ′ v, e N ), ǫ 6 (t, •) + µZ -|v + Z| p-1 (v + Z) = 0, (4.3 
) where ∆ ′ is the Laplace-Beltrami operator on S N -1 and the ǫ j satisfy the estimates

|ǫ j (t, •)| + |∂ t ǫ j (t, •)| + |∇ ′ ǫ j (t, •)| ≤ c 17 e t . (4.4) 
As for Z it verifies

|Z(t, •)| + |∂ t Z(t, •)| + |∇ ′ Z(t, •)| ≤ c 17 e at . (4.5) 
This is due to the fact that |θ(x ′ )| = O(|x ′ | 2 ) near 0. Furthermore, standard elliptic equations theory implies that there holds, if k + ℓ ≤ 3,

∂ k ∇ ′ℓ v ∂t k (t, •) ≤ c 18 in (-∞, r 0 ] × S N -1 + . ( 4 

.6)

Proof of Theorem F. We denote by S µ,p the set of functions satisfying

-∆ ′ ω + (a(N -2 -a) + µ) ω + g p (ω) = 0 in S N -1 + ω = 0 on ∂S N -1 + , (4.7) 
where a

= 2 p-1 . (i) If ω is a solution it satisfies 0 = S N-1 + |∇ ′ ω| 2 + (a(N -2 -a) + µ) ω 2 + |ω| p+1 dS ≥ S N-1 + N -1 + (a(N -2 -a) + µ) ω 2 + |ω| p+1 dS. (4.8) If N -1 + a(N -2 -a) + µ ≥ 0, then necessarily ω = 0. Next we have the following equivalences N -1 + a(N -2 -a) + µ ≥ 0 ⇐⇒ -α + ≤ a ≤ -α - ⇐⇒ (i) either p ≥ 1 -2 α -= p * µ , (ii) or 1 < p ≤ 1 -2 α + = p * * µ provided N ≥ 3 and µ 1 ≤ µ < 1 -N. (4.9) 
(ii) By minimization S µ,p is not empty if the conditions (i) or (ii) of Theorem F are fulfilled, in which case S µ,p has a unique positive element (see [START_REF] Gmira | Boundary singularities of solutions of nonlinear elliptic equations[END_REF] for a similar situation). This unique positive element is denoted ω µ .

(iii) The last statement follows an idea introduced in [START_REF] Véron | Geometric invariance of singular solutions of some nonlinear partial differential equations[END_REF]. The hupper hemisphere admits the following representation

S N -1 + = x = ((sin φ)σ ′ , cos φ) : σ ′ ∈ S N -2 , φ ∈ 0, π 2 .
The surface measure dS on S N -1 can be decomposed as

dS(σ) = (sin φ) N -2 dS ′ (σ ′ )dφ
where dS ′ is the surface measure on S

N -2 . If h(σ) = h(σ ′ , φ) is defined on S N -1 , we put h ′ (φ) = 1 |S N -2 | S N-2 h(σ ′ , φ)dS ′ (σ ′ ).
Let ω be an element of S µ,p , then, by averaging (4.7),

S N-1 + -∆ ′ (ω -ω ′ ) + (a(N -2 -a) + µ) (ω -ω ′ ) + g p (ω) -g p (ω) ′ (ω -ω ′ )dS = 0.
By monotonicity

S N-1 + g p (ω) -g p (ω) ′ (ω -ω ′ )dS = S N-1 + (g p (ω) -g p (ω ′ )) (ω -ω ′ )dS ≥ 2 1-p S N-1 + |ω -ω ′ | p+1 dS.
The function ωω ′ is orthogonal to the first eigenspace of -∆ ′ in H 1,2 0 (S N -1

+

). Since the second eigenvalue of -∆ ′ in H 1,2 0 (S N -1

+

) in 2N , we have p-1 +δ ) near x = 0, for some δ > 0, (B) or N = 2 and Ω is locally a straight line near x = 0, (B) or -2 p-1 is not equal to some α k-for some k ∈ N * . Then (i) either u is the weak solution of (1.42), (ii) or there exist an integer k ∈ N * such that -α k-< 2 p-1 and a nonzero spherical harmonic ψ k of degree k such that lim Thus the coefficient of v t in (4.3) is not zero (asymptotically, when t → -∞). Then energy damping holds and, in the same way as in [START_REF] Gmira | Boundary singularities of solutions of nonlinear elliptic equations[END_REF] up to a shift of µ in the coefficient of v in (4.3), we obtain

- S N-1 + (ω -ω ′ )∆ ′ (ω -ω ′ )dS ≥ 2N S N-1 + (ω -ω ′ ) 2 dS.
r 0 -1 -∞ S N-1 + v 2 t dσdt < ∞. (4.19) 
Combining this estimate with (4.6) and some standard manipulations (see [START_REF] Gmira | Boundary singularities of solutions of nonlinear elliptic equations[END_REF]) implies that v t (t, .) Corollary 4.2 Let µ 1 ≤ µ and 1 < p < p * µ . Then for any h ∈ C 3 (Ω), h ≥ 0 there exists only one solution of (1.41) with a strong singularity at x = 0, that is satisfying (1.47).

Proof. It is a consequence of Theorem G that the limit of u ℓδ 0 ,h of the solution of (1.49) when ℓ → ∞ is a solution which satisfies (1.47). The method of proof of uniqueness is due to Marcus and Véron [START_REF] Marcus | The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case[END_REF]. The minimal solution of (1.49) with a strong singularity at x = 0 is defined by u ∞,h := lim ℓ→∞ u ℓδ 0 ,h .

For constructing the maximal solution we define the sequence u n,h of solutions of L µ u n,h + g p (u n,h ) = 0 in Ω ∩ B where c > 0 is some constant large enough. Then u ℓδ 0 ,h ≤ u n,h . By convexity there holds u n,hu ℓδ 0 ,h ≤ u n,0u ℓδ 0 ,0 .

1

 1 Kato inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Proof of Theorem A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Proof of Theorem B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Proof of Theorem C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 The supercritical case 20 3 . 1 23 4

 3123 Reduced measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Capacitary framework, good measures and removable sets . . . . . . . . . . . . . Isolated boundary singularities 27 4.1 Proof of Theorems G, H, I and J . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1 Introduction If µ is a real number and N ≥ 2, the Schrödinger operator L µ , defined in a domain (any connected open subset) Ω ⊂ R N by

from N - 1 2 p 1 +

 121 and there exists no other bifurcation when the parameter a(N -2a) + µ belongs to (N -1, 2N ]. This implies S µ,p = {ω p , -ω p , 0} and ends the proof.For proving Theorems G, H, I, J we recall here the following technical results[START_REF] Gmira | Boundary singularities of solutions of nonlinear elliptic equations[END_REF] Theorem 5.1] related to the solutions of (1.41) satisfyinglim x→0 |x| -1 u(x) = 0. (4.12)The statement is easily adapted from the one of the above mentioned theorem. We denote byλ k = {k(k + N -2 : k ∈ N * } the set of eigenvalues of -∆ ′ in H 1,0 (S N -). Any separable L µ -harmonic function in R N + vanishing on ∂R N + \ {0} endows the formx → u(x) = u(r, σ) = r α k φ k (σ) (r, σ) ∈ R + × S N -1 + ,(4.13)where φ k ∈ ker(∆ ′ + λ k I) and α k = α k-or α k+ the smallest and the largest root ofα 2 + (N -2)αλ kµ = 0,(4.14)which exist for some k ≥ 1 if and only if µ ≥ µ k := µ 1 + N -1λ k . Note that α k-≤ 0 for all k ∈ N * and α k+ ≤ 0 if and only if µ ≥ -λ k (which imposes N ≥ 8k(k + 2k(k -1))).

Theorem 4 . 1

 41 Assume µ ≥ µ 1 , 1 < p < p * µ and h ∈ C 3 (∂Ω). If u ∈ C(Ω \ {0}) ∩ C 2 (Ω)is a solution of (1.41) satisfying (4.12) and (A) either u -(x) = O(|x| -2

x→0r 4 . 1 1 + 1 +)

 4111 α k-ũ(r, σ) = ψ k (σ).(4.15) Proof of Theorems G, H, I and J Because of (4.6) the negative trajectory of v in C 1 0 (S N -in the C 2 (S N --topology. The limit setE v of T -(v) at -∞ defined by E v = τ ≤r 0 -1 t≤τ {v(t, .)} C 1 0 (S N-1 + ) ,(4.17)is non-empty. Since 1 < p < p * µ and µ ≥ µ 1 , there holds

1 +)→

 1 C 1 (S N-1 + ) + v tt (t, .) C(S N-1 + ) → 0 as t → -∞. Hence E v is a compact connected component of S µ,p . Proof of Theorem G. If ω is nonnegative, either E v = {ω p } and (1.47) holds or lim t→-∞ v(t, .) C 2 (S N-0 as t → -∞.(4.20)If this holds, it follows by Theorem 4.1-A that either u = 0 or (4.15) is verified for some k ≥ 1. Since any spherical harmonics of degree at least two changes sign k must be equal to 1. Then ũ(x) = ℓφ µ (x)(1 + o(1)) as x → 0, which is (1.48).

  ′ (E) = 0), then ν + (resp. λ + ) has the same property. Hence we can assume that ν (resp. λ) is nonnegative. Clearly ν ǫ (resp. λ ǫ ) shares also this property. (∂Ω)) converging to ν ǫ (resp. λ ǫ ). The measures ν ǫ,n (resp. λ ǫ,n ) are g p -good relatively to the open set Ω * t . Therefore there exists a sequence of solutions {ũ ǫ,t n } satisfying weakly L µ ũǫ,t n + g p (ũ ǫ,t n ) = ν ǫ,n in Ω *

	property.	1 p ,p ′ (E) = 0. Clearly λ shares this 2
	Conversely, if ν (resp. λ) vanishes on compact sets E ⊂ Ω (resp. E ⊂ ∂Ω) such that Cap R N 2,p ′ (E) = 0 (resp. Cap R N 2 p ,p If 0 < t < ǫ we denote by Ω * t a smooth domain such that Ω ǫ ⊂ Ω * t ⊂ Ω and Ω * t ∩ B t = 0 2 there exists an increasing sequence {ν ǫ,n } (resp. {λ ǫ,n }) of positive bounded measures belong to W -2,p (Ω) (resp. W -2 p ,p t
	ũǫ,t n = λ ǫ,n ũǫ,t n = 0	on ∂Ω * t ∩ Ω. on ∂Ω ∩ ∂Ω * t	(3.13)
	Letting n → ∞, we infer that ũǫ,δ n increases and converges to the solution ũǫ,δ of	
	L µ ũǫ,t + g p (ũ ǫ,t ) = ν ǫ ũǫ,t = λ ǫ ũǫ,t = 0	in Ω * t on ∂Ω * t ∩ Ω. on ∂Ω ∩ ∂Ω * t	(3.14)
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Proof of Theorem C

We first assume that ν, λ and k are nonnegative. For 0 < r < ǫ/4 we consider the problem

(2. [START_REF] Marcus | Boundary trace of positive solutions of supercritical elliptic equations in dihedral domains[END_REF] The solution is denoted by u ǫ,k,r and we recall that u ǫ,r is the solution of (2.15). There holds max{u ǫ,r , u kδ 0 } ≤ u ǫ,k,r ≤ u ǫ + kK Ω µ [δ 0 ] in Ω r .

(2.29) Furthermore u ǫ,k,r ≤ u ǫ,k,r ′ if 0 < r ′ < r. Since u ǫ and kK Ω µ [δ 0 ] belong to L 1 (Ω, ρ -1 dγ Ω µ ) it implies that u ǫ,k,r converges in L 1 (Ω, ρ -1 dγ Ω µ ) and almost everywhere to u ǫ,k when r → 0. Since γ Ω µ is a supersolution for the equation L µ u + g(u) = 0 in Ω r , for any 0 < ǫ 0 < ǫ/4 there exists c 14 > 0 depending on ǫ 0 such that for 0 < r ≤ ǫ 0 /4, u ǫ,r (x) ≤ c 14 γ Ω µ (x) for all x ∈ B ǫ 0 ∩ Ω r .

For any σ > 0 there exists r σ > 0 such that for any r < r σ , u ǫ,r ≤ σK Ω µ [δ 0 ] in B rσ ∩Ω r . Therefore

(2.30)

Then we obtain, with R = diam Ω and for some c > 0,

This implies in particular that

(2.31)

In the set Ω rσ , we have kK Ω µ [δ 0 ] ≤ cr α - σ for some c > 0. By the local ∆ 2 -condition, we deduce g(u ǫ,r,k ) ≤ g(u ǫ + kK Ω µ [δ 0 ]) ≤ K(cr α - σ ) (g(u ǫ ) + g(cr α - σ )) .

(2.32)

Because g(u ǫ ) is bounded in L 1 (Ω r , dγ Ω µ ) independently of r by Theorem B, we infer from (2.30), (2.31) and (2.32) that g(u ǫ,k,r ) is bounded in L 1 (Ω r , dγ Ω µ ) independently of r. Let ζ ∈ X µ (Ω) vanishing near 0, then for r small enough,

If we take ζ = η, by property (2.9), (2.36) becomes lim sup

and when ǫ → 0,

(2.40) Thus, by the monotone convergence theorem we have that

Therefore, by the dominated convergence theorem we conclude that for any ζ ∈ X µ (Ω) there holds

Hence u k is the weak solution of (1.29). When ν and λ are signed measures and k is a real number, we use the Jordan decomposition of ν = ν +ν -and λ = λ +λ -and assume for example that k is nonnegative and we construct the solutions u + ǫ,k,r of

)

(2.43)

Then the function u ǫ,k,r of (2.28) satisfies -u - ǫ,r ≤ min{0, u ǫ,k,r } ≤ max{0, u ǫ,k,r } ≤ u + ǫ,k,r . Since u + ǫ,k,r is monotone with respect to r with limit u + ǫ,k , we obtain, as in the proof of Theorem B, the existence of a limit u ǫ,k of a sequence u ǫ,k,r j , a.e. and in L q loc (Ω), and u ǫ,k satisfies (2.31) for any ζ ∈ X µ (Ω) which vanishes near 0.

Since u - ǫ,r is L µ -harmonic in Ω ∩ B ǫ , u - ǫ,r = 0 on (∂Ω ∩ B ǫ ) \ {0} and charges no Dirac mass at origin in the weak sense, then

for some c 15 > 0 dependent of ǫ. Thus, there exists c 16 > 0 such that

Combining these estimates with (2.29) (applied to u + ǫ,r,k ) we obtain

Proof. The monotonicity is clear. By Fatou's lemma u * := lim

The function u * is the largest subsolution of problem (1.29). Since the mapping 

(3.8) The last assertion is obvious.

and we deduce from Proposition 2.2 that

This implies the claim.

As a consequence we have Proposition 3.3 The triplet (ν * , λ * , k * δ 0 ) is the largest g-good triplet smaller than (ν, λ, kδ 0 ).

Proof. We recall that ν ǫ = χ Ωǫ ν and

Then map (ǫ, k ′ ) → u ǫ,k ′ is nonincreasing in ǫ and nondecreasing in k ′ . There holds

From (2.40) we have that

as ǫ → 0 + . Going to the limit in (3.9) yields the claim.

Remark. The previous result is a particular case of the following result:

Capacitary framework, good measures and removable sets

In the sequel, we set g(r) = g p (r) := |r| p-1 r with p > 1. The following a priori estimate of Keller-Osserman type is by now standard (see e.g. [START_REF] Guerch | Local properties of stationary solutions of some nonlinear singular Schrödinger equations[END_REF], [START_REF] Marcus | Nonlinear Second Order Elliptic Equations Involving Measures[END_REF]).

Lemma 3.5 Let p > 1, µ ∈ R, G ⊂ R N be a domain such that 0 / ∈ G. There exist constants A > 0, B ≥ 0 depending on N , p, µ such that any compact subset F of ∂G, possibly empty, and any solution v of

there holds

For 0 < t < t ′ , ũǫ,t ≥ ũǫ,t ′ , hence ũǫ := lim t→0 + ũǫ,t satisfies

for all ζ ∈ X Ω µ which vanishes in a neigborhood of 0. We end the proof as in Theorem B. We first obtain that ũǫ satisfies (3.15) for all ζ ∈ X Ω µ , and then we let ǫ → 0 and conclude that u := lim ǫ→0 ũǫ satisfies

hence (ν, λ) is g p good.

Proof of Theorem E. A particular case of Theorem E that we will prove in Theorem J is that 0 is a non-removable singularity if and only if 1 < p < p * µ for any µ ≥ µ 1 and N > 2, or p > p * * µ with N ≥ 3 and

2,p ′ (K) = 0 is a necessary and sufficient condition for K to be removable for the operator L µ (and p

for any ζ ∈ X µ (Ω) vanishing in a neighborhood of K. Taking a test function ζ ∈ C 2 (Ω) vanishing on ∂Ω and in a neighborhood of K we infer by standard regularity theory that u ∈ C 2 (Ω \ (K ∪ {0}) is a strong solution of L µ u + g p (u) = 0 in Ω which vanishes on ∂Ω \ (K ∪ {0}).

Let G ⊂ Ω be a smooth domain such that K is interior to ∂G ∩ ∂Ω relatively to the induced topology on ∂Ω and such that 0 / ∈ G. Then µ|x| -2 is bounded in G. Then there exists a > 0 and b ∈ R such that g p (u) + µ|x| -2 u ≥ au p +b.

Similarly u is bounded from below in G and it follows that (3.17) holds for all ζ ∈ X µ (Ω). Hence u = 0 by uniqueness.

Conversely, if Cap R N-1 2 p ,p ′ (K) > 0, then there exists a capacitary measure λ K belonging to W -2 p ,p (∂Ω) with support in K (see [START_REF] Adams | Function Spaces and Potential Theory, Theory[END_REF]Chapter 1]). Since λ K vanishes on Borel set with Cap R N-1 2 p ,p ′capacity 0, it is g p -good and there exists a solution u to

Hence u satisfies (3.17) for all ζ ∈ X µ (Ω) vanishing in a neighborhood of K. Hence K is not removable.

(iii

2,p ′ (K ∩ Ω) > 0, then there exists an increasing sequence of compact sets

Hence K n is not removable, and clearly K inherits the same property as it contains K n .

(iv) If 0 ∈ K ⊂ ∂Ω and K \ {0} = ∅ and assume that any solution of (1.40) is identically 0, in particular any solution which vanishes on ∂Ω \ {0} is zero. By Theorem J this is ensured only if 

2ǫ and Ω t,ǫ = Ω \ K t,ǫ . We denote by v t,ǫ the maximal solution of L µ u + g p (u) = 0 in Ω t,ǫ which vanishes on ∂Ω \ K t,ǫ ; hence it blows-up on ∂K t,ǫ and it can be easily constructed by Lemma 3.5 by approximation with solutions with finite boundary value on ∂K t,ǫ . We also denote by w ǫ the maximal solution of the same equation in Ω ǫ := Ω ∩ B c ǫ which vanishes on ∂Ω \ B ǫ . It blows up on ∂B ǫ ∩ Ω. If u is a solution of (1.40), it is dominated in Ω \ (K t,ǫ ∪ B ǫ ) by the supersolution v t,ǫ + w ǫ . When t → 0, v t,ǫ converges to the function v 0,ǫ which satisfies the equation in Ω ǫ and vanishes on ∂Ω ǫ \ K. Since c R N-1 2 p ,p (K) = 0, there holds c R N-1 2 p ,p (K ∩ B c 2ǫ ) = 0. Therefore v 0,ǫ = 0. When ǫ → 0, w ǫ decreases and converges to a solution of the equation in Ω which vanishes on ∂Ω \ {0}, hence this limit is zero and consequently u = 0.

(v) If 0 ∈ K ⊂ Ω and K \ {0} = ∅ and any solution of (1.40) is identically 0. Then p ≥ p * µ as in (iv). Since K ∩ Ω = ∅ then any point in K ∩ Ω is a removable singularity, hence p ≥ N N -2

2ǫ as in (iv) and Kt,ǫ = {x ∈ Ω : dist (x, K ∩ Ω) < t} ∩ {x ∈ Ω : dist (x, ∂Ω) > 2ǫ}. The functions v t,ǫ and w ǫ are defined as in (iv). We also denote by ṽt,ǫ the maximal solution of

Hence u ≤ w ǫ and we conclude as in (iv) by letting ǫ → 0. Hence

2 ) 2 := µ 2 , which are expressed by

and

Note that a + a -> 0 if and only if -2N > µ. Furthermore P 2 (-α -) < 0 and P 2 (-α + ) < 0. Then there holds

where, we recall it,

Therefore ωω ′ = 0 if the following conditions are satisfied (i) when µ ≥ 1 -N and p * µ ≤ p < p * µ , (ii) when N ≥ 3 , -2N ≤ µ < 1 -N and either p * µ ≤ p < p * µ or p * * µ < p, (iii) when N ≥ 9 and µ 1 ≤ µ < -2N and either p * µ ≤ p < p * µ or p * * µ < p ≤ p * * µ .

(4.10)

If one of the above conditions is fulfilled, ω depends only on the variable φ ∈ [0, π 2 ]. It satisfies

Define the operator

]) satisfying ψ φ (0) = 0 and ψ( π 2 ) = 0. The first eigenvalue of B in H B is N -1 and the second in 2N . Since g p is nonnecreasing, it is known (see e.g. [START_REF] Berestycki | On Some Nonlinear Sturm-Liouville Problems[END_REF]) that the constant sign solutions ω p and -ω p lie on a branch of bifurcation issued By monotonicity {u n,h } decreases and converges to the maximum solution u ∞,h of (1.47) and there holds

Furthermore, by (1.47), there exists

If we assume that u ∞,0 > u ∞,0 , then, again by convexity, the function

is a supersolution for problem (1.41) smaller than u ∞,0 . The function

is a supersolution of the same problem (1.41) smaller than U . By a classical result valid for a wide class of quasilinear equations there exists V solution of the problem such that U * ≤ V ≤ U .

In particular V has a strong blow-up at x = 0 and it is smaller than the minimal solution u ∞ , contradiction.

Proof of Theorem H. Since E v is a connected subset of the discrete set S µ,p which has three connected components ({ω p }, {-ω p }, {0}) by Theorem F-( 1) either (1.50) or (4.12) holds. Since p > p * µ , -2 p-1 which necessarily larger α 1-satisfies either 2 p-1 < α 2-or, if 2 p-1 > α 2+ in the case N ≥ 9 and µ < -2N and 2 p-1 is not equal to any α k-or α k+ for k > 2 by the equation. Hence, by Theorem 4.1, (1.48) holds.

Remark. If p = p *

µ or p = p * * µ the method shows that either (1.50) or (4.12) holds. Since it is the spectral case always difficult to handle we cannot prove that (1.48) also holds, a fact that we conjecture.

Proof of Theorem I. The two statements obey a totaly different approach. Statement 1-is a consequence of the theory of analytic functionals developped by in [START_REF] Simon | Asymptotics for a class of nonlinear evolution equations with applications to geometric problems[END_REF], [START_REF] Simon | Isolated singularities of extrema of geometric variational problems[END_REF] and applied to Emden-Fowler equations in [START_REF] Bidaut-Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF]. The key point is to consider the equation (4.3) satisfied by v(t, .) = r

and to verify that, as a function of v, it is real analytic. Hence p must be an odd integer. If 1 < p < p * µ the only possibility is p = 3 which is in the range if N + 4 √ µµ 1 . If µ < 1 -N and p > p * * µ there are infinitely many possibilities for p. Statement 2-The convergence to one element of S µ,p follows from the fact that this set of solutions of (1.54) is discrete. If ∂Ω is locally a close graph near 0 the paper [START_REF] Chen | Anisotropic Singularities of Solutions of Nonlinear Elliptic Equations in R 2[END_REF] For any ǫ > 0, u + + ǫφ µ is a supersolution of L µ u + g p (u) = 0, larger than u near x = 0. Then that u ≤ u + + ǫφ µ and, letting ǫ → 0 then u ≤ u + . Similarly u is larger than -u -ǫφ µ , where u -is the solution of (4.24) with h + replaced by h -. Letting ǫ → 0 yields -u -≤ u ≤ u + . It follows by the method of Theorem B that u is the weak solution of (1.42).

If p = p * µ and µ = µ 1 , then similarly u(x) = o(φ µ (x)) near x = 0 and the result follows by the same method.

Finally, if p = p * µ and µ > µ , then (4.18) holds. Using the variable t = ln r and v(t, .) = r 2 p-1 ũ(r, .) we obtain from the previous energy method that E v ⊂ S µ,p = {0}.

Hence u satisfies (4.12). Since p = p * µ , 2 p-1 = -α -. Hence u = o(φ µ ) near 0 and the conclusion follows as in the previous cases.