Cohomology of linking systems with twisted coefficients by a $p$-solvable action - Archive ouverte HAL
Article Dans Une Revue Homology, Homotopy and Applications Année : 2017

Cohomology of linking systems with twisted coefficients by a $p$-solvable action

Rémi Molinier

Résumé

In this paper we study the cohomology of the geometric realization of linking systems with coefficients twisted by a $p$-solvable action. More precisely, we try to compare it with the submodule of $\mathcal{F}$-stable elements in the cohomology of the Sylow. The main tools we use is the notion of $p$-local subgroup of index a power of $p$ or prime to $p$. We first study extension by a $p'$-group in a general setting. We give some results for any $p$-solvable action in the case of realizable $p$-local finite groups and make a conjecture that this could be generalized to any $p$-local finite groups. We finally give some constructions and examples to study this conjecture.
Fichier principal
Vignette du fichier
1507.02401.pdf (289.17 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-02280278 , version 1 (20-02-2024)

Identifiants

Citer

Rémi Molinier. Cohomology of linking systems with twisted coefficients by a $p$-solvable action. Homology, Homotopy and Applications, 2017, 19 (2), pp.61-82. ⟨10.4310/HHA.2017.v19.n2.a4⟩. ⟨hal-02280278⟩
33 Consultations
6 Téléchargements

Altmetric

Partager

More